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Statistical theory of energy loss and charge exchange of penetrating particles:
Energy-loss spectra and applications
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A recently presented formalism for the computation of energy-loss spectra of penetrating particles
in the presence of charge exchange has been extended to include analytical expressions for energy-
loss spectra in the diffusion approximation. For a two-state system the case of charge transfer in one
direction only, as well as in both directions, is investigated. Expressions obtained for charge-state
distributions are evaluated, using theoretically and experimentally determined cross sections.

PACS number(s): 34.50.Bw, 34.70.+e, 52.40.Hf, 61.80.Mk

I. INTRODUCTION

A theory describing the energy loss of charged particles
in the presence of charge exchange was recently presented
[1,2]. General expressions were derived for the mean en-
ergy loss and straggling in equilibrium. This work was
extended in [3] to include higher moments of the energy-
loss distribution and transients. Concerning the histor-
ical development of this area of research, the reader is
referred to Ref. [2], which also includes an extensive list
of references.

Up to now formulas were derived in [1—3] for impor-
tant experimental parameters such as the charge-state
distribution and the energy-loss spectrum integrated over
all exit charge states. Mean energy loss, straggling, and
skewness were given analytically and separated into an
equilibrium and a transient part, the latter one depend-
ing on the initial charge state. Charge-state distributions
have not been evaluated for real systems and analytical
expressions for energy-loss spectra resolved for the exit
charge have not been extracted yet.

The advantage of this formalism is that it delivers ex-
pressions for the experimentally relevant quantities in a
closed, algebraic form, so that one does not have to resort
to Monte Carlo methods.

This paper concentrates on applying the equations ob-
tained for charge-state distributions to real systems and
on deriving formulas for energy-loss spectra for the two-
state case in the diBusion approximation. It will be
shown that expressions derived earlier for a special case
(He+ particles incident on Ni surfaces) [4] are also con-
tained in this description.

The key input is a set of differential transition rates
dAlg(T)/dT between accessible projectile states I and
J, defined such that [dAIg(T)/dT]dTbt = StdAlg(T) is
the probability in a small time interval bt for a transition
&om state I to state J under simultaneous loss of kinetic
energy (T, dT). In standard penetration theory [1], only
collisional interactions are considered so that transition
rates reduce to dAlg(T) = Nvdcrlg(T), where N is the
density of scattering centers, v the projectile velocity,
and dal~(T) the differential cross section. The notation
in terms of transition rates allows for both spontaneous
and collisionally induced events [2].

The most general output is a transfer matrix
F(ZE, t) = (FIJ(AE, t)). Here F~~(DE, t)d(AE) is the
probability for a projectile occupying state I at t = 0
to occupy state J at time t and to have lost kinetic en-

ergy (AE, d(AE)) by an arbitrary sequence of events.
F(AE, t) has been found to obey a generalized Bothe-
Landau formula [1]

1F(~E t) gk tk&E t[C}—A(k)]
2'

wh~~~ QIJ = f dAlz —~rz+L f dAII. and Asj(k)
f dAlq(1 —e '" ). Equation (1) assumes the individ-
ual events to be statistically independent and transition
rates dAlg(T)/dT to be independent of time.

The charge-state distribution Fyg(t) at time t is ob-
tained &om Eq. (1) by integration over AE,

F(t) = e'~. (2)

II. INPUT AND OUTPUT

In this section the results of [1,2] are briefly summa-
rized and the main quantities used in this paper are in-
troduced.

*Present address: Universitat Osnabriick, Fachbereich
Physik, D-49069 Osnabruck, Federal Republic of Germany.

The matrix Q satisfies the important sum rule P& QIJ =
0.

In this paper Eq. (1) will be evaluated for some special
cases. For very simple systems analytical expressions are
available but for more complex ones numerical methods
were applied. The time variable t will be changed to the
experimentally more relevant thickness x = vt, , where v
is the projectile's incident velocity which is assumed to
be constant.
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I"»(AE, z) = f2(AE, z) —e " *f&(AE,z), (5)

The energy-loss distribution at penetrated thickness x
of all particles with state 1 as initial and state 2 as final
state is given by the expression

fl(AE) x) = cexp — (b,E —SINx)
)b,S

(AE —S N*
x 1+erf

+2WNx

where

fI(bE, ) = &12
dA, i k(AE —Sr Nz)

2K

exp( —k2WI Nz/2)
o g2 + k2A W/2 + i k AS

' (6)
In the equilibrium limit (large x), the second term in
Eq. (5) vanishes. Then we arrive at the same expres-
sion which was already derived in [4] using a different
approach.

with LS = S1 —S2 and LR = R'1 —lV2.

Negligible digemnce in stt aggling

If Wq ——W2 = W in Eq. (6), the integrals can be
expressed in terms of the error function:

g. Diferent straggling in both states

If straggling in the two states is diferent, the final
expression can still be written in the form of Eq. (5)
with the functions fI now being

f (AE x) = c[e ' "' GI A, (AE x) —e ' "' G I„(AE,z)],

GI ~(AE, x) = e~ ' "erf + k/WINz/2 ~ (crq2/k —AWk/2 —AS)
( AE —SINz

2 IWINz/2

f — + k/W N /2 ( . /k —AWk/2+ AS),
AE —SINx

2+WINz/2 )
1 012 2

A W2 (k2 —k22) 2 AS (1O)

where the k, are given by the following relation:

(AS I AS t'ASI""=' AW'~ AW ~ "AW ~ AW ~ "AW

B. -harge exchange in both directions

Now charge exchange in both directions is allowed for, i.e. , both transition rates are larger than zero. Again,
straggling in the two states is set to be the same.

The elements of the transfer matrix can be shown to give

Eqq(AE, x) = A dt [sinht cos(nP cosht) cos(2P sinht) + cosh t sin(nPcosht) sin(2P sinht) ]
0

x exp( —e'P cosh t)
~/2

+A dt [cos t cos(aP sin t) cosh( 2P cos t) + sin t sin(nP sin t) sinh( 2P cos t) j
0

x exp( —ep sin t)
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and

&~2(b,E, x) = 2A' dt cos(nP cosh t) sin(2P sinh t)
0

x exp( —eP cosh t)
~f2

+ 2A' dtcos(nPsint) sinh(2Pcost)
0

x exp( —ep sin t) .

Here the following abbreviations are introduced:

w
0!= LE —SNx — Lo.Nx l,ASNx ( AS )' '

P= 2+o.i2o2gNz)
R'Nx

2(ESNE) 2 '

and the coefBcients are given by

p —
N ( Ao.A= e exp — (AE —SNT )z. ~ESNE~

~
AS

—TVNx
AS 2

o.g2Nx
)

with LS = Sq —S2, Lo = oq2 —o2q, S mean stop-
ping, o mean transition rate, AE the energy-loss vari-
able, R' the straggling parameter, and Nx the thickness
variable.

E22 can be obtained from Eq. (12) by substituting the
two plus signs under the integrals by minus signs and
+21(+E)&) (021/012)+12(+El &).

In the following evaluation the same set of parameters
as in [4] is used, i.e. , corresponding to the interaction of
a 5 keV He particle with a &ee electron gas. The He+
ion is chosen as the incident state (1), which is subject to
neutralization (to He, state 2) and reionization accord-
ing to the transition rates Nvo. q2 and Nvo. 2q. Numbers
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FIG. 3. Transfer matrix elements Eqq (a) and Eq2 (b) for
the case of equal transition probabilities and different thick-
nesses.
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FIG. 4. Transfer matrix elements Eqq (a) and Eqq (b) for
the case of one transition probability being much larger than
the second one, each shovrn for different thicknesses.
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pears in the spectrum. In order to further investigate
this structure, straggling was reduced by a factor of 10
and the transfer matrix element was calculated for large
thickness for difFerent ratios 0 i2/cr2i, where o i2 was kept
constant. The resulting curves are shown in Fig. 5.

Finally, Fig. 6 shows all four matrix elements for a
fixed ratio 0 i2/cr2i and the same set of other parameters.

V. DISCUSSION
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——0.065, S2 ——0.097, and Si ——3.7 x S2.
Figure 3 shows the evolution of the transfer matrix el-

ements with increasing thickness for the case that o2q ——

o.&2. Figure 4 displays the same series for o.2& « o.&2.

Here one sees that for large thickness a new feature ap-
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FIG. 6. Transfer matrix elements Fqg for o'i2/cr2i = 130;
all other parameters as in Fig. 5.
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FIG. 5. Transfer matrix element Fqq for two different
ranges of ratios eris/o2i, where oi2 was kept fixed at 0.065
a.ll.

In the limit of large x Eqs. (5) and (7) yield the same
expression that was already derived in [4] [Eq. (8)]. That
paper deals with specular surface scattering of He+ par-
ticles under grazing incidence ofF a Ni(110) surface along
a random (high indexed) azimuthal direction. This ge-
ometry makes sure that only particles are detected which
did not penetrate the uppermost atomic layer and thus
only interacted with the electron density above the sur-
face. Since the transition rates for neutralization and
reionization of the incident; particle depend on the elec-
tron density, the transition rates vary with time during
the passage of the particle through the region of inter-
action. In Ref. [4] an average transition rate was used
and in this approximation the same energy-loss formula
was derived. In Sec. II the assumption was made that
the transition rates dAI J(T)/dT are independent of time.
If the rates vary in a controlled way, the substitution
tdAIg(T) -+ f dt'dAI 1(t', T) may be utilized.

Now the energy-loss spectra obtained from Eqs. (12)
and (13) are discussed. If both transition rates are equal
(Fig. 3), the distributions Eii and Ei2 are identical for
large thicknesses, as expected. For very low thicknesses
F~z overwhelms, simply because the interaction time is
so small, that hardly any incident particles (state 1) can
convert to state 2. %'ith increasing thickness Eqq de-
creases and F~2 increases until finally both are the same.
The fact that there is an energy gain for low thicknesses is
intrinsic to the diffusion approximation which is strictly
valid for large thicknesses only.

If the transition rate Nvai2 f'rom the He+ state (1)
to the He state (2) is much larger than the other one,
then Eqq decreases much faster with increasing thickness
(Fig. 4) because the conversion to He is much more
efFicient. For large thickness most of the particles leave
the interaction region in this state.

In Fig. 4(a) a new feature is observed at higher energy
loss and in Fig. 5 two series of spectra are presented that
show how this second maximum evolves when o2q ~ 0.
As is most clearly seen in Fig. 5(b), the number of par-
ticles scattered into this peak is determined by aq2 only.
This maximum at 35.9 a.u. originate in those particles
that never suffered any neutralization, i.e. , the particles
surviving in the initial state. This is confirmed by the fact
that the integral area below this peak is exp( —oi2Nx),
which is just the surviving fraction obtained from the
corresponding rate equation. At about the same posi-
tion there is also a kink in the curve of Eq2, that can be
seen in Fig. 6.
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VI. SUMMARY

In Sec. III a recently derived matrix equation for the
charge-state distribution was evaluated for two systems:
(a) for the case of a proton interacting with an electron
gas, using calculated cross sections and (b) for the case of
13 MeV 0 + —+ C foil, using experimentally determined
cross sections.

Energy-loss spectra for the two-state case were derived
in Sec. IV in the diffusion approximation. In the simple
case of charge exchange in one direction only, a previously
presented formula was rederived.

The expressions obtained for the case of charge ex-
change in both directions have been evaluated for a num-
ber of cases and discussed in Sec. V.
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