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A recently presented formalism for the computation of energy-loss spectra of penetrating particles
in the presence of charge exchange has been extended to include analytical expressions for energy-
loss spectra in the diffusion approximation. For a two-state system the case of charge transfer in one
direction only, as well as in both directions, is investigated. Expressions obtained for charge-state
distributions are evaluated, using theoretically and experimentally determined cross sections.
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I. INTRODUCTION

A theory describing the energy loss of charged particles
in the presence of charge exchange was recently presented
[1,2]. General expressions were derived for the mean en-
ergy loss and straggling in equilibrium. This work was
extended in [3] to include higher moments of the energy-
loss distribution and transients. Concerning the histor-
ical development of this area of research, the reader is
referred to Ref. [2], which also includes an extensive list
of references.

Up to now formulas were derived in [1-3] for impor-
tant experimental parameters such as the charge-state
distribution and the energy-loss spectrum integrated over
all exit charge states. Mean energy loss, straggling, and
skewness were given analytically and separated into an
equilibrium and a transient part, the latter one depend-
ing on the initial charge state. Charge-state distributions
have not been evaluated for real systems and analytical
expressions for energy-loss spectra resolved for the exit
charge have not been extracted yet.

The advantage of this formalism is that it delivers ex-
pressions for the experimentally relevant quantities in a
closed, algebraic form, so that one does not have to resort
to Monte Carlo methods.

This paper concentrates on applying the equations ob-
tained for charge-state distributions to real systems and
on deriving formulas for energy-loss spectra for the two-
state case in the diffusion approximation. It will be
shown that expressions derived earlier for a special case
(Het particles incident on Ni surfaces) [4] are also con-
tained in this description.

II. INPUT AND OUTPUT

In this section the results of [1,2] are briefly summa-
rized and the main quantities used in this paper are in-
troduced.
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The key input is a set of differential transition rates
dA15(T)/dT between accessible projectile states I and
J, defined such that [dA;;(T)/dT)dTét = 6tdArs(T) is
the probability in a small time interval 6t for a transition
from state I to state J under simultaneous loss of kinetic
energy (T,dT). In standard penetration theory [1], only
collisional interactions are considered so that transition
rates reduce to dA1;(T) = Nvdor;(T), where N is the
density of scattering centers, v the projectile velocity,
and doyj(T) the differential cross section. The notation
in terms of transition rates allows for both spontaneous
and collisionally induced events [2].

The most general output is a transfer matrix
F(AE,t) = {F1;(AE,t)}. Here Fr;(AE,t)d(AE) is the
probability for a projectile occupying state I at t = 0
to occupy state J at time t and to have lost kinetic en-
ergy (AE,d(AE)) by an arbitrary sequence of events.
F(AE,t) has been found to obey a generalized Bothe-
Landau formula [1]

1 ° :
F(AE,t) = ﬁ/ dkei*AE (HQ-AMR)] (1)
—oo

where QIJ = fdAI_] - 5IJZLfdAIL and AIJ(k) =
JdAr;(1 — e *T). Equation (1) assumes the individ-
ual events to be statistically independent and transition
rates dA7;(T)/dT to be independent of time.

The charge-state distribution F7;(t) at time t is ob-
tained from Eq. (1) by integration over AE,

F(t) = Q. (2)

The matrix Q satisfies the important sumrule Y ; Qry =
0.

In this paper Eq. (1) will be evaluated for some special
cases. For very simple systems analytical expressions are
available but for more complex ones numerical methods
were applied. The time variable ¢ will be changed to the
experimentally more relevant thickness x = vt, where v
is the projectile’s incident velocity which is assumed to
be constant.
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III. CHARGE-STATE STATISTICS

Methods to evaluate the charge-state distribution [Eq.
(2)] have been outlined in [5].

Arnau et al. [6] calculated the transition rates of elec-
tron capture and loss for a proton in aluminum in density
functional formalism as a function of the projectile’s ve-
locity. The accessible states are H (state 1), H° (2),
and H™ (3). These transition rates are input to Eq. (2)
and yield, e.g., the function Fj. displayed in Fig. 1. It
is only for the medium range of velocities (about 1 Bohr
velocity) that there is a significant amount of neutrals
emerging at larger thicknesses. At low velocity the pro-
duction of H™ is very efficient, thus emptying the H°
state, and at high velocities the HT state is preferred,
thus inhibiting further population of H°.

As a second example, recently published results [7]
about charge-state distributions of fast oxygen ions ex-
iting carbon foils are applied. Wagner et al. deter-
mined equilibrium and nonequilibrium distributions and
extracted the charge-changing cross sections. Figure 2
shows the charge-state fraction obtained from their num-
bers and the experimental data. The excellent agreement
is not too surprising since the cross section data input
into Eq. (2) are derived from the same experiment to
which we compare the resulting curves. However, the
above procedure shows that the obtained results are con-
sistent.

The advantage of this method is computational speed.
Especially when many states are involved, evaluating a
matrix exponential numerically is faster than solving a
set of differential equations. This task is facilitated ap-
preciably by using computer algebra programs.

This method can also be used in the case of incom-
plete sets of cross sections. By guessing the missing cross
sections and comparing to the experimentally obtained
charge-state distribution, one obtains estimates for those
cross sections. This does not necessarily produce unique
cross sections, though.
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FIG. 1. Element Fi» of the transfer matrix. State 1 cor-
responds to HY, state 2 to H®, for further details see text.
Projectile velocity is given in units of vg, the Bohr velocity,
thickness in units of ao, the Bohr radius, and the transfer
matrix element in units of inverse hartrees (1 hartree = 27.2

eV.)
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FIG. 2. Calculated charge fraction for 13 MeV 03" — C
foil. The lines are obtained from evaluating Eq. (2); markers
are experimental data by Wagner et al..

IV. ENERGY-LOSS SPECTRA
FOR THE TWO-STATE CASE
IN THE DIFFUSION APPROXIMATION

The aim of this section is to extract energy-loss spec-
tra from Eq. (1) instead of averaged quantities. For the
important case of two accessible states analytical expres-
sions can be derived in the diffusion approximation.

For thick targets, i.e., large x, the diffusion approx-
imation can be applied: the exponential in Azy(k) =
f dArs (1 — e_ikT) is expanded up to the third term and
yields

A(k) ~ ikS + k*W /2, (3)

where S;; = f dA;;T is the stopping cross section and
Wiy = f dA1;T? the straggling parameter.

In the following, off-diagonal elements in stopping and
straggling are ignored [8], i.e., energy loss and straggling
due to charge exchange events are not taken into account.
For simplicity the notation S;; = S; and Wy = Wi is
introduced.

The exponential matrix in Eq. (1) can be evaluated
analytically for the two-state case. In the next steps
further simplifying approximations to the resulting ex-
pressions for the elements of the transfer matrix will be
applied.

A. One-way charge exchange only

If charge exchange is allowed to occur in one direction
only, i. e., 012 # 0 and o2; = 0, one obtains for Fj;

Fi(AE,z) = 2i /dk F(AE—S,Nz) ,~K*W; Nz /2—013Nw
y(y
— 1 e-——o'lzNI
27TW1N.’L'
| (AE — S, Na)?
x exp( W, Nz S (4)

which is the expected Gaussian distribution.
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The energy-loss distribution at penetrated thickness x
of all particles with state 1 as initial and state 2 as final
state is given by the expression

F13(AE,z) = f2(AE,z) — e 72V®f,(AE,z), (5)
where

fi(AE,z) = 521_2 /dk e*(AE-SNz)
yi

y exp(—k*WiNz/2) ()
o12 + k2AW/2 + ikAS’

with AS = Sl - Sz and AW = W]_ - Wz.

1. Negligible difference in straggling

If W, = W, = W in Eq. (6), the integrals can be
expressed in terms of the error function:

f1(AE,z) = cexp (—%(AE - SINa:)>

5 [1 +erf(sA_E_iN_w

2W Nz
012
- o2 1 (0122
€T 2a5 P [2 (3) WN’”] '

In the equilibrium limit (large z), the second term in
Eq. (5) vanishes. Then we arrive at the same expres-
sion which was already derived in [4] using a different
approach.

2. Different straggling in both states

If straggling in the two states is different, the final
expression can still be written in the form of Eq. (5)
with the functions f; now being

fI(AE, z) = c[e"N**:/2G . (AE,z) — eWINM/2G (AR, 2)] , (8)

Grx(AE,z) = e<AE—SINw>’°erf( AE — SiNa + k\/WINx/2) (o12/k — AWk/2 — AS)

2 WIN:I:/Z
AE — ;N
e (AB=SiNaYkorg| 20— OI22 | b /WiNz/2 | (012/k — AWk/2 + AS) | (9)
2 WIN:L‘/z
_ o12 1 r012)\2
T Aawer(k2 — k2) P [2 (AS) WN””] ’ (10)

where the k; are given by the following relation:

AS \?2 AS AS \?
ki2=2|:£—lv%+(m) +2 ( >+2"12. (11)

AW AW AW

B. Tharge exchange in both directions

Now charge exchange in both directions is allowed for, i.e., both transition rates are larger than zero. Again,
straggling in the two states is set to be the same.
The elements of the transfer matrix can be shown to give

Fi,(AE,z)=A / dt [sinht cos(af3 cosht) cos(38sinht) + coshtsin(aB cosh t) sin( 3Bsinht) |
0
x exp(—e/3? cosh? t)
/2
+A / dt [costcos(aBsint) cosh(3Bcost) + sintsin(afsint) sinh(38cost) |
0

x exp(—e3? sin’ t) (12)



and
Fi3(AE,z) =24’ / dt cos(af cosh t) sin(3 B sinh t)
0
x exp(—eB? cosh? t)

/2
+ 24’ /(; dt cos(aBsint) sinh(38cost)

X exp(—sﬁ2 sin? t) .
Here the following abbreviations are introduced:
1 - w
= AE — SNz — —AoNz
= ASNz ( AS ) )
,6= 2\/0'120'21N(B,
e WNzx
" 2(ASN=z)?’
and the coefficients are given by
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FIG. 3. Transfer matrix elements Fi; (a) and Fiz (b) for
the case of equal transition probabilities and different thick-

nesses.
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with AS =85, —S;, Ao =012 —03;, S mean stop-
ping, & mean transition rate, AE the energy-loss vari-
able, W the straggling parameter, and Nz the thickness

variable.

F33 can be obtained from Eq. (12) by substituting the
two plus signs under the integrals by minus signs and
F21(AE,z) = (021/012) F12(AE, z).

In the following evaluation the same set of parameters
as in [4] is used, i.e., corresponding to the interaction of
a 5 keV He particle with a free electron gas. The He™t
ion is chosen as the incident state (1), which is subject to
neutralization (to He®, state 2) and reionization accord-
ing to the transition rates Nvoi3 and Nvog;. Numbers
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FIG. 4. Transfer matrix elements F1; (a) and Fiz (b) for

the case of one transition probability being much larger than
the second one, each shown for different thicknesses.
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FIG. 5. Transfer matrix element Fj; for two different
ranges of ratios 012/021, where o012 was kept fixed at 0.065
a.u.

given are always in atomic units unless stated otherwise:
g12 = 0065, Sz = 0.097, and Sl = 3.7 x Sz.

Figure 3 shows the evolution of the transfer matrix el-
ements with increasing thickness for the case that o2 =
o12. Figure 4 displays the same series for oy; < 013.
Here one sees that for large thickness a new feature ap-
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FIG. 6. Transfer matrix elements Fy; for o12/021 = 130;
all other parameters as in Fig. 5.

pears in the spectrum. In order to further investigate
this structure, straggling was reduced by a factor of 10
and the transfer matrix element was calculated for large
thickness for different ratios o12/021, where 012 was kept
constant. The resulting curves are shown in Fig. 5.
Finally, Fig. 6 shows all four matrix elements for a
fixed ratio 013/021 and the same set of other parameters.

V. DISCUSSION

In the limit of large z Egs. (5) and (7) yield the same
expression that was already derived in [4] [Eq. (8)]. That
paper deals with specular surface scattering of He™ par-
ticles under grazing incidence off a Ni(110) surface along
a random (high indexed) azimuthal direction. This ge-
ometry makes sure that only particles are detected which
did not penetrate the uppermost atomic layer and thus
only interacted with the electron density above the sur-
face. Since the transition rates for neutralization and
reionization of the incident particle depend on the elec-
tron density, the transition rates vary with time during
the passage of the particle through the region of inter-
action. In Ref. [4] an average transition rate was used
and in this approximation the same energy-loss formula
was derived. In Sec. II the assumption was made that
the transition rates dA;;(T)/dT are independent of time.
If the rates vary in a controlled way, the substitution
tdA77(T) — [y dt'dA;;(¢',T) may be utilized.

Now the energy-loss spectra obtained from Egs. (12)
and (13) are discussed. If both transition rates are equal
(Fig. 3), the distributions Fj; and Fj are identical for
large thicknesses, as expected. For very low thicknesses
F}; overwhelms, simply because the interaction time is
so small, that hardly any incident particles (state 1) can
convert to state 2. With increasing thickness F;; de-
creases and F5 increases until finally both are the same.
The fact that there is an energy gain for low thicknesses is
intrinsic to the diffusion approximation which is strictly
valid for large thicknesses only.

If the transition rate Nvoiz from the He™ state (1)
to the He® state (2) is much larger than the other one,
then Fj; decreases much faster with increasing thickness
(Fig. 4) because the conversion to He® is much more
efficient. For large thickness most of the particles leave
the interaction region in this state.

In Fig. 4(a) a new feature is observed at higher energy
loss and in Fig. 5 two series of spectra are presented that
show how this second maximum evolves when o3; — 0.
As is most clearly seen in Fig. 5(b), the number of par-
ticles scattered into this peak is determined by o2 only.
This maximum at 35.9 a.u. originate in those particles
that never suffered any neutralization, i.e., the particles
surviving in the initial state. This is confirmed by the fact
that the integral area below this peak is exp(—oi12Nz),
which is just the surviving fraction obtained from the
corresponding rate equation. At about the same posi-
tion there is also a kink in the curve of F;,, that can be
seen in Fig. 6.



VI. SUMMARY

In Sec. III a recently derived matrix equation for the
charge-state distribution was evaluated for two systems:
(a) for the case of a proton interacting with an electron
gas, using calculated cross sections and (b) for the case of
13 MeV 03+ — C foil, using experimentally determined
cross sections.

Energy-loss spectra for the two-state case were derived
in Sec. IV in the diffusion approximation. In the simple
case of charge exchange in one direction only, a previously
presented formula was rederived.
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The expressions obtained for the case of charge ex-
change in both directions have been evaluated for a num-
ber of cases and discussed in Sec. V.
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