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Two interferometric complementarities are formulated and demonstrated, and relations between them
are analyzed. The first relates the distinguishability D(P) of the path of propagation of a particle (where
P is the preparation of an ensemble) to the fringe visibility U

&
when amplitudes from two paths are com-

bined. It is shown that [maxD(P) ] + v f = 1, where the maximum is taken over all preparations compati-
ble with a fixed density operator. The second complementarity relates the visibility of one-particle in-
terference fringes to the visibility u» of two-particle fringes: U»+u &

1. With a suitable extension of
operations on the pair of particles, this inequality is strengthened to an equality.

PACS number(s): 03.65.8z, 07.60.Ly

I. INTRODUCTION

The first of the two interferometric cornplementarities
that we shall study in this paper has been roughly known
since the early days of quantum mechanics: it is the corn-
plernentarity of the distinguishability of the path of a par-
ticle and the Uisibility of interference fringes formed when
amplitudes from two paths are combined with variable
phase factors. In a famous paper, Bohr [1] analyzed two
variants of the double-slit experiment. In one variant, the
diaphragm pierced with two slits is free to move so that
the slit through which the particle passes can be deter-
mined by measuring the recoil of the diaphragm. In the
other, the diaphragm is fixed, so that the path cannot be
determined. But only in the latter arrangement is an in-
terference pattern exhibited. He concluded, "we are
presented with a choice of either tracing the path of a
particle or observing interference effects. "

Wootters and Zurek [2], followed by Bartell [3], initiat-
ed the study of arrangements intermediate between the
two extremes considered by Bohr. They found that mea-
surements can be made to determine retrodictively with
high probability which slit each particle of the ensemble
traversed, without completely obliterating the interfer-
ence pattern formed by the impingement of the particles
on a screen, and they found a complementarity between
the quantity of "partial information" (suitably defined)
and the visibility of the interference pattern. Bartell
remarked, however, that "Although such a ratio suggests
a fairly high probability of a trajectory through slit A, it
cannot, of course, be rigidly interpreted in terms of indi-
vidual photons going through slit A four times out of
five."

This conceptual difhculty suggests the value of posing a
somewhat different though related problem that concerns
prediction rather than retrodiction. Suppose that an en-

semble of particles given by a preparation P emerges
from a diaphragm into two beams A and A', as shown in
Fig. 1. One could insert either of two kinds of apparatus
downstream from the slit. One [Fig. 1(a)] is an apparatus
for observing the interference between beams A and A',
brought together on a viewing screen. If this type of ap-
paratus is chosen, the interesting physical quantity is the
visibility u& of the interference pattern caused by the
preparation P. The other kind of apparatus [Fig. 1(b)]
consists of ideal detectors inserted in beams A and A',
and the interesting quantity is the distinguishability of the
path, which can be defined in the following way. Consid-
er any measurements that can be made consistently with
the preparation P, for example, by examining auxiliary
systems correlated with the particles of the ensemble; for-
mulate a strategy for predicting, for each particle in the

D'

FICx. 1. Two apparatuses for observing particle beams A and
A ' emerging from a diaphragm having two slits: (a) A and A '

are brought together on a viewing screen S and (b) A and A ' are
made to impinge on detectors D and D' placed in their paths.
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ensemble, whether it mill be detected in beam 3 or in
beam 3 ', where the strategy can of course make use of
knowledge of the preparation P in addition to the results
of the measurements bearing on the particle of interest.
These predictions can be checked by the ideal detectors
in the beams A and A '. The optimum strategy, given P,
is the one for which the probability of a correct predic-
tion has the maximum value p,„, which clearly is also
the strategy that makes the probability of an incorrect
prediction have a minimum value q;„. We propose as
the measure of path distinguishability, given preparation

~P) =c~A )+c'~ A'), (2)

D(P) =p,„—q;„=2p,„—1;
Any monotonic function of D(P) would be an acceptable
candidate for a definition of path distinguishability, but
ours has the obvious virtue of possessing the interval 0—1

as its range and it has less obvious virtues, which will ap-
pear later, of yielding simple relations to visibility and to
the density matrix associated with the preparation.

A paper of Greenberger and YaSin [4] addressed the
probability of prediction rather than retrodiction [in the
discussion preceding their Eq. (7)] and they proposed a
concept of path distinguishability that is the same as
ours, but in a restricted range of preparations. They only
considered preparations in which no observations on aux-
iliary systems can yield information useful for predicting
the path of a particle of interest and therefore the
strategy of prediction must be based entirely on the
preparation. We call such preparations "simple. " The
experimental situation that they studied consisted of an
incident neutron beam split at the first slab of a neutron
interferometer into two beams A and A ', which are
recombined at a point downstream. Their analysis ap-
plies, however, to any preparation of an idealized ensem-
ble of particles, each of which we shall refer to as "parti-
cle 1," propagating in beams A and/or A', where the lo-
cution "and/or" refers in a condensed way to the possi-
bility of quantum-mechanical superposition. Their ideali-
zation consists in assuming that the Hilbert space H

&
as-

sociated with each particle 1 is two dimensional, spanned
by vectors

~
3 ) and

~
A '), where the former completely

characterizes propagation in beam 3 and the latter com-
pletely characterizes propagation in beam 2'. lf the en-
semble is a pure simple case, with all particles in the same
quantum state ~P),

simple case, the complementarity can be expressed by an
equality

D +U =1' (4a)

in the mixed simple case it is expressed by the inequality

D +Ui &1. (4b)

Since entering a definite beam is a particlelike property,
while exhibiting an interference pattern is a wavelike
property, Greenberger and YaSin use the notations P and
W, respectively, for our D and v& and they interpret (4a)
and (4b) as expressing wave-particle complementarity.

In our Sec. II we extend the analysis of Czreenberger
and YaSin by considering a larger class of preparations.
We add to the pure and mixed simple cases those cases
defined by density operators, which we call "statistical
simple cases. " Furthermore, quantum mechanics postu-
lates that the Hilbert space representing states of a com-
posite system 1+2 is the direct product of the Hilbert
spaces H& and H2 associated with 1 and 2 separately. If
~6) EH i SH, cannot be factored into a product of a vec-
tor in H, and a vector in H2, then the state represented
by ~8) is entangled. One can consider an ensemble of
pairs 1+2, all characterized by the same ~8), and then
focus attention only upon the particle 1 from each pair.
There is a standard procedure [5] for "tracing out" the
variables associated with particle 2 in order to derive
from ~6 ) a density operator for the ensemble of particles
1. We call the ensemble of particles 1 a "pure entangled
case" (rather than the usual locution "improper mixture"
[6]). An ensemble formed by taking several pure entan-
gled cases, each defined by a

~ 6k ) in H i H2 with
respective proportions mk, will be called a "mixed entan-
gled case" and an ensemble defined by giving a density
operator o. on H

&
g Hz but no further information will be

called a "statistical entangled case." We show in Sec. II
that the complementarity in the strong form of Eq. (4a)
holds if D is taken to be the distinguishability D(~6) )

calculated in a pure entangled case determined by ~
8 )

and the inequality (4b) holds if D is calculated in the
mixed or statistical entangled cases.

We also make a connection with a recent paper of
Mandel [7], who defines a quantity PD, which is his pro-
posed measure of path distinguishability, in terms of the
density operator p on H&. We show that there are dis-
tinct preparations P and P', both determining the same
density operator p, such that

then the path distinguishability (using our notation, not
theirs) is

D(P)WD(P'),

D(P) )PD .

(5a)

(5b)

If instead the ensemble is a mixture of pure simple cases,
which they describe as "partially coherent, " there is a
more complicated expression for D [given by their Eq.
(15)]. (They do not consider the statistical simple case in
which a density operator p is given on Hi rather than
definite proportions of pure states ~g; ).) In either the
pure or the mixed simple case, there is a complementarity
between path distinguishability and visibility. In the pure maxD(P) =D ( ~8 ) ) . (6)

Accordingly we assert that the natural measure of path
distinguishability should be a function of preparations
rather than of density operators. We also show in Sec. II
that if maxD(P) is the maximum distinguishability for all
preparations P determining a fixed density operator p
and ~6) is any vector in H, Hz that yields this p for the
particle 1 ensemble, then
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[maxD(P)] +v, =1 (7a)

and

The complementarity expressed in Eqs. (4a) and (4b) can
be rewritten with greater generality as

refer to variability of probability as the transducers are
varied.

The remarkable phenomena of two-particle inter-
ferometry result from the fact that when le & is entan-
gled, it can happen that

[D(P)] +v, ~ 1 . (7b) P( Ui U2 )AP( Ui )P( U~ ), (10)

In Sec. III we shall study a second complementarity,
between one-particle interferometric visibility v

&
and

two-particle interferometric visibility v, 2. The experi-
mental arrangement in which this complementarity is ex-
hibited is shown schematically in Fig. 2. Particle 1 is in
beams 3 and/or 3' and particle 2 is in beams B and/or
B', and each pair is in a pure quantum state

Ie & =y
I
& & IB &+y I

& & IB' &

+y, l~'&IB &+y.l~'&IB &,

where

ly I'+ly I'+ ly I'+ ly I'=1,

(8a)

(8b)

I A & and
I
A '

& are vectors in H, representing states of
propagation in the beams A and A', and IB & and IB'&
are analogous vectors in H2.

Beams 3 and A' are brought together into a passive
lossless transducer T&, which feeds two output beams U,
and L„while beams B and B' are brought together into
another passive lossless transducer T2, which feeds out-
put beams U2 and L2, as indicated in Fig. 2. The output
beams are equipped with ideal detectors. Both T, and T2
can be varied, and one can study the probability
P(Ui U2) of joint detection in beams Ui and U2 and the
analogous probabilities P( U, L2 ), P( U2L, ), and
P(L,L2), as well as the probabilities of single detection
P( U, ) and P(L, ) (i = 1,2). Interferometry is concerned
with the variation of these probabilities as the transduc-
ers T& and T2 are varied. We are particularly interested
in the one-particle fringe visibility

[P( U, )] ,„—[P( U; )]
[P( U; )] ,„+ [P( U; )]

(9)

and in the two-photon fringe visibility V,2, which is
analogous to V;, but with some important differences
which will be made explicit later. The word "fringe, " of
course, is borrowed from classical optical interferometry,
where it is descriptive, but we use the term generically to

and likewise for the other joint probabilities P(U, Lz),
P(U2L, ), and P(L,L2). Because the transducers T, and

T2 operate independently, the correlated behavior of 1

and 2 manifested in the inequality (10) is a striking in-
stance of quantum nonlocality. Although two-particle in-
terferometry is only about a decade old, it has been inten-
sively studied theoretically and experimentally [8].

It was noticed by Horne and Zeilinger [9] that when
the two-particle visibility is unity, the one-particle visibil-
ity is zero, and conversely. A systematic investigation of
intermediate cases was carried out by Jaeger, Horne, and
Shimony [10],who demonstrated that in a large family of
states

I
6 & a complementarity holds between one-particle

and two-particle visibility:

v )2+v) 1 (1 la)

(The significance of the small letter v, as contrasted with
the capital V of Eq. (9), will be explained in Sec. III.) In
this paper, we prove that the inequality (1 la) holds for all
le & and in addition that a stronger complementarity, in
the form of an equality, is valid:

V +V =1 (1 lb)

The two complementarities —between path distin-
guishabi1ity and single-particle visibility and between
one-particle and two-particle visibilities —are intimately
connected. The more entangled IV & is, the stricter is the
bound on the one-particle visibility. The reason, roughly,
is that the phase information between the basis vectors
I
A & and

I

A'
& of H, is carried by correlated vectors of

H2 and therefore observations made only upon particle 1

of each pair 1+2 cannot fully extract this phase informa-
tion. On the other hand, a high degree of entanglement
has two consequences: it entails high two-particle fringe
visibility and it permits good inferences about the path of
particle 1 to be made on the basis of measurements of
particle 2. It is not surprising, then, that the one-particle
visibility should enter in the same way in both of the
complementarity relations (7a) and (7b) and (lla) and
(1 lb), which on the surface seem remote from each other.
We note, finally, that these complementarities are derived
without any approximations.

II. PATH DISTINGUISHABILITY

S
A'

FICx. 2. Schematic two-particle interferometer. Two pairs of
beams A, A' and B,B' impinge on passive lossless transducers
Tl and T2, respectively, and emerge in beams Ul, Ll and
U2 L2.

In Sec. I a general definition was proposed for the path
distinguishability D(P) in a certain class of experimental
arrangements, as a function of the preparation P. A gen-
eral expression was given for D(P) in Eq. (1). We also
gave the following classification of preparations: (I) sim-
ple cases, subdivided into (Ia) pure simple cases, (Ib)
mixed simple cases, and (Ic) statistical simple cases; and
(II) entangled cases, subdivided into (IIa) pure entangled
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cases, (IIb) mixed entangled cases, and (IIc) statistical en-
tangled cases. We know of no preparation that is statisti-
cally complete, in the sense of providing sufficient infor-
mation to calculate the expectation values of all
quantum-mechanical observables of the system of in-
terest, that does not fall into one of these six cases.

Each of these preparations determines a density opera-
tor p unequivocally. For our purposes, it is most useful
to write the density matrix of p in the

I
A ), I

A ') basis

p„=&AlplA), p„=&AIPIA &,

p„——& A'lplA &, p„=& A'lplA') .
(12)

The density operator p satisfies the standard conditions of
self-adjointness, positivity, and having trace 1, which im-

ply that

P11—

P11+P22

P21 P12 &

IP121 —(pllp22)'" .

(13a)

(13b)

(13c)

(13d)

(13e)

It will be useful to have an explicit expression for p; in
each of the cases Ia, Ib, Ic, IIa, IIb, and IIc.

Case Ia (pure simple) The.re is a pure quantum state of
each member of the ensemble represented by lg) of Eq.
(2). Then

pll Ic I & pl2 cc & p21 c c
& p22 Ic (14)

Case Ib (mixed simple) There is. a mixture of suben-
sembles, each in the pure simple case described by I

lr'jk ),

ly„& =c„lA )+c,'IA'&,

(17d)

(an assumption that may require interchanging the labels
A and A '). The method of "tracing out"

I 5] yields

P(2=P21=&l I

p» ——xl) I'+x'=1 —x .

(18)

Case IIb (mixed entangled) Th.ere is a mixture of pure
states of 1+2, represented by normalized (but not neces-
sarily orthonormal) vectors Iek ) HH, H2, each of the
form

le„&=~k"IA, &lx, &+) krak I Ak&lxk&

+)le,'"
I Ak & lxk &, (19a)

The analogs of (17b) and (17c), with the subscript k
placed upon X, N', A, , and e&, are also assumed. The
proportions of the pure states Iek ) in the mixture are
wk. If Ak= A and Ak= A', then p',~"' is the analog of Eq.
(18):

(k)
P11 k

(k) (k)e ~ lg I

'
kA,

P 12 P21

Pzz'=&k I)(k I'+&k =1

However, if Ak = A ' and Ak = A, then

PI('=&k I){k I'+I((k =1 &k—
(20a)

where Ak is A or A'and Ak is A'or A, the choicebeing
made so as to guarantee the analog of (17d)

(19b)

and the proportions are wk (summing to unity). Then
(k) (kin ~ lg I

' kk
P12 k k ~ (20b)

and

A, = fife' '. (17c)

Without loss of generality we can assume

Pll ywklckl & P12 rfwk k k
k k

p21=X WkCk Ck~~ P22=+ wk ICk I'
k l

Case Ic (statistical simple) The ensem. ble is defined by
the statement of p.

Case IIa (pure entangled) There is a .pure state Ie) of
1+2, which can always be written as

le &
=x'"I A & Ix&+xi'('~2I A') lx)+&' (~2I A') Ix'),

(17a)

where IX) and IX') are orthonormal vectors of H2 (span-
ning a two-dimensional subspace that we shall call H2), %
and X' are non-negative,

(17b)

(k)
P22

Then the density matrix p;j for the mixture (uniformly as-
sociating index 1 with A and index 2 with A ) is

pfj
=Qwkpij (21)

Case IIc (statistical entangled) Adensity o. perator cr is
given in H, @H2. It is always possible to express cr in the
diagonal form

~=X w. le. &&6. I

k

(22)

where the
I ek ) are orthonormal vectors in H 1 @H2,

wk &0, and the wk sum to unity. (Note that orthonor-
mality is assumed in this case, but was not in case gab. )

The tracing out procedure yields a statistical matrix p, .

for particle 1, which is exactly the same as Eq. (21),
where PI". 1 are defined as in Eqs. (20a) and (20b).

We now proceed to calculate D(P) for P belonging to
each of the cases Ia, Ib, Ic, IIa, IIb, and IIc. Only case
IIa is difficult.

In case Ia we shall designate P by the If) with which
it is associated. Because the case is simple, the strategy
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for prediction can only depend upon lg & and there are
only two nonrandomized strategies: (i) predict A in each
case and (ii) predict A' in each case. Obviously strategy
(i) is optimum if

I
c

I
&

I
c '

I, strategy (ii) is optimum if
lc'I & lc I, and the choice is indiff'erent if lc I

= lc'I. A ran-
domized strategy, sometimes using (i) and sometimes us-
ing (ii), is never an improvement [11]. Hence

D(l@&)= l(lc I' —Ic'I') I, (23)

as Greenberger and YaSin already found [4] and we re-
ported in Eq. (3) above. Equation (23) can be rewritten
usefully by noting that Eq. (14) implies

( lc I' —lc'I')'=I —4lp

Hence

D(lg&)=(1 —4lp„l')' '

(24)

(25)

=gw (1—4lp I )
~ (26)

k

We note that Eq. (26) is more general than Eq. (24) of
Greenberger and YaSin.

We represent the preparation P in the statistical simple
case Ic by the same letter p that designates the density
operator. Since no information about the ensemble other
than p is provided, one cannot subdivide the ensemble
into subensembles for which different strategies are op-
timum. The only nonrandomized strategies are those la-
beled (i) and (ii) in case Ia. The probability of detection
in A is Tr(pP„), where P„=

I
A & & A I, and the probabili-

ty of detection in 3' is Tr(pP„), where P„=
I
&'&& &'I.

Whether strategy (i) or (ii) is followed one obtains

D(p)=p „q;= ITr(pP& ) Tr(pP& )I

= Ipii —p»l =12p» —ll . (27)

We designate the preparation P in the pure entangled
case IIa by I

6 &. By a lengthy argument that we defer,

D(le&)=(1 —4lp, I')' ', (28)

In case Ib, clearly the optimum strategy in the mixed
ensemble is to use the optimum strategy for the kth
subensemble, when it is known that the particle of in-
terest belongs to the kth subensemble. If we designate P
in the mixed simple case by [ I gz &, wk I, then

D([l@ &, ])=g I(l

By Eqs. (17a) and (17b), the first term on the right-hand
side of Eq. (31) is

& 6 l(P~ —P~ ) 1
I
6 &

=
I

~I'&+&' —&=1—2& . (32)

The eFect of E operating on the vectors IX & and IX' & of
Eq. (17a) is the following:

E lx & =c Ix & +c'lx' &
+c"Ix" &,

Elx'& =d lx&+d'Ix'&+d" Ix" &,

(33a)

(33b)

where Ix" & and lx" & are unit vectors orthogonal to both
IX& and IX'& (i.e., they lie outside the subspace H2).
Since E is a projection

We represent the preparation P in the statistical entan-
gled case IIc by the same letter cr that designates the den-
sity operator describing the ensemble of composite sys-
tems 1+2. As in case Ic, we cannot divide the ensemble
into subensembles that call for different strategies of pre-
diction. Since the probability of detection in A is
Tr [o.(P~ 1 ) ] and of detection in A ' is Tr [cr (P„' I81 1 ) ],
we have

D(o )= ITr[o.(P~I8 1)]—Tr[o(P„ IB1)]l

= ITr(pP~ )
—Tr(pP~ ) I

= Ipii —p~21= I2pii —1 I,
(30)

where p is obtained from o. by tracing out.
We now fi11 the gap in our exposition by demonstrating

Eq. (28), which states the distinguishability in the pure
entangled case IIa. The most general strategy is to take
advantage of the correlations between 1 and 2 implicit in
Ie& and use the result of measuring a bivalent operator
on Hz. With no loss of generality, the bivalent operator
can be restricted to be a projection on Hz and the
strategy is the following: when projection E is measured
on particle 2, predict that its partner, particle 1, will be
detected in A or A ' according to whether the result of
the measurement is 1 or 0. If this rule is followed, then
the probability of a correct prediction minus the proba-
bility of a false prediction is

D ( I
e & ) = & e IP, E

I e & + & e IP, ( I —E ) I
6 &

—[&elP, a(I —E)le&+&elP, Ele&]
=

& el(P„,—P, )e

lie�

&

+2&el(P, —P )Ele& . (31)

where pi2 is the matrix element given in Eq. (18). We
point out, however, two remarkable features of Eq. (28).
The first is that D(le& ) is independent of the choice of
Ie & within the class of vectors of H, H2 that yield the
same Ip, 2I. The second (a corollary of the first) is an in-
dependence from the detailed character of the Hilbert
space Hz and hence of the system 2 entangled with parti-
cle 1.

In case IIb we designate the preparation P by
[Iek &, wk]. By the same remark made for case Ib we
write

D([le. & wk])=X w. (1—4lp'i2'I')'"

&xlElx& = &xlE'lx& = &xEIEx&,
and hence

c = Ic I
+ Ic'I + Ic"

I

likewise

d' =
I
d I'+

I

d' I'+
I

d" I'

Furthermore, c and d' are real and

c'=d*= lc'Ie

Then

(35a)

(35b)

(35c)
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&Bi(P„—P, .)eEiB)=N(1 —isa')c —X N'i'N' 'i'd —ZN»2N ii2c —N d

=N(1 —
iA, i )c —2iA, )ic'iN' N' 'i cos(8&+8,. ) N'—d' . (36)

The phase angles that maximize this expression and
therefore maximize DE(iB) ) satisfy cos(8i+8, .)= —1,
so that

max& 6)(P„P„—) E )6 )

=N(1 —iiLi )c+2iA, inc'iN' N' ' —N'd' . (37)

The maximum solution of Eq. (35a) and the minimum
solution of Eq. (35b) are

c =-,' {I+ [1—4(ic'i + ic"
)

)]'i j,
d'= —,

' {1—[1—4(ic'/ + id"
i

)]' j .

(38a)

(38b)

For a given ic'i these are respectively maximized and
minimized by taking ic"i=id"i=0, which shows that
the projection operator E of the optimum strategy
remains a projection when it is restricted to the two-
dimensional subspace Hz. Because of Eqs. (38a} and
(38b), the maximization in Eq. (37) is obtained by varying
a single real parameter

t

From Eqs. (31), (32), (40), (41a)—(4lc), and (18) one ob-
tains

D(IB & ) =mam&( IB & ) =(1—4N'lzi')'"
—

( 1 4ip i
2)1l2 (42)

completing the derivation of Eq. (28}.
It is interesting to note that for any pure entangled

preparation iB) there is a mixed simple case {iP; ),w,. j
such that

D({lg;), w; j)=&(IB)) . (43)

To demonstrate this fact, we recall that the projection
operator E maximizing DF ( i 6 ) ) was shown [see remark
after Eqs. (38a) and (38b)] to have the property that its re-
striction to H2, denoted by E, is a projection on H2. In
other words, either

E=1 (the identity operator),

E=O (the null operator),

k= ic'i'

in the expression

(39) or

(44c)

(1—4k )'"=SC[N(1—
I
XI')+N'],

k'"=Z iziN'"N '"
(41a)

(41b)

where the common factor E is fixed by Eq. (17b) to be

max& Bi(P„P„)eE iB &-

=N(1 —izi2) —'[1+(1—4k)' ]+2iA[N' N' ' k'

—N' —,'[1—(1—4k)'i ] .

Setting the derivative with respect to k to zero yields

where iP) is a normalized vector in H2. But the use of a
strategy based on Eq. (44a) could be optimum only if the
coefficient N' 'i in Eq. (17a) is zero, in which case iB ) is
a product state and particle 1 is in a pure state, and hence
this instance of case IIa reduces electively to a pure sim-
ple case Ia. Likewise, if a strategy based on Eq. (44b) is
optimum, then the coefticient 1V'' must be zero and
again iB) is a product state. If Eq. (44c) holds, then
there is a normalized vector iP') EHz that is orthogonal
to iP& and

(45)

EC =(1—4N'ik, i') (41c) Hence, by Eq. (31)

D(IB&)=maxDs(IB&)=max{[&BIP~e lk&&AIB& —&BIP~ IP&&PIB&]

+[&BIP ly'&&0'IB& —&BIP, lk'&&0'IB&]j

=[&@,[P„I@,& —
& @,IP, I@,&]+[&y,lP, I@,&

—
& &,IPg lpga&1= g w;&(lg; & }, (46)

where the maximizing iP), iP') are used to define

&yl ) (47a)

(47b)

(48a)

(48b)

These vectors iP;) and weights w; satisfy Eq. (43), as

promised. There is nothing surprising in this agreement,
because the result of measuring E is to achieve a reduc-
tion of the wave packet iB) for each composite system
1+2 of the ensemble, yielding two subensembles. In the
subensernble corresponding to E=+1, each particle 1 is
in the state described by i/i), and in the subensemble
corresponding to E= —1, each particle is in

if&�

) .
%'e now are in a position to compare our measure of
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P PIDPID+PDPD (49)

where pD is diagonal in the
l
A &, l

A '
& basis and p,D is the

density operator of a pure quantum state. The subscript
D denotes "distinguishable" and ID denotes "indistin-
guishable. "Specifically, if p, is the ij matrix element of p
in the

l
A &, l

A'& basis, then

PD 0
L

p 12 /P IDP11

P21/PID

lpi2l
ID 1/2 7

(P»P22)

PID
P22

(50a)

(50b)

(50c)

distinguishability D(P) with Mandel s PD. Mandel
points out that a density operator p on a two-dimensional
Hilbert space can be uniquely expressed in the form

&D(P) (52)

(unless PD or P,D is zero). We have thus proved the
statement made in Sec. I that D(P) depends essentially
upon the preparation P, not just upon p.

We now demonstrate Eq. (6), stated in Sec. I, asserting
that for a given p, the maximum distinguishability is
given by the pure entangled case IIa, i e., by a
le& &HI(8)H2, that yields p (of course, as just demon-
strated, there is a mixed simple case Ib with the same dis-
tinguishability). We proceed by two lemmas.

Lemma l. If p=wp("+(I —w)p( ', with 0&u) &1,
and p, p"',p' ' are all two-dimensional density matrices,
then

Assume that p» )p22 and let P' be the following
mixture: proportion (p» —p22}PD in

l
A &, proportion

—,'p22PD in (I/&2)(l A &+ l
A'&), proportion —,'p22PD in

( I /V2)(
l
A &

—
l
A '

& ), and proportion P,D in
l f &. Then

(P11 P22)PD X 1+0+0 PID(P11 P22)

P12PD=1—
1/2 7

(P11P22)

and a vector that yields PID is

(50d) (1—4lp l')'"~~(I —4lp", ,'l')'"
( 1 u))(14lp(2)2)1/2 (53)

lf&=PI)'lA &+e ' P22'lA'& (50e)

where

P12 lp)2le (50f)
Mandel proposes PD as his measure of path distinguisha-
bility in the arrangement of Fig 1. As a rationale for this
definition he notes that there is an experimental scheme
that generates a proportion p11 of particles in A and a
proportion p22 in A', and the ensemble so generated
would be described by PD.

Now consider the preparation P that consists of three
subensembles: proportion p»PD in

l
A &, proportion

p22PD in
l
A'&, and proportion P,D in the lg& of Eq.

(50e). By following Mandel's decomposition we see that
the preparation P determines the original density opera-
tor p. But using the D(P) of case Ib above we find

P11PD + 1+P22PD x 1 +PID( IP11 P22l )

PD+PID( lp11 p22l ) (51)

Clearly, we obtain inequality (5b), unless either P,D is
zero or p» equals p22 We claim that our measure of dis-
tinguishability D(P) is preferable to Mandel's Pr because
ours takes into account the difference between the
coefficients of

l
A & and

l
A'& in the superposition litt& as

a ground for making predictions about detection in A or
A'.

It is interesting to exhibit another preparation P' of
class Ib with the same p but different distinguishability.

I

1 ~ 4xy + ( 1 4x 2
)

1 /2( 1 4y 2
)

1 /2

~ 4xy cos8+(1 4x ) /2(1 4y2)

whence

lp12l & —,
—

—,'u1 (1—4x )
—

—,'(1 —u) )(1—4y )

—
—,'w(1 —w )(1—4x )'/2(1 —4y2)'/2,

so that

(1—4l „l')'"~ (1—4 ')'"+(1— )(1—4 ')'/'.
Lemma 2. If p=g;" Iw;p", where p and all p" are

two-dimensional density matrices, 0 & w; & 1, and
gw;=I, then

4lp l )
/ ) y ~ (I 4lp(')l )

/

i=1
Proof by induction As the ind. uction hypothesis, sup-

pose the inequality (54) is valid whenever the summation
has only n terms Consider now

(54)

n+1 n+1
p= y wp"), y w, =l .

Then

Proof. lp12l =w x +(1—w) y +2u)(1 —w)xy cos8,
where x = lp', 2'l, y= lp')2'l, and O=argp)2' —argp', 2'. By
the general properties of the density matrix, the real
numbers lp, 2l, x, and y all lie in the interval [0,—,

' j. Then

n+1 w.
10 (1 4lp( )l )

—~ y (1 4lp(')l )
/ +~ (1 4l (n+1)l2)l/2

i=1 K

n w
&K y (1—4lp12l )' +W„+I(l —4lp12+"l )'
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by using the induction hypothesis, where

n W;K=+ Wl=l W+1, p =g p
i =1 i =1

By lemma 1

4IP»l )in+ w +1(1 4IPI2+'1I')'n

&(1—4I/fp, +w p
"+' I2)'

—(1—4lp I2)'~

Hence the induction is complete and the inequality (54)
holds when the summation is finite, i.e., when

N N

y w, =1, y w, p"=p

for arbitrary N. By continuity the inequality is estab-
lished for an infinite summation, proving lemma 2.

To complete the proof of the inequality (6), we note
that if P is a mixed simple case Ib, i.e., a mixture of l(k )
with proportion wk, then the density operator p deter-
mined by P is the weighted sum of the density operators
p' ' determined by I Pk ),

P=X WkP
k

P & (1 4I I2)1/2 (59)

because we have already exhibited in the inequality (5b)
that PD is bounded from above by D(P), where P is a
preparation of class Ib. It is also straightforward to
check the inequality (59) directly.

Finally, we turn to the complementarity of path dis-
tinguishability and fringe visibility. The latter is evalu-
ated by Mandel in Ref. [7] in terms of the density matrix

U =2lp121 . (60)

To make the present exposition self-contained, we shall
give a brief derivation of Eq. (60). Figure 3 adds to the
arrangement of Fig. 1 some mirrors that direct beams
and A

' to an ideal symmetric beam splitter, with
transmittivity and reflectivity equal to 1/&2, the output
from the beam splitter being beams U and L, and it in-
serts a phase shift ~ into beam A. Then

—[1
I
U & +

I
~ & ], (61a)

2

by Eqs. (25) and (28). We have therefore surveyed all
preparations P compatible with a specified p, and the in-
equality (6) holds.

As a simple corollary, we have an inequality governing
Mandel's PD:

By Eqs. (54) (lemma 2) and (26),

D(I If„),wk] )=g wk(l 4IP12 I )
k

&(1—4lp I
) (55)

I

~') [I U&+1. Iz, &] .
2

It is easy to check that if

(61b)

(62)

Likewise, if P is a mixed entangled case, i.e., mixtures of
lek ) with proportions wk, then again the p determined

by P is the weighted sum of p'"' determined by le), and
Eqs. (54) and (26) imply

(56)

then a particle initially in
I P(r) ) will pass with certainty

into U. Hence the proposition "passage into U due to the
symmetric beam splitter with phase shift ~*' is naturally
represented by the projection operator

In the statistical simple case Ic

D(p) = Ip» —
p22l

=,' I a ) ( a
I
+ -,

' e -"+ "'
I

w ) ( w
I

+ —,
'e"+ "IA')( 2 I+ —,'I 2')( 2'I . (63)

By Eq. (13e)

D(p) = I:p»
—2P»p22+P22]'"

[Pi i +2p11P22+P22 4P11P22]
2 2 1 /2

I. 1 P11P22]

& [1—4lp I'1'"

In the statistical simple entangled case IIc we proved

D(t7) = Ipii —p22I,

(57)

P(r) =Tr[Q(r)p] = 2pii+ —,'p22 —IP12lsin(r+ o'), (64)

8

Given the density operator p for an ensemble of particles
and also the operator 6(r), we can express the probabili-
ty of passage into beam U as

where p; is the density matrix for particle 1 derived from
o by tracing out. The argument of Eq. (57) then shows

D(tr ) & [1—4lp»l']'" . (58)

In the pure simple case Ia and the pure entangled case IIa

D(P) = [1 4lp12I']'",

FIG. 3. Schematic two-particle interferometer. Beam pairs
A, A ' and B,B' emerge from source S, the upper beams A and
8 pass through variable phase shifters P, and Pz, respectively,
and the pairs of beams impinge on lossless beam splitters Hl
and H2, respectively, emerging in beams U&,L &

and U2, L2.
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where p, z is as defined in (50f). In the standard manner,
the visibility U, is defined as

[P( U, )],„—[P( U, )];„
[P( U, )],„+[P( Ui )]

(65)

where the maximum and minimum are computed as ~ is
varied. The obvious result is Eq. (60).

The conjunction of Eq. (6), which states the maximum
path distinguishability for a specified p, with Eqs. (28)
and (60) yields Eq. (7a), as promised in Sec. I. The in-
equality (7b) is an immediate consequence.

ly I'+ly I'+ly I'+ly I'=1. (66b)

It is understood that
I
8 ) should be symmetrized since

photons are bosons, but the results that we obtain
without explicit symmetrization would not be changed by
writing a symmetrized version of Eq. (66a), provided that
the subspace spanned by I

A ), I
A ' ) is orthogonal to that

spanned. by IB ), IB'), and likewise for
I U& ), IL, ) and

By the well-known theorem of Schmidt [12], I 8 ) can
be expressed as

le&=alC&ID &+PIC &ID'), (67a)
III. INTERFERGMETRY

A schematic arrangement for two-particle inter-
ferometry was described and depicted in Fig. 2. We now
give a mathematical formulation of the arrangement of
Fig. 2. Roughly, a transducer is passive if no particle ex-
its from it that has not entered and it is lossless if an in-
coming particle is certain to exit. We shall bypass the
problems of analyzing these concepts by assuming that a
passive lossless transducer is represented by a unitary
unimodular mapping, the domain of which is the space of
input states and the counterdomain of which is the space
of output states. In the case of T„the domain is the sub-
space spanned by vectors

I
A ) and

I
A ' ), which represent

(though not uniquely) propagation in the beams A and
3', and the counterdomain is the subspace spanned by
the vectors

I U, ) and IL& ), which represent (though not
uniquely) propagation in beams U, and L, . In the case
of Tz the domain is spanned by IB ) and IB') and the
counterdomain by I Uz ) and ILz ), which have analogous
interpretations. No confusion will result from using T;
(i =1,2) equivocally to denote the transducer and the as-
sociated unitary mapping. The most general state of the
composite system 1+2, given that photon 1 is in beams
A and/or A ' and photon 2 is in B and/or beam B', is the
symmetrized version of

Ie&=yilA &IB &+yzl»IB'&

a +P =1. (67b)

The most general unitary unimodular mapping T& re-
lating the specified domain and counterdomain for pho-
ton 1 can be expressed in terms of the

I C ), I

C') basis as

T, IC) =ae 'I U, )+be 'IL( ),
T, IC &= b "IU—, &+

(68a)

where a and b are real numbers whose squares sum to
unity. Likewise,

I

T, ID) =ce 'I Uz)+de 'ILz), (69a)

TzlD') = —de 'IUz)+ce 'ILz), (69b)

c and d being real numbers whose squares sum to unity.
The pair of transducers is represented by

T= T1 T2 & (70)

where
I
C ) and

I
C') constitute an orthonormal basis in

the subspace spanned by I
A ) and

I
A'), while ID ) and

I
D ' ) constitute an orthonormal basis in the subspace

spanned by IB ) and IB'). The coefficients a and P can
be chosen to be real by using phase options for the vec-
tors IC), IC'), ID ), and ID'), and

where

+y, l
A') IB )+y, l

A'& IB'&, (66a) which is unitary unimodular mapping from the space ini-
tially associated with the photon pair 1+2 into the space
of output states. From Eqs. (67)—(70) we obtain

t I

T ti Tzle) =(aace ' '+13bde ' '
)I U ) I Uz)+(aade ' ' Pbce ' ' —)I U& ) ILz)

+(abce ' Pade ' —' )IL& ) I Uz)+(abde ' +Pace '
)IL& )ILz) . (71)

(72)

where

We now calculate the probability of joint output into
beams U, and Uz (or equivalently of joint detection by
ideal detectors placed in these beams), which we shall
denote P(U, Uz), as well as the analogous probabilities
P(U, Lz), P(L, Uz), and P(L,Lz). From these we can
calculate the single probabilities P( U; ) and P(L,}.
(i =1,2),

P(U& Uz)=a a c +P b d +2alsabcd cosN,

~'=&i+4'I +6+6'
P(U, Lz)=a a d +13 b c 2aPabcd cos@—,

P(L, Uz)=a b c +P a d 2aPabcd cos4,—

P(L,Lz)=a b d +P a c +2aPabcd cosN,

P( U, )=P( U, Uz }+P(U, Lz ) =P +a (a P), —

P(Uz)=P(U, Uz)+P(L, Uz)=P +c (a —P ) .

(73)

(74)

(75)

(76)

(77)

(78)
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The single-particle fringe visibilities V& and V2 can be
determined by inspection from Eqs. (9), (77), and (78), to-
gether with a ~ p. Clearly,

BP(Ui U2)0=
a@ 2

= ——apsinp sinvsinC& .

[P( Ui)],„=IP(U2)],„=a',
[P( U, )];„=[P( U, ) ];„=P' .

(79a)

(79b)

If apAO, then Eq. (84) can be satisfied only if one of the
two following conditions is satisfied: (i) sinpsinv=O, in
which case

Hence,
2 —2

V, = =a —P (i =1,2) .a+p (80)

j 2p2(p(U' U )( ] + 2p2

or (ii) sin@=0, in which case

P(Ui U2)=a P cosp cosv+ —,'aP sing sinv+ —,',

(85)

(86a)
We note that P( U, ) achieves its maximum and minimum
when a has the respective values 1 and 0. When a is uni-
ty (hence b is zero), a photon in C will go with certainty
into U& and a photon in C will go with certainty into L I .
When a is zero (hence b is unity), the exit states are re-
versed. A similar statement can be made concerning
photon 2, relating the vectors ~D ) and ~D') to exit in
beams U2 and L2.

We turn now to the two-particle fringe visibility V&2.
As pointed out in Ref. [10],one cannot capture the intui-
tive meaning of two-particle fringe visibility by using the
attractive definition

[P(Ui U2)],„—[P(U, U2)]

[P( U, U2)],„+[P( Ui U2)]
(81)

P( U, U2) =P( U, U2) —P( U, )P( U2)+ —,
'

By Eqs. (72), (77), and (78),

P( U, U2 ) =a P cosy cosv+ —,
' aP sing sinv cosN+ —,',

(82a)

this expression would yield a nonzero value even if
~
e ) ls

a product state, for in that case P(U, U2) is the product
of P( U, ) and P( U2), and these vary respectively with T,
and T2. As in Ref. [10] we define a "corrected" joint
probability P(U, U2) by subtracting the product
P(U, )P(U2) from P(U, U2) and adding a constant as a
compensation against excessive subtraction:

and

o= a'
ap

as
av

ap s—in@ cosv+ —,'apcosp sinv,

= —a p cosy sinv+ —,'ap sing cosv .

(86b)

(86c)

But

P(U, U2)= —,'+ —,'ap . (87)

—,'apnea p (88)

and therefore a review of all the cases (i), (iia), and (iib)
yields

[P(U, U2)],„=—,'+ —,'ap,

[P( U, U2));„=—,
' —

—,'ap .

(89a)

(89b)

Note that in the neglected case of p=O these equations
continue to hold, as does Eq. (80), because a was assumed
~P. It follows that without exception

If a p W —,
' ap, then Eqs. (86b) and (86c) imply

cosp sinv=sinp cosv=0, which is possible only if one of
two conditions is satisfied: (iia) (p, v)=(mm, nor), with
m, n integers, in which case Eq. (85) is again satisfied, or
(iib) (p, v)=(m/2, m/2), values are all mode. , in which
case

where

v . va=cos, b=sin, c=cos—, d=sin —.2' 2' 2' 2

(82b)

(82c)

V,2 =2ap .

By Eqs. (80) and (90),

V2 + V2 4 2p2+( 2 p2)2 (
—

1 2)

[P(U, U2)],„—[P(U, U2)]

[P(U, U )],„+[P(U,U ];„ (83)

A rationale for the term —' in Eq. (82a) is the fact that —' is
the least real number s such that P ( U& U2 )

P(U, )P(U2)+s—is non-negative for all two-particle
vectors of the form of Eq. (66a) and all unitary mappings
T, and T2 of the classes under consideration, as can be
checked from Eqs. (72), (77), and (78). We now parallel
Ref. [10] and define the two-particle fringe visibility V, 2

as

—
( a2 +p2 )2— (91)

which is the expression for the complementarity of one-
particle and two-particle visibilities promised in the In-
troduction (slightly generalized, since i = 1 or 2).

In Ref. [10] a more restricted set of transducers was
considered than the class permitted here. Each T, was
taken to consist of a symmetric beam splitter with
refiectivity r and transmittivity t both equal to 1/&2, to-
gether with a phase shifter in one beam incident upon the
beam splitter. The small letters U,. (i = 1,2) and U i2
denote the one-particle and two-particle visibilities under
this restriction. It was shown that for a large class [13]of
two-particle vectors

~
e ), the inequality

To find the extrema of P( Ui U2) we use Eq. (82b) and
set partial derivatives to zero: first, U )2+U] 1 (92)
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Likewise

V; —v;+0.
Hence

U +U V +V =&

(94)

(95)

There are two advantages in deriving the inequality
(92) in this way, as compared with the ab initio derivation
of the inequality in Ref. [10]. The first is that the inequal-
ity is derived for any subclass of transducers represented
by unitary operators, not just for the special subclass
treated in Ref. [10]. The second is that the derivation of
Ref. [10] is valid only for a subclass of the two-photon
states of Eq. (66a), because of the lacuna noted by Gold-
stein and discussed in Ref. [13]. In order to fill this lacu-
na by the method of Ref. [10] some additional lengthy
calculations would be needed, which are avoided by the
method of the present paper.

IV. DISCUSSION

The chief results of this paper are the derivations of
two complementarities. The first relates the distinguisha-
bility D(P) between two paths of a particle, when the
preparation P of an ensemble of replicas of the particle is
given, to the fringe visibility v

&
when amplitudes from the

two paths are combined. This complementarity is formu-
lated both as an inequality (7b) and an equality (7a),
where the maximum is taken over the set of preparations
P compatible with a density operator p. The second
complementarity relates the one-particle fringe visibility
to the two-particle fringe visibility in an important class
of two-particle preparations. Again there is a formula-
tion of the complementarity as an equality (1 lb) and an
inequality (1 la). The visibilities V,2 and V, involved in
Eq. (11b) are obtained by calculating the probabilities of
joint and single detections as one ranges over the entire
class of passive lossless transducers to which the particles
are subjected, whereas v &2 and u

&
are calculated by rang-

ing over subclasses of these transducers.
Several important conceptual issues are bound up with

these complementarities. Some of these have been indi-
cated in the body of the paper, but others were discussed
briefly or not at all.

It was pointed out in Sec. I that our measure D(P) of

holds. Of course, the visibilities V; and V]p are computed
by letting the transducers be represented by any unitary
unimodular mappings connecting the relevant subspaces,
whereas U,. and U, 2 are computed by restricting attention
to a subclass of unitary unimodular mappings.

Inequality (92) can be shown to be a corollary of Eq.
(91) in the following way. Let x and x' respectively be
maximum and minimum values of P(U, U2) when one
considers the full class of transducers and the subclass of
transducers, and let y and y

' be the corresponding
minimum values. Then x ~x', y +y', and

x —y x' —y' 2(xy' —yx')
x+y x'+y' (x+y )(x'+y')

(93)

path distinguishability refers to predictions rather than
retrodictions. The great advantage of a future-directed
concept is the possibility of an experimental check, by ap-
propriate placement of detectors. The importance of dis-
tinguishing between predictions and retrodictions in the
interpretation of complementarity relations was made at
an early date by Heisenberg [14], who wrote the follow-
ing.

This formulation makes it clear that the uncer-
tainty relation does not refer to the past; if the ve-
locity of the electron is at first known and the po-
sition then exactly measured, the position for
times previous to the measurement may be calcu-
lated. Then for these past times Aphq is smaller
than the usual limiting value, but this knowledge
of the past is of a purely speculative character,
since it can never (because of the unknown
momentum caused by the position measurement)
be used as an initial condition in any calculation of
the future progress of the electron and thus cannot
be subjected to experimental verification.

It is also important to emphasize that the quantity D(P)
is distinguishability, and the suftix "ability, " connoting
physical possibility, is crucial. The limitation upon fringe
visibility v, that is asserted in Eqs. (7a) and (7b) is not im-
posed by the actual information that the observer has ex-
tracted concerning the particles of interest, but in the in-
formation that could in principle be extracted within the
constraints established by the preparation. The relevance
of possible information for interferometry was dramati-
cally demonstrated by an experiment of Zou, Wang, and
Mandel [15] in which "the disappearance of the interfer-
ence pattern here is not the result of a large uncontrol-
lable disturbance. . .in the spirit of the Heisenberg y-ray
microscope, but simply a consequence of the fact that the
two possible photon paths s, or s2 have become
distinguishable. ...The experiment. ..emphasizes that the
state or density operator rejects not only what is known
but to an extent also what could be known, in principle,
about the photon. " See also the work of Scully and
Walther [16].

Although we agree with the foregoing quotation from
Zou, Wang, and Mandel, we add that information about
the preparation P of an ensemble is not always exhausted
by the density operator p that P determines. As shown in
Sec. II, the distinguishability D depends upon P, and
there exist preparations P and P' determining the same p,
but such that D(P)XD(P'). lt would be interesting to
inquire more generally which properties of an ensemble
are determined by the density operator and which are
not.

As noted in Eq. (6) the maximum D(P) among all
those preparations corresponding to a given p—indeed,
corresponding to a given ~pi2~ —is achieved by D(~8) ),
where ~6) HH, H2 yields a density operator for parti-
cle 1 with the specified ~p, 2~. This fact shows that an en-
tangled state ~6) establishes certain correlations between
particles 1 and 2 and these correlations permit the op-
timum prediction of the path of 1 on the ground of an ob-
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servation made upon 2. It is also noteworthy that the de-
tailed characters of Hz and of ~e&, over and above the
constraint on ~p, 2~, are irrelevant. All that matters is a
certain structure.

Although the two complementarities exhibited in this
paper are distinct, they are intimately related. This fact
is most clearly seen in

y= l(gl & & I'=P«b(~ = & IP),
1 —y= ((/[ A'&) =Prob(A = A'(P) .

(Ala)

(A lb)

of information" concerning an observable A when a pure
state P is given. In particular, let P C H, and A have two
orthogonal eigenvectors

~
A & and

~
A '

&, so that the
relevant probabilities are

[I» IB &+
I

~'& IB'&], (96) Then Wootters and Zurek [their Eq. (7)] define the lack
of information concerning A in this situation as

which is a maximally entangled [17] state of 1+2. Clear-
ly D ( ~%' & ) is unity since the path of particle 1 can be pre-
dicted with certainty after observing whether particle 2
goes into path B or path B'; hence by the inequality (7b),
U i =0. But to someone unfamiliar with entanglement this
conclusion is paradoxical, because ~qI & describes a pure
quantum state, with definite phase relations between the
term containing

~
A & and the term containing

~
A

'
&, and

in elementary interferometry a definite phase relation
guarantees visible fringes. Of course, this argument is
specious, because the definite phase relation holds be-
tween two terms not in Hi but in Hi(8) Hz and is respon-
sible for the value unity of the two-particle fringe visibili-
ty; by tracing out the variables of particle 2, the phase re-
lation between ~A & and ~A'& is lost. In the quantum
mechanics of entangled states, the state of 1+2 is more
than the state of 1 by itself conjoined with the state of 2
by itself and that "more" resides in the phase relation.

Our discussion of the two complementarities was
confined to experimental arrangements in which particle
1 propagates only in two beams 3 and A' and in which
there is only one quantum state in each beam. It is obvi-
ously desirable to extend our results. Appendix C sug-
gests an extension of the definition of path distinguisha-
bility to the case of n beams, each with a single quantum
state, but it says nothing about a complementarity be-
tween distinguishability and fringe visibility. Further-
more, it is desirable to demonstrate complementarity re-
lations among one-particle, two-particle, . . . , X-particle
fringe visibilities when X-particle entangled states are
prepared [18]. At present, however, we do not even have
a natural definition for X-particle fringe visibility when N
is greater than 2.
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H(y)= —[y lny+(1 —y)ln(1 —y)] . (A2)

d(y) =1 H(y )/ln—2 . (A3)

(Mittelstaedt, Prieur, and Schieder [19] introduce this
concept with a diff'erent notation on their p. 902.) This
function has the desirable feature of equaling 1 when y is
0 or 1, i.e., when the value of A, can be predicted from

~ P & with certainty, and of equaling 0 when y = 1 —y =
—,'.

In fact, this d(~P&) is a monotonically increasing func-
tion of D(

~ g & ), which is our measure of distinguishability
in the pure simple case.

There is, however, no obvious way to maintain this
monotonic relation when one passes to the mixed simple
case. Suppose, as is natural, that we extend d to the
mixed simple case by an analog of Eq. (23):

d([le'; &, w;])=gw;d(~g; &) . (A4)

It is easy to exhibit two mixtures in which D has the same
value and d has di8'erent values, and conversely. For in-
stance, for mixture I,

m =—' e 2=e'2= —'

w, =
—,', ic, i'= I, ic,'/'=0 .

For mixture II,

w, =1, /c f'=-', /c', f'=-'

w2=0, ~c2~ arbitrary, ~cz =(1—
~c2~ )'

D(mixture I)=D(mixture II)=
—,',

d(mixture I)=—,',
d(mixture II)=0. 1990 .

A plausible candidate d(y ) for a measure of distinguisha-
bility of the values of A (generalizing "path distinguisha-
bility") with a range [0,1] can be defined in terms of
H(y):

APPENDIX A:
COMPARISON WITH INFORMATION

THEORETICAL UNCERTAINTY RELATIONS

Woot ters and Zurek [2], Mittelstaedt, Prieur, and
Schieder [19], Lahti, Busch, and Mittelstaedt [20] and
others have used information theory to express the "lack

Consequently, there is no functional relation between D
and d in the mixed case if (A4) is used, and we do not
know a natural substitute for (A4). Since our D is an in-
tuitively plausible clarification of the concept of path dis-
tinguishability, the failure of a functional relation be-
tween D and d makes an information theoretical
definition of this concept unattractive.
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APPENDIX 8: EXPERIMENTAL REALIZATION
OF UNITARY UNIMODULAR MATRICES

APPENDIX C:
GENERALIZATION OF DISTINGUISHABILITY

The general form of an SU(2) matrix is

S can be written in the convenient form

t ir e'~ 0
0 e'& ir t 0 1

by letting

(B1)

(B2)

We now propose a definition of distinguishability for
the general case when the particle of interest has n paths
to its detector. In this case one cannot always avoid a net
loss when betting on the path taken. Thus, in order for
[0,1] to remain the range of the distinguishability mea-
sure, we proceed as follows. First, as in the case of n =2,
we let D(P) be defined by Eq. (1). Now if the procedure
of preparation gives no information whatever for prefer-
ring one path to another, there is no better strategy than
to predict at random, in which case

r=~b~, t=(1—r )', ttr=argb ——

(b
= arg—a, P = —(P+P) =arga argb—+—

(B3)

and making use of detS=1.
The general properties of beam splitters and phase

shifters show that the arrangement of Fig. 3 can be made
to realize T of Eq. (70) by the insertion of phase shifters

P; and P, in the output beams (i =1,2) and having the
phase shifters (b; before the beam splitters yield phase
shifts of tb;. It is interesting to note that one cannot in
general achieve [P( U& )],„and [P( U, )];„ofEqs. (79a)
and (79b) with the same beam splitter but difFerent phase
shifters.

D(P)=1/n —(n —1)/n = (n —2)—/n . (Cl)

On the other hand, there are cases when D(P) has the
value one, for example, when there is perfect correlation
between the paths of left-going and right-going particles.
If we define the new quantity

D (P)+ (n —2) /n
1+(n 2)/—n

(C2)

then clearly D(P) has the range [0,1] and in particular
has value 1 when D(P)=1 and 0 when
D(P)= (n 2)/—n—D(P.) is our proposed general mea-
sure of path distinguishability. Clearly, in the case when
n =2, D(P) agrees with our previously proposed measure
in Eq. (1).
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