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Inelastic energy loss of H2+ and H&+ ions correlated with molecular orientation
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Electronic stopping power of aluminum, carbon, and krypton were calculated for energetic H2+ and

H, + ions together with a diproton (2H+) and a triproton (3H+) with specific energies ranging from 1

keV/amu to 10 MeV/amu in a frozen charge state, based on the degenerate electron-gas model and the
wave-packet model. It was found that for H2+ and 2H+ ions a strong orientation effect can be theoreti-
cally predicted on the stopping power S and the effective charge Z,&. It was also clarified that the bound
electrons significantly diminish the values of S and Z,&, and that the velocity dependence of Z,& is con-
siderably weaker than that expected from the existing data. The values of S and Z,& calculated for —10
MeV/amu H2 ion incident on carbon foils are found to be in good agreement with the recent experi-
mental data.

PACS number(s): 34.50.Bw, 61.80.Mk

I. INTRODUCTION

The interaction of molecular ions with solids has been
investigated intensively, in particular since about 20 years
ago. The nonequilibrium charged fraction of the
transmitted molecular ions gives information on the
electron-capture and -loss cross sections and the survival
probabilities [1—3]. At the same time, the molecular
effects have been expected on various electronic excita-
tions [4—7]. Regarding the inelastic energy loss, Brandt,
Ratkowski, and Ritchie [8] first reported that the spatial-
ly correlated projectiles displayed considerably different
aspects from the single-ion incidence. In the limit of the
internuclear distance R being vanishing, the ion cluster
acts as a unified single ion. On the other hand, in the lim-
it of R being infinite, individual constituent ions in the
cluster behave independently. Therefore, the values of R
during the passage of the impinging cluster play an im-
portant role in the inelastic energy loss. So far, interest
has been focused on the breakup of the cluster due to
Coulomb explosion, following the electron stripping on
entrance. In such a dissociation process, the spatial
correlation of constituent particles varies as a function of
the dwell time in a foil. Using the light-ion clusters, in-
formation on the initial internuclear separation and the
internuclear force have been derived from the "ring pat-
tern" [9—12] formed in the E Bplane, where -E and 8
denote, respectively, the kinetic energy and the angle of
the deflection of emerging particles. It was also reported
[13] that the weak potential makes narrower the angular
distribution of protons dissociated from the ( HeH)+ ion
than that expected only from the repulsive potential. In
the research, an immediate stripping of the projectile
electron(s) is a basic assumption. From the theoretical
point of view, analyses based on the electron-gas model
have been made to estimate the correlated energy loss of
the cluster composed of bare point charges [8,14—16]. In
these studies, the correlation is described by the interfer-
ence (or the vicinage) function, which reveals that the en-
ergy loss per nucleon of the H2+ (H3+) ion relative to

that of a proton with the same velocity starts from 1.5
(2.0) and decreases monotonically to unity with increas-
ing dwell time [8].

On the other hand, apart from dissociated charged par-
ticles, the transmission of the Hz+ ions [17] and of the
H3+ ions [18] has been reported. By interpreting the
measured charge-fraction data, Cue et al. [17] concluded
that there are two mechanisms incorporating in the
0.4—1.2 MeV/amu H2 transmission. One is the original
transmission without dissociation in superthin foils, and
the other is the recombined process after dissociation oc-
curred in thicker foils. Namely, in contrast to a rapid de-
crease of exp( tD/r—) (tD, dwell time; r=0. 17 fs) of the
former, the reduction of the latter is velocity dependent
and more slow with the increasing of the foil thickness.
Eckardt et al. [19] first observed that the energy loss per
nucleon of 12.5 —130 keV/u Hz+ on carbon and alumi-
num is less than that of H+ with the same specific ener-
gy. They concluded that it is due to the interference
effects in the electron excitation by spatially correlated
diprotons, whose internuclear distance is aligned close to
the direction of motion. Levi-Setti, Lam, and Fox [20]
reported that the stopping power for H2+ ions with ve-
locities v =0.7vo (12.5 keV/amu) and v = vo (25
keV/amu) in carbon foils (0.3 —1.1 pg/cm ) relative to
that for H+ with the same velocity is greater than unity
for the dissociation process while being less than unity
for the recombination process. Here v o

=2. 19X 10 cm/s
is the Bohr velocity. Using the MeV/atom energy 02+
and X2+ ions incident on carbon, Steuer et al. [21] also
reported that the stopping power per atom is less than
unity. This can be qualitatively explained [22] by assum-
ing the internuclear distance R to be fixed at -2—4 ao

0

(ao =0.529 A) in the electron-gas target. However, in or-
der to get quantitatively good agreement with data, there
is some room for further trials.

Recently, with the use of a high-resolution spectrome-
ter, it became possible to directly measure the energy
losses of the partially stripped charged particles, i.e.,
He+, C ' +, O +, with the same charge as the incident
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[23—25]. In addition, the analytical formula derived on
the basis of the erst-order perturbation treatment is
found to agree with the experimental data [26]. The en-

ergy loss of metastable ions with two electrons in the 1s2s
configuration has also been investigated [27]. Under such
circumstances, the information on the inelastic energy
loss of the originally transmitted molecular ions is strong-
ly expected to bring us a determination of to what extent
the bound electron(s) diminish the inelastic energy-loss
rate in comparison with bare clusters. Especially in
super-thin foils, the energy loss of originally transmitted
hydrogen molecules will interest us from the viewpoint of
getting new knowledge.

In this paper, we report the energy loss of the original-
ly transmitted H2+ and H3+ ions with the bound
electron(s) being attached in solids and in a gas. The
bound electron is described in a quantum-mechanical
molecular-orbital treatment. These results are compared
with the energy losses of diprotons and triprotons under
the same internuclear distances. Hereby, the eff'ective
screening charge per projectile electron is also estimated.
In Sec. II, our calculation method is developed with the
determination of the bound-electron distribution. Section
III is devoted to a presentation of results and a compar-
ison with the recent experimental data. A discussion is
also given there. Hereafter, we adopt atomic units
(e =m =A'= 1) unless otherwise stated.

II. ENERGY-LOSS CALCULATION

A. Electron distribution of molecular ions

Let us start with the description of the bound electron
on a H2+ ion. The wave function for a ground-state
molecular orbital 1so is assumed to be

$2(r) =N2[y(r, )+y(rz)],
p(r)=(2a/vr) ~ exp( —ar ),

(2.1)

where r&=r —R/2 and r2=r+R/2 denote the position
vectors of the bound electron measured from two constit-
uent protons located at +R/2. The normalization factor
N2 is given by N2 = [2I 1+exp( —aR /2)] ] '~, where R
is the internuclear separation. The orbital parameter a is
determined together with R by a variational method. To
do so, using Eq. (2.1), we calculated the total energy E„,
of our system, composed of the kinetic energy
Ek;„=( f2~

—( —,
' )b

~ $2), the potential energy E „
=($2~ —1/r, —I/rz~gz), and the nuclear repulsion en-

ergy E„=1/R. In an explicit form, we have, using the
variable x =(2a)' R,

tQt +kin +EPQt ++reP (2.2a)

X 1+(1/x)f dt exp( t—)

+ (4/x) exp( —x /4) f dt exp( t )—
0

E„~=(2a)' /x .

(2.2c)

(2.2d)

Thus the total energy E„,is obtained as a function of two
parameters, a and R, i.e., E„,=E„,(a,R). Then via the
procedure of numerically minimizing E„, on the two-
dimensional (a, R ) plane, we have as a minimum
E„,= —0.531 a.u. at a=0.430 a.u. and R =2.05 a.u.
=1.084 A. This value is a bit greater than the result of
R =1.06 A for the lowest vibrational state and lower
than the vibrationally averaged distance R = 1.29 A [3i].

In a similar manner, for a ground-state H3 ion, we
can determine the orbital parameter a and the internu-
clear separation R. Here it is assumed that two bound
electrons are in a ground state in a singlet molecular state
with opposite spins. The spatial wave function for the
electron is also described by the Gaussians as

A( ) N3[V( 1)+ P( 2)+0( 3)] (2.3)

with the normalization factor N3= [3[l+2exp( —aR /
2)] ] '~ . Here three constituent protons are assumed to
construct a rigorous triangular structure. The total
energy of this system is composed of the kinetic
energy Ek;„=( f3 ~

—( —,
' )5

~ g3 ), the potential energy

Ezo, =($3~ —I/r~ —I/rz —I/r3~$3), the nuclear repul-
sion energy E„„=3/R, and the electron-electron repul-
sion energy

E ( $3(I ] )$3(12)~ 1 / ] r$32(1 ] )$3(r&) )

Now, using a variable x =(2a)' R, we have

Ek;„=3a/2 —(ax /4) exp( —x /4)/I 1+ exp( —x /4)],
(2.2b)

E „=—(Sa/m)' /I 1+ exp( —x /4)]

Ek;„=3a/2 —(ax /2) exp( —x /4)/I 1+2exp( —x~/4)]

(2.4a)

(2.4b)

I 1+2«p( —x /4)] I+(2/x) f dt exp( t )+(g/x) exp( —x /4) f— dt exp( —t2)
0 0

+4/I (3)' 'x ] exp( x'/4) f— dt exp( t')—
0

(2.4c)
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E„=3(2a)' /x . (2.4d)

(2.4e)

=8(a) ~ /(3m) j 1+2exp( —x'/4)]'[ j(a)'"/4] j 1+4exp( —x'/2)]

+1/j(2)'"x ]F(x)+j4(2)'"/x ] j 1+ exp( —x'/4)] exp( —x'/4)F(x/2)

+4/j(6)'~ x] exp( x—'/4)F((3)' x/2)],

B. Electronic stopping power and effective charge

The inelastic energy loss of energetic Hz+ and H3+
ions is estimated in a shellwise manner. Generally speak-
ing, it is contributed from the conduction electrons and
the core electrons. The former contribution is formulat-
ed in the RPA (random-phase-approximation) formalism
[29], and the latter in the wave-packet theory [30]. These
contributions are summed over all electronic shells. Ac-
cording to this theoretical procedure, the velocity and the
Z2 (target atomic number) dependence of the proton-
stopping power values has been shown to agree with the
experimental data [30—32]. In both treatments, the
external ion charge expressed in the Fourier space plays
an essential role. The local bound-electron distribution is
given by I/2(r)l so that the total external charge of
H2+(Z, =1) in (r, t) space is given by

p,„,(r, t) =Z, 5(r —RO —R/2)

+Z 5(r —R +R/2) —ly2(r)l' . (2.5)

Then, the four-dimensional Fourier transform of it yields

p,„,(k, co) =2vrp, „,(k)5(co —k v),
p,„,(k) = A (k) cos(k.R/2) —8 (k),

(2.6a)

(2.6b)

2 (k)=2Z& —exp( —k /8a)/j 1+ exp( —aR /2)],
(2.6c)

with

F(x)= f dy[expj —(y —x) ]
0

—expj —(y+x) ]]f dz exp( —z ) .
0

(2.4f)

Thus we also find E„, to be a function of two variables a
and R via the parameter x. The integral can be estimated
numerically by Simpson s method. By minimizing E„,in
a two-dimensional (a,R) plane, we obtain as a minimum
E„,= —1.099 a.u. at a=0.475 a.u. and R = 1.695

0
a.u. =0.897 A. This value of R is only 2%%uo smaller than
the result of the ab initio calculation, i.e., R =0.91396 A,
by Carney and Porter [28]. They also have got a triangu-
lar structure with high accuracy (8=60.0012'), con-
sistent with the present assumption. Judging from these
situations, our results on R and a are reasonable, though
a simpler method is employed. With further calculation,
the value of a, describing the size of the bound electrons
on the projectile, becomes essential as well as the value of
R.

+Z, 5(r —R —c)—2lg (r) (2.7)

The vectors a, b, and c denote the position of three pro-
tons measured from the position Ro (the center of mass of
H3+ ) and al = lbl = lcl =R /(3)' . Then the form factor
of a H3+ intruder is

p,„,(k)=C(k)j exp(ik a)+ exp(ik b)+ exp(ik c)]
D(k) j ex—p( —ik a/2)+ exp( —ik b/2)

where

C(k) =

D(k)=

+ exp( —ik c/2)],

Z, ——', exp( —k /8a)

1+2 exp( —aR /2)
—', exp( —k /8a) exp( —aR /2)

1+2 exp( —aR /2)

(2.8a)

(2.8b)

(2.8c)

In order to understand the role of bound electrons quan-
titatively, it is instructive to show p,„,(k) for energetic
cluster ions, i.e., a diproton (composed of two protons)
and a triproton (composed of three protons with a trian-
gle structure). We can easily obtain for a diproton

p,„,(k) =2Z, cos(k.R/2),
and for a triproton

p,„,(k) =Z, j exp(ik a)+ exp(ik b)

+ exp(ik c)] .

(2.9a)

(2.9b)

In Sec. III, the square of p,„,(k) for a diproton (2H+ ) and
a triproton (3H+ ), averaged over the angle of k, are com-
pared with those for H2+ and H3+.

In this paper, we consider for a H2+ ion three types of
correlations of the molecular axis with the direction of
motion: (i) the molecular axis is fixed to be parallel to the
direction of motion (referred to as PARA), (ii) the axis is
fixed to be perpendicular to the direction of motion (re-
ferred to as PERP), and (iii) the axis is randomly oriented
(referred to as SPHER) during the passage of a H2+ ion.
Regarding the H3 ion, the SPHER case only is con-
sidered and compared with the same case of the H2+ ion.

I

B(k)= exp( —k /8a)

X exp( aR —/2)/j 1+ exp( —aR /2)] . (2.6d)

Here Rp=vt denotes the position vector of the center of
mass of a H2+ ion (Z

&

= 1 ). On the other hand, for a
H3+ ion, one has

p,„,(r, t) =Z, 5(r —Ro —a)+Z, 5(r —Ro —b)
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P;„o(k,co)= {I/s(k, co) —1](4m./k )p,„„(k,co) . (2.10)

Next, let us briefly derive the stopping power formulas
appropriate to the present case. The dynamic response of
the medium is described by the dielectric function
c,(k, co). In the Fourier space, the induced potential
P;„o(k,co) in the medium is given by

Then the stopping power, S = —dE/dx, is calculated as

S = fdr p,„,(r, t)( —I/v)(c}/c}t)P;„o(r, t) . (2.11)

Substituting (2.10) into (2.11) and using the Fourier trans-
form (2.6a) of p,„,(r, t), one has within the linear response

S=—(I/2m. v) fdk(1/k )f dcocolm[I/E(k, co)j[p,„,(k)] 5(co—k v) . (2.12)

In the wave-packet treatment, the electronic stopping-power S of a material can be estimated as S =S„„&+g, S, , where

S„„zand S, denote, respectively, the stopping power of the conduction electrons and that of the bound electrons in the
ith inner shell. These quantities, S„„zand S, , are written explicitly as follows:

V /Vg

S„„z=(2/~v )(2k~vF) f dzz f du u Im[ —I/EL(z, u)]f;„,(z, u, a,R), (2.13a)
0 0

V /V, .

S;=(2/mv )(2q;v;) f dz z f du u Imj —I/E(z, u)]f,'„,(z, u, a,R) .
0 0

(2.13b)

f;„,(z, u, a, R) = [ A (2kzz)] ( —') [1+sin(2kFzR)/(2kzzR)] + [8 (2kFz)] —2A (2kzz)8 (2kzz)sin(kFzR }/(kzzR } .

(2.14a)

In Eq. (2.13a), EL(z, u) denotes the Lindhard dielectric function [29] expressed in the reduced variables z =k/(2kF) and
u =co/(kvF), with the Fermi wave number kF and the Fermi velocity vF. On the other hand, the complex dielectric
function E(z, u) in Eq. (2.13b) describing the dynamical polarization of the bound electrons was analytically obtained
[30] and is characterized by the wave-number parameter q; =(N; )' Q; (see Table I). Here, N, is the number of elec-
trons in the ith electronic shell per atom, and Q,. is determined by the one-electron Hartree-Fock momentum distribu-
tion at the origin k =0. Using q;, we define v;, z, and u in Eq. (2.13b) as v; =A'q;/m, z =k/(2q;), and u =co/(v;k). The
functions f;„,(z, u, a, R) and f,'„,(z, u, a, R) indicate the square of the external charge [p,„,(k)] expressed in the reduced
variables z and u, which should be of the form relevant to the above three alignments. To survey the electron excitation
in solid targets, we first restrict ourselves to Eq. (2.13a). In the SPHER case, by averaging [p,„„(k)] over the angle be-

tween k and R, one can obtain

Next, for the PERP case, one has

f;„,(z, u, a, R ) = ( —,
'

) [ A (2kFz) ] [1+Jo(2k~zR [ 1 —(vF u /v ) ]
'

) ]

+[B(2kFz)] —2A (2k~z)B(2k~z)JO(k~zR [I—(v~u/v) ]' ) .

Here Jo(x) is the zeroth-order Bessel function of the first kind. Finally, for the PARA case, one can get

f;„,(z, u, a,R)=[A (2k~z) cos(Rco/2v) —B(2k~z)] =[A (2k~z) cos(RkFv~zu/v) —8(2k~z)]

In addition, for the SPHER case of the H3+ incidence, one can obtain

f;„,( z, u, a, R ) = [C ( 2k~z) ] 3 [ 1+2g ( 2k~zR ) ] + [D (2k~z) ] 3 [ 1+2g ( kFzR ) ]

—6C(2k~z)D (2k~z) [g (V'3kFzR)+2g (k~zR)],

(2.14b)

(2.14c)

(2.15)

where g (x)=sin(x)/x.
Regarding f,'„,(z, u, a, R) in Eq. (2.13b), replacement

of variables kz and vz in f;„,(z, u, a, R ) [Eqs.
(2.14)—(2.15)] by q,. and v; leads to the corresponding ex-
pressions for the Hz+ orientations (SPHER, PERP, and
PARA) and the H3+ orientation (SPHER). Therefore,
we do not write them again. It is noted that in the cases
of both the Hz+ and H3+ ions, the functions

f;„,(z, u, a, R) and f,'„,(z, u, a, R) at z =0 (or k =0) equal
unity, i.e., the square net charge of the projectiles, regard-
less of molecular orientations and the spatial size of

Z ff
= [S/S ] I/2 (2.16}

This means the square root of the stopping power for an
ion relative to that for a proton with equivalent velocity.
A little attention should be paid to this. In general, this
quantity is contributed by two effects, i.e., the charge-
changing effect during the passage of the ion and the
spatial-size effect of bound electrons attached to the ion.

bound electrons.
As a final presentation in this section, we define the

effective stopping-power charge Z,z by
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TABLE I. The values of parameters, Q;, N, , r„and Nf,
necessary for calculating Eqs. (2.13a) and (2.13b) for Al, C, and
Kr targets. ( A, B) means either Q;= A and N; =B for an inner
shell i, or r, = A and X&=B for conduction electrons per atom.

Shell (i)

1s
2$

2p
3s
3p
3d
4s
4p
Free

Al

(7.276, 2)
(1.713,2)
(1.625, 6)

(2.070, 3)

(3.268, 2)

( 1.526, 4)

Kr

(21.00,2)
(5.888,2)
(6.281,6)
(2. 199,2)
(2.078, 6)
(1.898, 10)
(0.7115,2)
(0.5679,6)

Here we treat, however, the ions whose charge state is
frozen, where the spatial distribution of bound electrons
does not change during the penetration. Therefore, the
charge-changing effect cannot be incorporated, and in
this sense only the screening effect of bound electrons is
purely rejected in Z,ff.

III. RESULTS AND DISCUSSION

First we describe general features of elementary excita-
tions in the electron gas induced by energetic ions, since
these excitations are dominant energy-loss mechanisms in
solids up to several hundred keV/amu. As we know,
there are two types of elementary excitations, i.e., the in-
dividual and the collective (plasmon) excitations [29].
The collective excitation mode can be restricted in the re-
gion of small momentum transfer, i.e., 0 ~ Ak ~ Ak, .
Here, the cutoff wavelength k, is at most the order of 1

a.u. Therefore, p,„,(k) at relatively small k values, or,
roughly speaking p,„,(0), plays a dominant role. The
threshold ion velocity V,h is characterized by
V,h =co /k, if the dispersion of a plasmon is ignored. On
the other hand, the individual excitation takes place over
a wider range of momentum transfer and energy transfer.
Then, in the individual excitation, the values of p,„,(k)
over the whole allowed section of k, depending on the ve-
locity, affect the stopping power. This is a contrast to the
case of the collective excitation.

In order to show how largely the screening effect by
bound electrons works, the spherically averaged square
external charge (p,„,(k) ) is plotted against k in Fig. 1(a)
for a H2+ ion and a diproton (2H+ ), and in Fig. 1(b) for a
H3+ ion and a triproton (3H+). At k =0, (p,„,(k) ) in-
dicates the square net-charge values 1, 4, 1, and 9, respec-
tively, in units of e for H2+, 2H+, H3+, and 3H+, re-
gardless of the internuclear distance R. Thus the bound
electron diminishes the electron-excitation probability in
a small momentum-transfer region. In this sense, the
probability of the plasmon excitation induced by H2
and H3+ ions is expected to be highly suppressed in com-
parison with 2H+ and 3H+ ions and to be almost the
same as by a proton with the same velocity. On the con-
trary, in the small k regime, if k exceeds 4 a.u. , there is
no appreciable di8'erence in (p,„,(k) ) between a H2+
(H3+) and a 2H+(3H+) ion. Then, in this k region, the
bound electron does not play any role. This aspect will

A 3
CU

2

V

0 1

9
8

6

2 3
k (a.u. )

4 5 6

0
0 1 2 3 4 5 6

k (a.u. )

FIG. l. (a) The square of the external charge, (p,„,(k)2),
which is spherically averaged over molecular axes for H2+
( ———) and a diproton (2H+) ( ). (b) Same as in (a) for
H3+ ( ———) and a triproton (3H+) ( ).

be seen in the stopping cross sections calculated for
aluminum and carbon as typical examples of solids, and
for krypton as an example of gases.

Figure 2(a) shows the stopping power of a plasmon ex-
cited in a solid of r, =2.07 (Al) for penetrating H+, Hz+
(SPHER, PARA, and PERP), and H3+ (SPHER) ions.
As expected from Fig. 1, the net charges of these ions are
the same value so that the resultant plasmon excitation
contribution naturally yields almost the same result, re-
gardless of the above ion species. On the contrary, the
stopping cross section of the individual electron excita-
tion shown in Fig. 2(b) displays a variety of curves, de-
pending on the orientation of the molecular axis with
respect to the direction of motion. In the low specific-
energy region, the stopping curves for the SPHER H3+,
the PERP H2, the SPHER H2+, H+, and the PARA
H2+ appear in order of magnitude. Above 400 keV/amu,
three curves for the H2+ ions tends to converge and the
orientation eff'ect will disappear. Figures 2(a) and 2(b) irn-

ply that the individual excitation dominantly contributes
to the orientation effect on the electronic stopping power
for the Hz incidence rather than the collective excita-
tion. Physically speaking, a plasmon cannot be affected
by the separation of constituent nuclei but can be affected
by only the net charge since its wavelength A, is much
larger than the internuclear distance R. For comparison,
we calculated the above two contributions for a 2H+ ion,
shown in Figs. 3(a) and 3(b). A 2H cluster has twice the
net charge as a proton; as a result, the stopping power
due to collective excitation amounts to four times the net
charge, regardless of the 2H+ orientations. Except for
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the magnitude of the plasmon stopping, its orientation
dependence for a 2H+ cluster is very weak and similar to
that for a H2+ ion. Figure 3(b) shows the stopping power
of the individual excitation contribution for a moving
2H+ ion. Compared with the case of H2+ shown in Fig.
2(b), the orientation dependence is qualitatively the same,
except for the fact that the stopping value for 2H+ is
greater than for a Hz+ ion with the same velocity. As a
summary of this part, the orientation effect on the elec-
tronic stopping power actually works in the individual
excitation process.

To clarify how the orientation effect works, we plot
in Figs. 4(a) —4(d) the integrand, zu f;„,(z, u, a, R )

Im[ —I /eL (z, u) ], in Eq. (2.13a) for the Hz+ incidence at
v =4vo on the electron gas of the density n, o or r, =1.526
[I/no=(4m/3)(r, ao) ], which is deduced from the
plasmon energy Ace =25 eV of carbon. For the in-

cidence of a proton, the maximum peak is located at the
same position (z =0.4, u = 1.2) in the z-u plane when the
incident velocity is greater than 1.6UO. This peak accom-
panies a broad tail within the region of z —u (1. As
one easily sees from the borders of integration over u,
each profile is obtained by truncating the universal profile
at u =U/UF. As well as the proton incidence, a profile of
the SPHER Hz incidence at finite velocity v is a trunca-
tion of the universal one, although there are humps origi-
nating from the oscillatory structure off,'„,(z, u, a, R). In
the above two cases, we find no frequency dependence in-
corporating in f;„,( uz, a, R ). On the contrary,
in the PARA and PERP cases, the frequency depen-

dence is expected to appear in the profile of
zuf,'„,(z, u, a, R )Im[ —1/sL (z, u)]. In the PERP case, ex-

cept for the velocity-dependent undulations, the qualita-
tive feature is similar to the SPHER one. The most re-
markable aspect is the fact that the profile in the PARA
case is constructed from several mountains separated by
valleys. The valley lines are described by hyperbolic
curves

zu =v /(Rk~u~ )[(2n + 1)m /2

+arc cos [B(2kzz) /3 (2kFz) J ]

(n =0, 1,2, .. . ) .

As a common feature, the highest peak appears at the
same position in the z-u plane. The above features are
qualitatively valid for the profiles of the corresponding
quantity zuf', „,(z, u, a, R)Im[ —I/e(z, u)] in Eq. (2.13b).
These aspects reAect the molecular effects on the elec-
tronic excitation and lead us to a reasonable understand-
ing of the orientation-dependent energy losses of Hz+,
H3, 2H +, and 3H + ions displayed below.

A. H, + and H, + ions

The wave-packet procedure was found to present the
Z2 oscillation and the energy dependence of the electron-
ic stopping cross section of materials, which are in rela-
tively good agreement with the experimental and the
empirical data available [30,31]. In this section, we show
the calculated results for the molecular-ion incidence and
compare them with the existing data. Here we concen-
trate on the solid Al and C targets, and a Kr gas target,
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FIG. 2. (a) Stopping cross section of the plasmon excitation
in an electron gas of r&=2.07: H+ ( ~ ~ ~ ), H2+ (SPHER)
( ), H, + (PARA) ( ———), H, + (PERP) ( —- —), and
H3+ (SPHER) {—- - —). (b) Stopping cross section of the indi-
vidual excitation in an electron gas of r~=2. 07. Legends are
the same as in (a).
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FIG. 3. (a) Stopping cross section of the plasmon excitation
in an electron gas of r+=2.07: H+ (. ~ -), 2H+ (SPHER)
( ), 2H+ (PARA) ( ———), and 2H+ (PERP) ( —- —).
(b) Stopping cross section of the individual excitation in an elec-
tron gas of r& =2.07. Legends are the same as in (a).
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for which calculation was carried out over the specific-
energy range of 1 keV/amu ~E ~ 10 MeV/amu. Figure
5 shows the electronic stopping cross section S of Al for
the H2+ ions in three orientations and the H3+ ion men-
tioned. For reference, the stopping cross section S of Al
for a proton is drawn together. Comparison of the calcu-
lated S with the experimental S data was already made
in other articles [30—32], which shows good agreement
over the energy range studied. The shellwise calculation
for a solid Al target reveals that the excitation of conduc-
tion electrons is dominant up to —100 keV/amu, but

once the specific energy is beyond this value the total
stopping power would be no longer in agreement with the
data without including the inner-shell ( Is, 2s, 2p) contri-
butions [31]. Here two 3s electrons and one 3p electron
per aluminum atom are assumed to take part in the con-
duction electrons. In Fig. 5, S and S at low energies are
proportional to E ' . Small shoulders around 600
keV/amu come from the 2s and 2p contributions. From
this figure, one can see that S does strongly depend on the
orientation of the molecular axis. The PERP orientation
yields the greatest value in the energy region of E (80

3.2

O.g

p, 9

03
O, g

p, 6

12

o.s

p.6 O, g

FICx. 4. Two-dimensional plots of the function, zuf;„, (z, u, a, R)imI —I/sL(z, u)}, in Eq. (2.10a) in the ranges of O~z ~3 and
0~ u ~ 3 for the incidence of (a) the H2+ SPHER; (b) the H2+ PARA; (c) the H2+ PERP, and (d) the H+ at v =4vo on the electron

gas with r, = 1.526.
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FIG. 5. Calculated stopping cross section S of Al for the H2+
incidence [SPHER ( ), PARA (

———), and PERP (—
- —) ] and for the SPHER H, + incidence ( —-- —). For refer-

ences, the stopping cross section S~ for the H+ incidence
(. - . ) is drawn together.

keV/amu. However, as E is over 200 keV/amu, the
difference in three orientations becomes smaller with in-
creasing E. The SPHER H2+, the PERP H2+, and the
SPHER H3+ curves take a maximum at about E =50
keV/amu, as the proton curve does. On the other hand,
the PARA H2+ curve becomes maximum at about
E =80 keV/amu. At low energies, the SPHER H3+
curve is close to the PERP H2+ one. A remarkable as-
pect is that in the region of E & 80 keV/amu the stopping
cross section S for the PARA H2+ is always less than
that for a proton at the same velocity. This tendency is
valid for another solid target(C) as well as a gaseous
target(Kr), which implies that it is a rather general aspect
regardless of target species. Figures 6 and 7 indicate the
electronic stopping cross sections of carbon and krypton,
respectively, for a H2+ ion, a H3+ ion, and a proton. The
SPHER H2+, and PERP Hz+, the SPHER H3+, and the
proton curves of carbon(krypton) take a maximum at
about E =80 keV/amu (100 keV/amu), while the PARA
H2+ curve of carbon(krypton) becomes maximum at
about E =130 keV/amu (150 keV/amu). Except for the
shift of peak values towards the higher energy side, the
orientation dependence of the stopping curves of carbon

E (keV/amu)

FIG. 7. Calculated stopping cross section S of Kr for the
H2+ incidence. Legends are the same as in Fig. 5.

and krypton for a H2+ ion is qualitatively the same as
those of aluminum. The solid square symbol in Fig. 6 is
the data of the recent measurement done by Susuki et al.
[33] using 9.6 MeV/amu H2+ ions. In this experiment, a
H2+ ion is assumed to be in the spherical orientation,
which agrees with the calculated one. As the kinetic en-
ergy increases, the orientation effect tends to disappear.
From Figs. 5 —7, one finds that the stopping cross section
for a H3+ ion is greater than those for a H2+ ion especial-
ly at high energies, though the profile is similar and the
net charge is the same. This enhancement is caused by
the close collision (i.e., the individual excitation) contri-
bution, while the distant collision (i.e., the collective exci-
tation) contribution is almost the same [see Fig. 2(a)].

Figures 8 —10 display the effective stopping-power
charge Z, f[ of a H2 ion in collision with Al, C, and Kr
targets, respectively. For comparison, the effective
charge of a He+ ion is also plotted as a function of the
specific energy. Because we have interest in the limiting
case of vanishing R for a Hz+ ion, which reduces to a
point charge (He+). The orbital parameter a for He+ is
calculated to be 1.132 a.u. by applying a variational
method to minimization of the energy as in Eqs. (2.2) and
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FIG. 6. Calculated stopping cross section S of C for the H2+
incidence. Legends are the same as in Fig. 5. The experimental
data is obtained for 9.6 MeV/amu H2+ by Susuki et al. [33].

FIG. 8. Effective charge Z,& of the H2+ incident on Al:
SPHER ( ), PARA ( ———), and PERP ( —- —). For
reference, Z,& of the He+ incidence on Al ( —-- —) is drawn
together.
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FIG. 9. Effective charge Z,z of the H2+ incident on C.
Legends are the same as in Fig. 8. The solid circle and the solid
square are the experimental data obtained for the 10.7
MeV/amu He+ by Ogawa et al. [23] and for the 9.6 MeV/amu
H, + by Susuki et al. [33].

(2.4). At a glance, three figures for H2+ indicate the
strong orientation dependences at low energies (less than
a few hundred keV/amu). In Fig. 9, the solid circle indi-
cates the experimental data (Z,&=1.54) obtained by
Ogawa et al. for the 32 MeV/amu He+ ion in the pre-
equilibrium charge state [23]. The solid square is the
data of Susuki et al. for the 9.6 MeV/amu Hz+ ion in the
frozen charge state [33]. From Figs. 8 —10, the following
characters can be found on Z,& of H, + ions.
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FIG. 10. Effective charge Z,& of the H2+ incident on Kr.
Legends are the same as in Fig. 8.

(i) In the PARA and SPHER cases, Z, ft increases
monotonically with increasing specific energy E, while in
the PERP case the Z,ff tends to be almost constant
( —1.2) over the energies studied except for a shallow dip
around 100—200 keV/amu.

(ii) In the PARA case, Z,s is less than unity up to—100 keV/amu.
(iii) Z,s of the PARA case varies considerably from

0.8 (for Al and C) -0.9 (for Kr) to —1.3, while Z,s of
the SPHER changes slightly from —1.1 to —1.25 and in
the PERP the variation of Z,ff amounts to -0.1.

1.8

(iv) At low energies, a strong orientation dependence
in Z,ff is found, and as the kinetic energy exceeds several
hundred keXlamu, the differences in the stopping power
and the effective charge for oriented H2+ ions tends to
vanish.

(v) Z,s value of a Hz+ ion is always less than that of a
He+ ion at identical velocities.

The second point (ii) reveals that the bound electron on a
projectile and the orientation of the molecular axis
cooperate with each other to diminish. Keep in mind
that only one of them cannot derive this result. In the
next section, we compare the Z, ff values of 2H+ and 3H+
ions with those of H2+ and H3+ ions, and clarify the
difference in Z,ff.

To check to what extent the choice of R is sensitive, we
calculated the stopping of Al for the vibrationally aver-
aged internuclear distance R = 1.29 (A) [8] of a H2+ ion.
Compared with the case of the ground-state distance
R =1.084 (A), Z, tt decreases by at most 0.05 only in the
low-E region and any drastic variations cannot be found
in the Z,ff curves for H2 in three orientations in Al.

In addition to the H2+ incidence, Z,ff of the SPHER
H3 incident on Al, C, and Kr targets is shown in Fig.
11. In the range of 1 keV/amu +E ~ 10 keV/amu, Z,tt
changes from 1.2 to 1.46 for Al, from 1.17 to 1.41 for C,
and from 1.22 to 1.49 for Kr. The following remarks
should be added.

(vi) Z, tt of the SPHER H3+ depends weakly on target
species.

(vii) The profile of Z,s of the SPHER H3+ resembles
that of the SPHER H2+. In practice, the ratio R, of Z,ff
of the SPHER H3+ to that of the SPHER H2+ is almost
constant at the kinetic energies ranging from 1 keV/atnu
to 10 keV/amu: R, =1.09—1.15 (C), 1.10—1.165 (Al),
and 1.11—1.174 (Kr).

The variation of Z,ff of the SPHER H3+ ions is about
0.24 —0.27 over the energy range of 1 keV/amu ~ E 10
keV/amu. Ordinarily, in such a wide energy range, the
effective charge of a single ion tends to vary more. For
example, Z,ff for He+ in a frozen charge state changes
from 1.26 to 1.62 in Al, and if the charge-changing pro-
cess is included, from —1.3 to 2 in solids and gaseous tar-
gets [34].
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B. 2H+ and 3H+ ions 60

In order to make clear the differences between a dipro-
ton and a H2+ ion and between a triproton and a H3+
ion, we also calculate the stopping cross section for
diproton (2H+) clusters in the SPHER, PARA, and
PERP orientations, and for a triproton (3H+) cluster in
the SPHER one. Here the internuclear distances of a
2H+ ion and a 3H+ ion are fixed to be 1.084 and 0.897
0

A, respectively, so that the Cou1omb explosion is not tak-
en into account. Figures 12—14 show the stopping cross
sections of Al, C, and Kr targets, respectively, for 2H+
clusters. As for Al and C targets, the stopping cross sec-
tion increases steeply around 40 keV/amu and 60
keV/amu, where the plasmon excitation begins to con-
tribute. As a common feature, below —100 keV/amu the
PERP curve is the largest among four curves, and the
SPHER, the PARA, and the proton curves follow in or-
der of magnitude. It is remarkable that, different from
the H2+ case, the PARA curve is greater than the proton
curve for each target. On the other hand, as is similar to
the H2+ case, the orientation dependence of the stopping
is not appreciated as far as the specific energy is beyond
200 keV/amu. Regarding the 3H+ case, the profiles of
the stopping curve of these targets are qualitatively the
same as those for the 2H+ SPHER case. One can
confirm this point by comparing the Z,~ curves. Figures
15—17 display the effective charge of 2H+ and 3H+ in
collisions with Al, C, and Kr targets. The following
features can be derived from these figures.

(i) Z,s curves for the PERP 2H+ and the SPHER
2H+ in three targets vary by 0.2, while Z,z for the
PARA 2H+ changes by 0.4 over the kinetic energy E of 1

keV/amu E ~ 10 keV/amu.
(ii) Different from the PARA H2+ case, Z,s values for

2H+ ions are greater than unity ( =Z, tr of a proton).
(iii) Z, fr of the PARA case varies considerably from

0.8 (for Al and C) -0.9 (for Kr) to —1.3, while Z, fr of
the SPHER changes slightly from —1.1 to —1.25 and in
the PERP the variation of Z,z amounts to -0.1.
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FIG. 13. Calculated stopping cross section S of C for the
2H+ incidence. Legends are the same as in Fig. 12.

Contrasts between Sec. IIIA and Sec. III B reflect the
role of the projectile electron. This is the effect of screen-
ing the nuclear charge effectively, which depends on the
projectile velocity. To investigate it, we calculate the
effective screening charge per bound electron AZ, ff

defined by the following relations:

b Z,s =Z,s(2H+ )
—Z, tr( H~+ ) (3.1a)

(iv) At low energies, a strong orientation dependence
in Z,& of 2H+ is found: the PERP, the SPHER, and the
PARA curves are in order of magnitude up to —100
keV/amu. As the kinetic energy exceeds several hundred
keV/amu, the orientation dependence of the Z, fr curves
for the 2H+ ions tends to vanish.

(v) The profile of Z,z for the SPHER 3H+ resembles
that for the SPHER 2H+. In practice, the ratio R, of
Z,& of the SPHER 3H+ to that of the SPHER 2H+ ion is
almost constant at the kinetic energies ranging from 1

keV/amu to 10 keV/amu: R, = 1.37—1.41 (C),
1.36—1.44 (Al), and 1.34—1.40 (Kr).

C. Screening e6'ect
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FIG. 15. Calculated effective charge Z,& of the 2H+ incident
on Al [SPHER ( ), PARA (

———), and PERP ( —- —)]
and for the 3H+ (SPHER) incidence ( —- - —).

FIG. 17. Calculated effective charge Z,z of the 2H+ incident
on Kr. Legends are the same as in Fig. 15.

where Z,s(2H+ ) means the effective charge of 2H+, etc.
Figure 18 indicates the energy dependence of AZ, & for
Al, C, and Kr targets. Except for details, the four
profiles of AZ, ~ in each target commonly have a similar
structure. In Al and C targets, the humps located at
50—80 keV/amu are due to the enhanced plasmon contri-
butions by a 2H+ ion and a 3H+ ion, rather than by a
H2+ ion and a H3+ ion. Namely, in the plasmon excita-
tion, the bound electron screens the projectile charge al-
most completely. This is straightforwardly understood
by comparing Figs. 2(a) and 3(a). When the kinetic ener-
gy is over —100 keV/amu, b,Z,& decreases with increas-
ing energy. We can reasonably interpret this as follows:
At high energies, a large momentum transfer becomes
dominant and there, as indicated in Figs. 1(a) and 1(b),
the square external charges of a 2H+ ion and a 3H+ ion
are not so different from those of a H2+ ion and a H3+
ion, respectively, compared at lower energies. Roughly
speaking, one bound electron on a Hz+ or a H3+ ion di-
minishes the effective charge by 0.3—0.5.

Our calculation of Z,~ values of a 2H+ and a 3H+
cluster can be connected with the interference function G

Hereby the effective charge becomes

Z,q=[Z +Z +2ZiZiG]' (3.3)

After averaging over the direction of R, 6 reduces to a
function of the variable Rco~/U. Taking into account the
Coulomb explosion effect on the time-dependent internu-
clear distance R (t), they roughly obtain G =

—,
' for a swift

2H+ ion at the entrance (t =0). This means that Z,s. of
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at the entrance. For a point-charge cluster composed of
Z&e and Z2e, Brandt, Ratkowski, and Ritchie [8] write S
in terms of

S =(eco /U) ln(2mv /fico )[Zi+Z2+2Z&Z2G] . (3.2)
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FIG. 16. Calculated effective charge Z,& of the 2H+ incident
on C. Legends are the same as in Fig. 15.

FIG. 18. Screening charge per bound electron for Kr, Al,
and C targets, calculated from Eqs. (3.1a): [SPHER ( ),
PARA ( —- —), PERP (

———) ] and from Eq. (3.1b)
[SPHER (. . . ) ].



546 TOSHIAKI KANEKO 51

the SPHER 2H+ is (1+1+2X—,
')'~ =1.732. In the

present case, Z,z is 1.43 —1.64 in C, 1.53—1.16 in Al, and
1.51 —1.61 in Kr in the range of 1 keV/amu ~E ~10
keV/amu. Applying 6 =

—,
' also to a 3H ion, Z,s of the

SPHER 3H+ amounts to I 1+ 1+ 1+2 X ( —,
'

) X 3] '
=2.45. We obtain that the corresponding Z,s is
1.95—2.28 in C, 2.12—2.31 in Al, and 2.06—2.26 in Kr.
Figures 15—17 show that the function G is energy, target,
and orientation dependent. In addition, the values of G
are found to be smaller than —,', since Z,z values of 2H+
and 3H+ are smaller than what are expected from G =

—,
'

in (3.3). Up to here, the Zdr values of H2+ and H3+ ions
in a frozen charge state are found to be smaller than both
the correlated (6 =

—,
'

) value from the point-charge-
cluster model [8] and the completely uncorrelated
(R = ~ ) value over the whole energy range studied. This
is ascribed to the screening effect of the projectile's bound
electron.

By the way, it was reported [20] that the energy loss
per nucleon of a recombined H2+ ion at v =0.7 vo (12.5
keV/amu) and v = vo (25 keV/amu) incident on carbon is
0.8 —0.9 times the corresponding proton stopping S . It
means Z,&=1.26—1.34. This fact allows us to conclude
that Z,z of a recombined H2+ ion is larger than that of a
Hz ion in a frozen charge state (see Fig. 9). Though it
is not a hydrogen-molecular ion, such a molecular-
orientation effect has been also suggested. The reduction
of the energy loss per nucleon of nitrogen-molecular ions
incident on carbon was reported in the velocity regime of
v =1.2—2.28vo [21], where the reduction amounts to
15% at most and depends on the dwell time in the foil.
On the basis of an electron-gas target with energy gap,
Steuer and Ritchie [22] calculated the energy loss of a
nitrogen-molecular ion in the parallel orientation. Ac-
cording to them, the theoretical reduction is 21 —27%,
which is larger than the 9—13% reduction in the experi-
ment. Quantitative agreement has not been achieved yet.
It is, however, demonstrated that the parallel orientation
will be actually a promising candidate for explaining this
reduction.

D. Summary

This paper presented the orientation effect on the in-
elastic energy loss of H2+ and H3+ ions with bound
electron(s) in a frozen charge state penetrating carbon and
aluminum foils and Kr gas. At low energies less than—100 keV/amu, the stopping power and the effective
charge of H2+ strongly depend on the alignments of the
molecular axis. These quantities are, even in any align-
ments, smaller than those of He+ ions, which is regarded

as a H2+ ion with vanishing R. A special emphasis
should be put on the fact that the stopping power (and
the effective charge) for the parallel oriented H2+ with
kinetic energy up to several 10 keV/amu amounts to
0.6—0.8 times as much as the proton stopping. This
finding is common to three targets investigated in this pa-
per. Here one pays attention to the magnitude of the
stopping. According to the previous analysis based on
the point-charge-cluster model, it was pointed out that
due to the interference effect the stopping power per pro-
ton of carbon for Hz+ in the parallel orientation is re-
duced at minimum to be 0.5 times as much as that for the
proton at the same velocity [20] (namely, the stopping
power for H2+ is equal to the proton stopping). So the
stopping power for the H2+ in our case is much more
suppressed. The role of bound electrons was very impor-
tant especially for low-velocity hydrogen molecules and
even at high velocities they can diminish the effective
charge by 0.3—0.4 per electron.

Finally, we make a comment on the existence of bind-
ing states. The effect of screening the external charge by
conduction electrons is important for low-velocity ions
insofar as H2+ and H3+ ions can bind electron(s) in a
solid. Apart from the proton incidence [35—37], no
comprehensive works have been done on the existence of
such a molecular-orbital bound state in a solid, to the
author's knowledge. However, at least in the several
hundred keV/amu to MeV/amu region, the original
transmission of H2+ and H3+ ions has been observed
through superthin foils [17,18], where the effect of the
bound electrons is not vanishing even if the static screen-
ing effect becomes vanishing. Recent experiments [33]
prove that the calculated results agree with the data. We
would like to expect that by combining the measurement
of charge-state fractions, the research on the stopping of
molecular and cluster ions presents information on the
alignment effects and the effective screening charge.

Note added in proof. Recently, Y. Susuki et al. (un-
published) measured the energy loss of the 9.6-MeV/amu
H3+ ion incident on carbon, where the effective charge
Z,~ derived from the stopping power data is

Z,&=1.45+0.09. These data are in good agreement with
our calculated value shown in Fig. 11.
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