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A method is proposed for studying collisions between two atoms or ions with one or more electrons
each. An efFective charge density as a function of a physically unobservable impact parameter b'

is introduced to describe the spatial nonlocalization of the electron cloud of the projectile atom.
It is shown that the probability amplitude at a given (real) impact parameter may be reduced

to a convolution over b' of the effective charge density with target excitation amplitude per unit
charge. This method, which we call the virtual-impact-parameter method, enables one to identify
in a physical way in impact-parameter space the contribution of the electron-electron interaction as
well as that of the electron-nucleus interaction. A node structure in the target excitation probability
amplitude is found due to the electron-electron interaction. Generalization of the method to the
description of many-electron transitions is discussed within the independent-electron approximation.

PACS number(s): 34.50.Fa

I. INTRODUCTION

Many interactions that occur in nature involve at least
two atoms with one or more electrons each. The evalu-
ation of cross sections and transition rates for such pro-
cesses requires a method for dealing with at least four
interacting bodies. If multiple electron transitions occur
on any of the atomic centers, then some form of even
higher-order many-body theory is required. In general
such a many-body description is difFicult.

In this paper we present a method for evaluating the
transition probability in the impact-parameter represen-
tation for two quickly interacting atoins (or ions). The
target atom may have an arbitrary number of active
electrons, but the projectile is restricted to one active
electron at most due to our particular use of first-order
perturbation theory. We introduce a method of virtual
impact parameters in which the electron carried by the
projectile is not localized at a definite classical impact
parameter b, but is spread. out over a range of virtual,
physically unobservable, impact parameters O'. In our
first-order theory the inHuence of the projectile electron
in the target excitation is described by a surface charge
density, denoted by &(b' —b). This surface charge den-

sity is the effective projectile charge per area d b'. This
projectile charge density per d b' is convoluted with the
probability amplitude per unit projectile charge for the
transition of target electrons by integrating over cylin-
drical Gaussian surfaces of radii b —b. This yields the
transition probability amplitude for any specified transi-
tion of electrons on both the projectile and the target at
a given impact parameter b. If there is no projectile elec-
tron, then our q(b' —b) reduces to b(b' —b) as expected.
Our first-order formulation, together with the physical

interpretation, is valid for both screening processes where
there is no transition of the projectile electron and the
antiscreening process where there is a transition of the
projectile electron (caused by its interaction with a target
electron). Our method may be used when independent
multiple-electron transitions occur in the target since this
method provides a rigorous way to evaluate probability
amplitudes to first order within the independent-electron
approximation.

The first description of such processes was the first-
order theory of Bates and Griffing [1] in 1955 which cor-
rectly describes ionization cross section for H + H col-
lisions at high collision velocities v in the momentum
transfer representation. This first-order theory was ex-
tended to other atomic systems about 15 years ago by
various authors [2—6]. Stolterfoht [7] has brought forth
appealing physical pictures of the effects due to the pro-
jectile electron and established a connection to the dy-
namics of electron correlation and to dielectronic pro-
cesses in general. Improvement by Anholt [8] of a closure
approximation led to the understanding of the threshold
of the antiscreening effect. Higher-order methods for the
screening contribution have been fruitfully developed by
Jakubassa-Amundsen [9] and Wang et al. [10], while an
appealing impulselike model for the antiscreening con-
tribution was developed by Zouros et al. [11,12]. The
theory of interactions between atoms and projectiles car-
rying electrons has been recently reviewed by Montenegro
et al. [13].

Various experiments [14—16] have generally established
the validity of the theory. The impact-parameter rep-
resentation has been discussed recently by Montenegro
and Meyerhof [17,18], Ricz et al. [19], and Kabachnik
[20]. Our paper develops the first-order theory in the
impact-parameter representation for both screening and
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antiscreening on an equal footing and presents a physical
picture of the nature of the quantum spreading of the
projectile electron.

interaction V is [23]

f,f (b) =,I'm (f I@'(t)) = ' dt(f IVI@')

II. THEORY

A. Formulation

We consider a collision system consisting of a projec-
tile carrying a single electron incident on a single-electron
target. For simplicity, we assume both the projectile and
the target to be hydrogenic with effective nuclear charges
of Zp and Z~, respectively. Furthermore, we work within
the semiclassical approximation in which the internuclear
motion is assumed to be classical with a given classical
trajectory specified by R(t). In general R(t) is arbitrary
and may be calculated using the actual interacting po-
tential [21]. Sometimes the actual trajectory can be spec-
ified to a good degree of approximation as a straight line

R(t) = b + vt where b is the impact parameter and v
the collision speed. The straight-line path will be used
in our treatment below. Since we are only interested in
the electronic transitions, the replacement of the actual
trajectory by a straight line has no significant effect on
the transition probabilities because of the small electron-
nucleon momentum ratio at high v where our theory is
valid.

The total Hamiltonian of the system is

Zp Zz 1 Zp ZyH = Hp+Hy — — + +R+r

where g;(t) is the exact wave function (3) at time t prop-
agated from the initial state Ii) of the system at t = —oo.
Here i and f denote the electronic states on both the tar-
get and the projectile. The cross section for the transi-
tion of an arbitrary number of electrons on either atomic
center is given by

dblat, t (b) I' (4)

B. The first Born approximation

In the following, we consider only cases where at least
one transition in the target occurs. For simplicity we re-
gard the target as having a single active electron. Later
we shall extend our result to collisions in which more
than one transition occurs in the target. Within the first
Born approximation, the exact wave function @;(t) is ap-
proximated by its zeroth-order unperturbed initial state
wave function Ii). The transition amplitude in the first
Born approximation as a function of impact parameter
for target excitation is given by

where Ia fr fp (b) I
is the probability that the transition

i ~ f has occurred.

where H~ (Hz ) is the Hamiltonian of the projectile (tar-
get), r~ (rz ) are the coordinates of the projectile (tar-
get) electron with respect to its parent nucleus, and

ri2 ——IR + r~ —rz
I

is the distance between the elec-
trons. With the use of the classical trajectory [22], we
can drop the internuclear potential Z~Zz /R from the to-
tal Hamiltonian. Then the total Hamiltonian H may be
replaced [21] by the electronic Harniltonian H, given by

H. = Hp+H&+ V,

IR+ r~l r»

Here —- ~ is the interaction between the projectile
iR—v z-i

nucleus and the target electron, — ~ the interaction
[R+r~ )

between the target nucleus and the projectile electron,
and —the interaction between the projectile electron

+12
and the target electron. This electronic Hamiltonian H
may be used to find the full electronic wave function g;(t)
satisfying

ii ' =Hg;.
Bt

The exact transition probability amplitude describing
the change of states i i f under the influence of the

at t (b) = i dt(f IVli)—

= i dte' by~;~ z iz.
IR —r-~l

(5)

where i~7 and fJ z denote the initial and final states of
the projectile and target, respectively, and i,f represent
the initial and final product projectile-target states. Here
AE 6 f + 8 f 8 ~ Ez is the energy difference of the
Anal and initial states of the projectile and the target.
In arriving at (5) it has been assumed that fz g iz .
Consequently, the — r term in V of Eq. (2) does not

]R+r"J.
(

contribute due to orthogonality of
I
fz ) and liz).

The first term in (5) is &om the nuclear-electron inter-
action and the second term from the two-center electron-
electron correlation interaction. The nuclear-electron in-
teraction — contributes only if fJ = i~. In this

/R —v~/
case, because of the relative negative sign in front of
the 1/ri2 term, correlation generally reduces the tran-
sition amplitude. This effect of lowering the transition
probability has been termed "screening" [4] because the
reduction corresponds to a reduction of the interaction
strength due to screening of the nuclear projectile charge
by the projectile electron.

If fJ g i~, then more open channels become available
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1 1

R 27r2

e
—iq R

dq
q

to target excitation, which cause the transition proba-
bilities to add incoherently. The effect of enhancing the
transition rate is called "antiscreening" [4] because the
cross section is increased rather than decreased. It im-
mediately becomes clear &om (5) that for antiscreening
term (i.e. , fp j i~), the transition amplitude is identi-
cally zero unless the correlation term 1/ri2 is included.
This furnishes a direct link between correlation and an-
tiscreening.

Further reduction of ay y (b) can be carried out using
Bethe's integral, which expresses the Coulomb potential
in momentum space

quired to effect a given transition with a transition energy
AE.

III. THE VIRTUAL-IMPACT-PARAMETER
METHOD

It is conceptually and mathematically advantageous to
use the factorization in Inomentum space of the transition
amplitude into a product of projectile and target terms.
To that end, we introduce (as has been done before [24],
but with slightly different coefficients) the momentum-
transfer-dependent projectile effective charge

1
Z. (8 = 2, [by ' ZI' —Fy ' ( q)]— (10)

We also introduce the first-order scattering amplitude as

Substitution into (5) of 1/IR —rT
I

and 1/ri2 by their
momentum representation quickly yields Ty, (

i47r Fyr, r (qQ

q2

ay y (b) = i dte'
27r2

e —iq R
8y i Z~

q

Fy' ( q) Fy' (q)

where the atomic form factor E is defined as

(6)

Up to a multiplicative factor, the first-order scattering
amplitude Ty;(qg consists of the product of the usual
atomic form factor F(q) of Eq. (7) and 1/q . The fac-
tor of 1/q is characteristic of the Coulomb scattering
between charged particles. For a given transition, only
target quantum numbers are involved in defining Ty;(q)
in (11). Therefore Ty; (q) depends only on the properties
of the target. Equation (9) may be rewritten in the form

= &&~~le" "Ii~,T).

The integration over time in (6) may now be carried out
explicitly

iAE& —iq. R —iq-b dg i(AE—q v)t

= e 'q' 2vrb(q. v —AE)

to give

e
—xq b

ay y (b) = — dqb(q . v —b,E)

x [by, Z~ —Fy, (—q)] Fy; (q). (8)

The Dirac b function in (8) restricts the component of
q along the beam axis v (defined as the z axis) such that
q, =

q~~
= AE/v. Introducing the transverse and parallel

momentum transfers, q~ and
q~~

such that

~1 t(i) = f ~K-~ +. w(Vj+I'(R . (12)

The efFective charge Z,&(qg has been considered previ-
ously in q space [24] and some useful limits (q —+ 0 and
q ~ oo) have been obtained. However, little attention
has been paid to its dependence on the impact parame-
ter. In this section we consider the transition amplitude
not in terms of the momentum transfer q as in (12), but
in terms of virtual impact parameters b'. The underlying
idea is to utilize the intuitive picture that when a projec-
tile carries electrons into the collision, there is a diffused
charge cloud rather than a pointlike particle interacting
with the target. The overlap of the charge cloud with
the target will be determined by the virtual impact pa-
rameter, which measures the deviation &om the projec-
tile nucleus (the actual impact parameter) as depicted in
Fig. 1. In addition to providing a simple physical picture

q = q~+ qt~v, q~ - v = 0, q~~
——

into (8) and carrying out the integration over q„we ar-
rive at

—iqg b

y (b) = dq 2 [by, Z~ —Fy, (—q)]
7rv

x Fy;r (q).

This result holds for both screening (f„=iJ ) and anti-
screening (1'„g i„). This is the usual first Born tran-
sition amplitude in the impact-parameter approach. It
is expressed here in terms of momentum transfer q. We
note that a finite minimum momentum transfer

q~~
is re-

FIG. 1. The end view of the collision showing the real im-
pact parameter 6 and the virtual impact-parameter 6'.
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A. Surface charge density

The separation of projectile and target in terms of the
virtual impact parameter may be achieved by introducing
an efFective surface charge density of the projectile by the
Fourier transform of Z~&(qg

.'(b) = f dt's ""&'g. (13)

and by expressing the target excitation probability am-
plitude in 6 space as

T 1
a&;(b) = dq~e ' Tf;(q).

'
(14)

Rewriting (14) in its complimentary form

Tg, (q) = db'e*~~ a~, (b')

of the collision, it is often advantageous to invoke the
impact-parameter approach since the multiple-electron
transition amplitude may be approximated by the prod-
uct of single-electron transition amplitudes. Thus our
impact-parameter formulation will enable us to deal with
multiple- as well as single-electron transitions, as we de-
tail in Sec. VII.

the virtual impact parameter b'. Under certain condi-
tions [25] it is reasonable to regard the impact parameter
6 as well localized and observable. It is seldom the case
that the variable 6' is observable and so we call it a "vir-
tual" impact parameter. In contrast to the usual expres-
sion (9) involving momentum transfers, our result (16)
afFords an interpretation in terms of the projectile s non-
localized spatial charge distribution. This interpretation
is elaborated in detail in the following two sections.

IV. TARGET EXCITATION AMPLITUDES

To calculate the transition amplitudes from Eq. (16),
knowledge of both &,&(b' —b) and a&,.(b') is required. De-
tailed discussions of the former will be deferred to the
next two sections. Here we give the explicit expressions
of the latter for target excitation by a point particle of
unit positive charge. The target excited states to be con-
sidered are ls to 2s (dipole forbidden) and 2p+ (dipole
allowed) with v as the quantization axis. The transition
to 2po is ignored compared to the dominant 2p+ transi-
tion at large v.

Using the well-known atomic form factor in q space
(see [22], p. 319), the first-order scattering amplitudes
for these two states read, for 18 ~ 28, as

and substituting Tf, (q) into (12) yields

Recognizing the bracketed term in (15) as the surface
charge density &f&(b' —b) defined in (13), Eq. (15) can be
simplified as

ay g (b) = f db'e~~(b —b)a~;(b')' (16)

ag g (b) = f dqee " 'S~~(qa f db'e" eae~(b'j',
db' dq~e' Z,& q af; b' . 15

T2d, i.(q) = 4~ZZT4

v [(2ZT) + q ]

i4vr

and, for 18 ~ 2p+, as

T2p+, 1s ('q)—
6iZ~5q~

s exp(i@~ )." q' (-', ZT)'+q'
i4vr

The target excitation amplitudes in 6 space may be ob-
tained by using the above expressions with the Fourier
transform of Eq. (14). Doing this we obtain, for ls -+ 2s,

This result (16) reflects the general convolution (or Fal-
tung) theorem for the Fourier transform, namely, a2. ,i.(b) = ~2Z4 b K2

v [

(-ZT )2 + q)2~b

(-', z ) + (18)

dent e *"'A(QJ.)&(QJ.) = db'A(b' —b) B(b'), (l7)

where A and B are arbitrary functions and A and B their
respective Fourier transforms.

In (16) af,. (b) is the amplitude for an electron tran-
sition in the target caused by a particle of unit charge
localized on an impact parameter b. This amplitude may
be calculated &om the first-order scattering amplitude
(11) for any given excited state. Equation (16) is the
central result of this paper. It holds for both screening
and antiscreening.

and, for 1s —+ 2p+,

o.26
X

~q~~ ~Ki(~q~~ ~b)
—PK1(Pb) KO(Pb)

O.46'
Ki(Pb)

B. Virtual impact parameters

Equation (16) describes the transition amplitude as a
product of projectile and target terms convoluted over

where p is the azimuthal angle of b, K; the modi6ed
Bessel function of the second kind, n = 3ZT/2, and P =

+ q
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V. SCREENING TERMS

To understand the physical pictures presented previ-
ously and the meaning of the surface charge density, we
discuss in this section the screening contribution to target
excitation.

A. Surface charge density for screening
Projectile b

The effective charge in q space for screening may be
obtained from (10) by setting f~ = i~ = ls, which af-
ter the Fourier transform (13) yields the effective surface
charge density for screening term

~:k(b' —b) = &~~(b' —b)

~b
—b~K'

(
4Z' +q'„~b —

b~~)'
P

4Z~ +q2 Target

—= ~b-. (b' —b) —~ — (b' —b) (20) FIG. 2. The cylindrical Gaussian surface along which the
surface charge density is de6ned.

where we have divided the total charge density into the
bare projectile component &b „and the electron charge
cloud part 4;, , Equation (20) shows three key features.
(i) For a point particle such as the projectile nucleus,

the charge density qh „(b' —b) is localized as a Dirac h

function, as expected. (ii) q, , and qh „are of opposite
sign so that q,'& ( qg „.(iii) The electronic charge cloud

4...(b' —b) is "fuzzy, " i.e., smeared out over a range of b'

around b.

fering from the static charge density only by a modu-
lating factor e 'qll . This factor is related to the fact
that a minimum momentum transfer is required, which
limits the spatial extent along z that can contribute to
the transition. In the limit of large impact speed v, the
minimum momentum transfer becomes small v and
q, , approaches 4;,b t;, within O(v ). That is, within the
accuracy of the first-order perturbation theory,

B. Gaussian-like surfaces

Following directly from (7), (10), and (13), the elec-
tronic charge density of (20) may be alternatively ex-
pressed as

~.—.(b' —b) = d eq '~ i (1sle '~ '"lls)pie Be 8

1= (1sl

= (1slh(b' —b —r~)e *~~~'lls).

q~. (b' —b—~~ & ~qll I ]dq~e e

(21)

q„„,(b' —b) = dzlPg, (r) l

This expression is connected to the static surface charge
density, which can be obtained by integrating over z of
the volume charge density as

q. .(b' —b) = q„.„.(b' —b)

Thus &, , behaves like an effective surface charge density.
Referring back to Fig. 1, we may regard a contribution to
the transition probability amplitude at a fixed value of b

and b' and a given finite time t. This contribution is the
target probability amplitude af,.(b') weighted with the

static projectile charge density per (b' —b), &,«t;, (b'—
b), which accumulates over a path z = vt during the
collision. Of course, the total transition amplitude must
be convoluted over all virtual impact parameters.

C. 1s-2s target excitation

The convolution process is illustrated for a 18 ~ 28
transition in Figs. 3(a) and 3(b), for which the transition
probability amplitude can be evaluated from (16) and
(18), namely,

d ~(b' —b — ~)l&~ ( )l'

= (1slb(b' —b —r"~)
l
ls) (22) db' ZPb b' —b —q b' —b a2, , i b' .

As pictured in Fig. 2, &,t &,, may be viewed as a surface
charge density accumulated on a Gaussian-like cylindri-
cal surface along z direction of a volume charge density.
Similarly, &, is an effective surface charge density dif-

(24)

Explicit evaluation of the (24) yields a simple analytic
result



CE FOR COLLISIONS OFAMETERR DEPENDENIMPACT-PA

an«or

51

i~2Z~4 b'K2 (pb)
n2, „(b) = Z~

Z4 Z4 A~ bKi(pb
( )

C2 ZQ Z+
eAS 2

b A4 b2K2 (pb)2bKi(&b) ++3Kp(Pb) + A'

rmponds to
litude due

curve in I' g
d ing of the ra

'
shown clear y

bare nucle
l the size ofappr oxlm'mate y

ex ected.projecti would be ple, as wo

t for screeningrobability for scTransition pro t for sD 0

—4Z [n and P arend %2 =o.where p = 4Z~ +
q)~

and

o the bare p t 1)i d

hed curve

wl

s rm ln
term in 25

second te.
screeningt th' 'l"tution due toin the contnbu

I I ~I I I I
I}2 I I ~ I

(
I s I I I I I II I I I

I
I II I I I

I
I II

(
I I I II I I

10

u. s (
G5

CO

I I I I I II I I I I II I I I II s I I I ~ II s ~I I I I I II I I I I I I I I0
1

'
2

b (a.u. )

12 ~ I I II I I
II I I I

(
~~ I I II }I I I I } I

I

(b)—

robabilityble transition pro
l. d' 'hh' 'bb'la whereaist ep

tri ui

(16) 'th (19
bP b) rather in

on from
antity

and also o
the cross s

is es.

ra e screening
aring o e

su ra
bare nucleus.

the screeening amp itu
mplitude t e

tion
than the n4 becomes r

l df the net transi '

second pea
tron-electron

the poi
f the elec ro

ea is e
to e

t'"'t
4 '

ed such as...f... .Our prediction
ll .exper'erimenta y.

10
~ I I I I II ~ I I

I
~I ~ ~ I ( II I ~ ~

I
II I I ~

(
I S

I ~ I~ ~ I (
II

6
5 5

1s -) 2p+

0
0

~ I I I ~II I I I I I ~I, I » I ~

2

b (a.u. )

I~ I I I I I'I
~ I s ~I I

I s ~ « I

nvolution pro-the convtion an

m litu e;p
lc COIl

tude; as; d hed curve, e ec r

2
b (a.u.)

0

t excitationto targe
Th

Screening prFIG. 4.

ue to electronde node srindicates t
text).



510 J. WANG, J. H. McGUIRE, AND E. C. MONTENEGRO 51

The behavior of the transition probability at small 6 is
also of interest. As b —+ 0, the quantity bP(b) approaches
zero linearly in b [i.e., P(b —+ 0) is nonzero] for ls i 28
and quadratically in b [P(b) -+ b] for 18 m 2@+. Sym-
metry consideration of the 18 ~ 2p+ transition requires
that the transition amplitude vanish for any azimuthally
symmetric charge distribution in 6 space around the tar-
get nucleus. This criterion is only satisfied for the special
case of b = 0 (Figs. 1 and 2), resulting in the different
behaviors of the transition probabilities at small impact
parameters for 28 and 2p+ states, respectively. These
behaviors lead to suppression of large angle scattering
of the projectile, or, equivalently, suppression of large
transverse momentum transfers, for excitation to 2p+
compared to 28. The difference may be sufFiciently large
for experimental separation of the relative contribution
of the two states.

VI. ANTISCREENING TERMS

Like target excitation, the projectile may also be ex-
cited in the collision. This opens up additional channels
contributing to target excitation. Proper inclusion of all
the channels in antiscreening is relatively diKcult even
within the first Born approximation.

A. Summing over the excited states
of the projectile

It is desirable to study to what degree the intuitive
pictures discussed above about screening may also be ap-
plied to antiscreening, so that one may still retain some
of the advantages of the virtual-impact-parameter ap-
proach. A reasonable premise exists which suggests that
the antiscreening transition probability may be related
to the screening transition probability, for the former is
equal to the total (all final projectile states) transition
probability less that for screening. In the case of anti-
screening, we have not found a general analytic method
to calculate the probability amplitude of Eq. (16). Some
simplification can be made by considering the transition
probability

I

afr f~ (b) I
instead of the transition ampli-

tude a fr f~ (b). The transition probability for antiscreen-
ing as an incoherent sum over all final states except the
initial state is

I af. ,-s'(b) I' = ) . la f f (b) I' =
fpgip

x ) af,. (b') af,*(b")
fpW4

x ~
f~, ls

(b bI) fJ,is+
(b

db'db"

(26)

where the relation (16) has been used. A useful tool in
dealing with the infinite sum presented in (26) is the clo-
sure approximation, which uses the properties of a com-
plete basis set. For this purpose, we use the alternative
expression for &f&(b) in the form we used in (21), namely,

~."'(b) = (f Ib(b — ) (27)

where fp g ls. Substituting (27) into (26) we obtain

fa, ran(sb) I' = dPdbji ) ~ T (bI) T*(bl/)

fpgip

x(lslb(b —b" —r~)e" 'I fp)
x(fpl8(b —b' —r~)e *~~~'lls). (28)

In the closure approximation [8], it is assumed that the
target excitation amplitude, which is an implicit function

gll (hence fp through qil
= AE/v and AE = ef +ef-

—e; ) may be approximated at some average ql . We
denote this by af,. and factor both of the terms outside
the sum in (28)

laf, -s'(b) I' = dbl dblf T(b/) Te (bl/)——

x ) (»IS(b —b" — ~)r'~~e'I fp)
fpl@

x (fplb(b —b' —r~)e '~~~'lls). (29)

Using the exact closure property of a complete basis set

): lfp)(fpl = 1 —lsp)(spl
fpgip

we obtain, from (29),

This expression is the antiscreening transition probability
summed over all final excited states of the projectile. It
is exact within the first-order perturbation theory. We
next simplify (28) using the closure approximation.

B. Closure approximation

laf, -s*(b) I' = db'db"af, (b')af;*(b")(1slb(b —b" —r~)e'~~~ Il —Ils)(lsl h(b —b' —r~)e '~~~'ll ), 8 (30)

I afr, ansi (b) I

db'db" T
(b ) T+(b )

x b(b' —b")(1 lb(sb b' —PJ )lls) —(lslb(b —b" —rJ )e' ~'~ll )(18lh(sb —b' —rJ )e '~~~'Ils)

2
db'q. sasi. (b' —b) af, (b') db'q, , (b' —b) af, (b')
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FIG. 5. Antiscreening probabilities to target excitation
ls —+ 2s, 2p+ in H + H collisions at v = 5 a.u.

where &, , is understood to be evaluated at an average
q~~

just like afi is.
Equation (31) is the Anal result for antiscreening after

using the closure approximation. The validity of this
approximation has been well studied and various schemes
have been suggested [26—29]. We use a simple rule to
determine &II

(32)

in which it is assumed that the mean energy of the projec-
tile Anal state is zero. This may be reasonable in view of
the bound and continuum contributing states, as well as
the observation that most contribution to antiscreening
comes from low-lying continuum states of the projectile.
Other choices of

q~~ may also be used [26].

C. Transition probability for antiscreening

VII. DISCUSSION

In deriviiig Eq. (16) and in the subsequent application
of it to screening and antiscreening, we have shown that

As an example, the antiscreening contribution to 18 ~
28, 2@+ transitions is displayed in Fig. 5. The transition
probabilities are calculated &om (31) by their respective
target excitation amplitudes. We note that regardless
of the details of how

q~~
is chosen, the overall structure

in the virtual-impact-parameter method for antiscreen-
ing as given by (31) is correct. Comparing Figs. 4 and 5
shows that the antiscreening probabilities are significant
in a much broader range of impact parameters than the
screening contribution, especially for the 18 —+ 28 transi-
tion. This is a signature for the antiscreening term. Such
a broad distribution has been observed. experimentally for
the loss process [30]. Naturally this feature is a conse-
quence of the nonlocalized contribution of the projectile
electron cloud.

a virtual impact parameter b' may be introduced to de-
scribe the nonlocalization of the projectile electron at a
definite (real) impact parameter b. The in8uence of the
projectile electron is simply given by an effective surface
charge density &~&(b' —6), which may be obtained by in-

tegrating over a Gaussian surface of fixed b' —6 of the
electronic charge cloud. The surface charge density is
convoluted over b' with the transition amplitude T/ (b')
for the target electrons to yield the two-center transition
amplitude afT f~(b) in (16).

We have used a first-order theory within the straight-
line trajectory approximation for the internuclear motion
in obtaining Eq. (16). The first Born approximation for
the electronic transitions is restricted to perturbations
where both the projectile and the target Massey param-
eters Z~/v and ZT /v are small. The classical description
of the internuclear motion, on the other hand, is expected
to be valid over a wide range of collision speeds owing to
the heavy nuclear mass [21]. Provided that the above
conditions are met, our method is expected to yield ac-
curate integral, and in most cases differential, cross sec-
tions. We note, however, that there are circumstances
where a fjrst-order theory may fail even if these condi-
tions are fulfilled. For instance, when fast electrons are
ejected as a result of antiscreening, it has been shown that
a second-order theory is required to adequately describe
the process [28,31]. In general, whenever antiscreening
processes involve large momentum transfers, higher-order
interactions may be important. Although higher-order
terms in the Born series are dificult to calculate, one may
alternatively use the classical approach as has been re-
cently demonstrated [32,33). The success of the classical
approach can be traced to the correspondence principle
for large momentum transfers.

Let us briefly consider application of Eq. (16) to reac-
tions in which the target atom undergoes multiple transi-
tions of independent electrons. The independent-electron
approximation is valid if electron correlation in the tar-
get is neglected [34]. For bare projectiles the probability
amplitude af in the independent-electron approxima-
tion reduces to a product of single-electron probabilities,
i.e. , a/~ = g a&, where g. af are the probability am-
plitudes for the independent (or uncorrelated) electrons
[34]. This may be used in Eq. (4) to evaluate total cross
sections. In this paper we have extended the case of
bare projectiles to projectiles carrying one active electron
which may interact with the target electrons. Then for
multiple-electron transitions in the independent-electron
approximation, the probability amplitude of Eq. (16) be-
comes

af f (6)= a/ / (6),
2

where a~&
& (b) is defined for each electron by Eq. (16).

Now two-center correlation (with both screening and an-
tiscreening) for one projectile electron is included. The
target electrons are still independent of one another, but
not of the electron on the projectile.

We remarked earlier following Eq. (16) that the vir-
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tual impact parameter 6' is seldom a physical observable.
There may be cases where the electronic cloud may be
relatively localized. For example, in collisions involving
Rydberg atoms the active electron is far from the nu-
cleus. The core electrons (if any) may then be regarded
as well localized for all practical purposes. In this case,
we may assume that the screening of the core electrons
may be specified by well-defined. 6, yielding an approxi-
mate method for treating many-electron projectiles.

VIII. SUMMARY
The screening and antiscreening contributions between

structured particle impact have been studied within the
virtual-impact-parameter method. In this method, we
have achieved the separation of the projectile and the
target terms. An effective surface charge density has
been introduced to describe the projectile term, which
yields a simple and intuitive physical picture for screen-
ing. Signatures of the e-e correlation are presented. as
nodes of the transition amplitudes. This picture is ex-

tended to antiscreening where we have shown that the
overall mathematical structure is preserved. The virtual-
impact-parameter method may prove useful to a variety
of problems involving interactions of structured particles,
particularly to the separation of e-e correlation effects
from independent-electron eÃects, single- or multiple-
electron transitions, and to the study of nondipole tran-
sitions by charged particles in relation to photon impact.
This method may be fruitfully used in the analysis of
recent experimental determination [35,36] of both trans-
verse and parallel recoil ion momenta, from which the
impact-parameter dependence of the screening and anti-
screening terms may be extracted separately.
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