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We apply the convergent close-coupling (CCC) method to calculation of 40-eV electrons scattering
on the ground state of helium. We present the differential cross sections up to the n ( 3 levels,
as well as the electron-impact coherence parameters for the 3 D state. We find our results to be
in excellent agreement with the measurements. It is shown that at this energy treating the target
continuum has a large effect on the presented results, and for this reason the CCC theory is the
only one that is able to obtain agreement with experiment. Integrated, total ioni. zation, and total
cross sections are also presented, and are found to be in excellent agreement with experiment.

PACS number(s): 34.80.Bm, 34.80.Dp

We wish to develop a general reliable method for the
calculation of electron-atom and electron-ion scattering
phenomena. To this end we choose the close-coupling
(CC) formalism because, having expanded the total wave
function in a set of target states, it attempts to solve
the resulting scattering equations without approxima-
tion. Thus the major issue in the CC calculations is
whether a suFiciently complete set of target states has
been taken in the expansion. The convergent close-
coupling (CCC) method provides a systematic approach
to increasing the multichannel expansion due to the use of
an orthogonal Laguerre basis for the generation of target
states. As the basis sizes are increased we can be con-
fident that the expansions approach completeness, and
that if convergence to a required accuracy is observed,
then any larger expansions are unlikely to significantly
alter the result.

The formal theory of the CCC method for the e-H scat-
tering problem has been given by Bray and Stelbovics
[1, and then extended to hydrogenlike targets by Bray
[2]. The numerous applications of the CCC method have
shown it to be equally reliable across the entire energy
range where the Born approximation is invalid. It is able
to obtain accurate results for elastic, inelastic, ionization,
and total cross sections simultaneously for a particular
energy. Having thoroughly tested the CCC method for
the three-body Coulomb problem of electron scattering
on hydrogenlike targets, we have now moved on to the
four-body Coulomb problem of electron scattering on he-
lium.

This problem has attracted a great deal of interest
from many experimental and theoretical groups. The
large quantity of experimental data allows the theorists

I

to thoroughly test their scattering calculation methods.
There are a number of R-matrix calculations at the low-

[3—5], intermediate- [6], and high- [7] energy ranges. Most
of these treat only the target discrete states. Above the
one-electron ionization threshold, inclusion of some treat-
ment of the target continuum becomes necessary, some-
thing which these calculations find diFicult.

There are also theories that are based on the pertur-
bative approach. There are many applications of the
first-order many-body theory (FOMBT), see, for exam-
ple, Cartwright et at. [8] and Trajmar et al. [9]. There are
also distorted-wave calculations of Bartschat and Madi-
son [10]. While some of the transitions are well described
by these theories they usually have considerable diFiculty
when compared with available measurements.

Our first application of the CCC method to e-He scat-
tering at 30 eV [11] showed that we were able to get very
good agreement with the measurements of the difFerential
cross sections for excitation of the helium ground state
up to n & 3 levels. We found that this was only possible
if the target continuum was treated in the close-coupling
formalism. This may be done accurately with the CCC
method using positive energy, but still square-integrable
states. In this work we apply the method to the pro-
jectile energy of 40 eV not only to difFerential cross sec-
tions but also to the electron-impact coherence parame-
ters (EICPs) for the 3 D state. We expect that compar-
ison with the measurements of the latter will prove to be
a more sensitive test of our method.

In the CCC method the solution of the Schrodinger
equation takes the form of a coupled set of Lippmann-
Schwinger equations for the T matrix,

where projectile momentum and corresponding energy
are denoted by k and k2/2, the helium target states and
corresponding energy are denoted by P and e, and E =
e + k. /2 = ef + k&/2 is the total energy. The V-matrix

*Electronic address: igor@esm. ph. f3inders. edu. au

I

elements and the method for obtaining the target states
are given in Ref. [11]. In both the earlier work and here
we use the frozen-core approximation when generating
the helium target states.

We solve (1) with an ever increasing number of target
states obtained by diagonalizing the target Hamiltonian
using a large Laguerre basis [11] until satisfactory con-
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vergence is obtained. The following results have been
obtained using a total of 62 states which are comprised
of 11 states of each of the S, S, P, and P symmetries,
and nine states of each of the D and D symmetries.
These calculations we denote by CCC. Of the 62 states
29 lie in the discrete spectrum. We use these to indicate
the eKect of the continuum on the presented results.

In Fig. 1 we present our calculations for the differential
cross sections for electrons scattering on the ground state
of helium up to the n & 3 levels. We see that it is only the
CCC calculation that is able to obtain almost complete
quantitative agreement with the measurements. Com-
parison of the CCC and the CC calculations shows the
quite considerable efFect of the treatment of the target
continuum. Similar observations have been made ear-
lier by Brunger et al. [12], who used a more approximate
method of treating the continuum via the CCO model.
The first-order many-body theory of Cartwright et al.
[8] and Trajmar et al. [9] is very successful in describing
the singlet nP excitations, but is less reliable for other
transitions.

We now turn to Fig. 2, where we present our calcula-
tions of the electron-impact coherence parameters for the
3 D excitation of helium. A major motivation for us in
applying the CCC method here is due to the recent de-
tailed investigations performed by Donnelly and Crowe

[13], McLaughlin, Donnelly, and Crowe [14], McLaugh-
lin et al. [15], Batelaan, van Eck, and Heideman [16],
and Mikosza et aL [17]. The measurements are in good
agreement with each other, but are in poor agreement
with the then available theory. We are therefore partic-
ularly pleased to And excellent agreement between the
CCC calculations and the measurements. It should be
noted that the Stokes parameters Pi, P2, P3, and P4 are
suKcient to determine the other presented parameters.
For the relevant relations see Andersen, Gallagher, and
Hertel [18]. Once more, comparison of the CCC and the
CC calculations shows the very large efFect of the treat-
ment of the continuum within the close-coupling formal-
ism. The other presented theory is due to Bartschat and
Madison [10]. This is a first-order distorted-wave approx-
imation whose results have a strong dependence on the
choice of the distorting potential [10]. We have presented
only one of their calculations for the sake of clarity. For
the same reason the FOMBT results of Cartwright and
Csanak [19] are not presented.

In Table I we give various integrated cross sections,
all of which are in excellent agreement with experiment.
It is particularly worthwhile to note the excellent agree-
ment for the total ionization cross section. Any calcula-
tion that uses only the discrete states, such as the CC
ones above, yields identically zero for this cross section.
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It will be very interesting to apply the CCC method to
calculating (e, 2e) differential cross sections for the e-He
scattering problem. This should be as successful as the
application to the atomic hydrogen target [20] so long as
the frozen-core approximation is suKciently accurate.

In conclusion, we have demonstrated that to date only
the CCC method is able to reliably describe e-He scatter-

ing phenomena from the ground state up to n & 3 levels
in the intermediate-energy range. The primary reason
for this is that above the ionization threshold the effect
of treating the target continuum may be very large. It
is because such large effects require accurate treatment
that many other available theories are less reliable.

It; remains for us to apply the method to the wide range

TABLE I. Integrated cross sections (10 cm ) for 40-eV electrons scattering on the ground
state of helium. The ionization and total cross sections are denoted by o., and o&, respectively.

CCC
Expt.

CCC
Expt.

CCC
Expt.

1 S
169.2
167.0+8

6.73
6.7+0.3
3'D
0.29

2 S
1.82
2.11+0.4

1.38

3 D
0 ~ 11

3'S
0.38
0.24+0.06'

2 P
1.73
1.77+0.32

16.2
16.8+0.8

2 S
1.08

3 P
0.49
0.41+0.09'

C7g

203.4
194.0+6

3 S
0.30

3'P+ 3'D+ 3'D
1.79
1.59+0.38'

Hunger et al. [21].
Trajmar [22].

'Chutjian and Thomas [23].

Trajmar et aL [24].
'Montague, Harrison, and Smith [25].
Register, Trajmar, and Srivastava [26].
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of energies and various observables that have been mea-
sured for the e-He scattering problem. Initial indications
suggest that the method is equally reliable at other ener-
gies both for the cross sections and various EICPs. Subse-
quently, the method will be extended to calculate (e, 2e)
difFerential cross sections for e-He ionization, and then to
the treatment of heliumlike targets.
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