
PHYSICAL REVIEW A VOLUME 51, NUMBER 6 JUNE 1995

Nanlinear interaction of propagating shart pulses in optically dense media

Opher Kinrot and Yehiam Prior
Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76IOO, Israel

(Received 22 December 1994)

The optical density of a resonant medium significantly aKects the output signal in time resolved
nonlinear optical interactions. The resonant interaction with a medium reshapes any propagating
short pulse, and the mutual interaction of several such pulses, as in four-wave mixing, Inust be treated
self-consistently. We present a theoretical framework for the proper handling of the propagation of
all pulses, input as well as generated, in the small area limit. For optically thick resonant absorbers,
negative time delay signals are observed, and the apparent decay rate of the induced polarization
is faster than the rate observed for thin samples. We experimentally measure degenerate four-wave
mixing in an atomic medium as an example, and demonstrate the quality of the theoretical model by
the excellent fit to measured signals over several orders of magnitude. The improved understanding
enables us to provide a simple, but surprisingly accurate, estimate for the apparent decay rate in
homogeneously broadened optically thick media: If the absorption is given by o., the propagation
length is L, and the transverse relaxation time is T2, the apparent decay rate 2/T of a time resolved
four-wave mixing signal is given by 2/T = (2/T2)(l + crL/2)

PACS number(s): 42.65.Re, 42.65.Hw, 78.47.+p

I. INTR.QDUCTIC)N

Nonlinear optical interactions of short pulses, such as
pump-probe spectroscopy and four-wave mixing (FWM),
are an important tool for the experimental investigation
of excited state dynamics and for the determination of
relaxation rates. They are used routinely in a wide range
of research fields, from solid state physics to gas phase
chemistry [1]. The common interpretation of measure-
ments involves solving for the material response under
the assumption of an optically thin sample. The theo-
retical analysis usually treats the nonlinear interaction
perturbatively, where the third-order induced polariza-
tion includes contributions determined by the timing of
the incident pulses and by phase matching considerations
[2]. The transient theory is a natural extension of the per-
turbation treatment, for cw light established many years
ago by Bloembergen [3].

Since nonlinear optical processes may have large res-
onance enhancements, many experiments are performed
under near-resonance conditions, mostly one-photon res-
onance, where the absorption might be non-negligible.
With short pulses, the spectral width of the resonance
line may be much narrower than the laser pulse spectrum
and the pulses can therefore propagate many absorption
lengths into the sample with only a minor loss of total en-

ergy, in apparent contradiction to Beer's law. The effect
of the resonant absorption and dispersion is to modify t,he
pulse shape, converting the pulse envelope into an oscilla-
tory (Bessel-like) function of time. This phenomenon was
first described by Crisp [4] and is sometimes described
as "anomalous" classical absorption [5]. Observation of
the "absorption notch" induced by propagation was re-
ported by Friedman et aL [6] for nanosecond pulses and
the formation of "zero area" picosecond pulses was ob-
served by Rothenberg, Grischkowsky, and Balant [7]. Re-

cently, propagation effects on the femtosecond time scale
were rediscovered in the context of solid state physics
[8] and Laenen and Laubrereau [9] and Aaviksoo et al.
[10] used the pulse reshaping associated with absorption
to estimate material dephasing times in homogeneously
and inhomogeneously broadened spectral lines.

The basic nonlinear optical experiment involves an en-
semble of homogeneously broadened two-level systems
characterized by a polarization dephasing time T~, which
interacts with two identical short laser pulses having a
time delay 7 between them. For time resolved degen-
erate FWM, according to the "standard model" derived
by Yajima and Taira [ll], the FWM signal evolves as
follows: the signal is zero for "negative" time delays
(the "probe" pulse arrives before the "pump" pulse), in-
creases with the pulse rise time near zero time delay,
and falls exponentially for "positive" delays with a decay
rate 2/T2. This classical analysis has been used often to
derive the relaxation rates in various experimental situ-
ations, but it does not include any consideration of the
effect of pulse propagation in the sample. The realization
that transient FWM response may, under some circum-
stances, differ from the standard shape has developed as
a result of experiments performed on solid state sam-
ples. Dornfeld and Hvam [12] have observed negative
time delay response in CdSe and attributed it to biex-
citon effects. The experimental observation of negative
time delay response in FWM in GaAs quantum wells was
reported by Leo et aL [13] and explained by Wegener
et al. in terms of higher-order susceptibilities interfer-
ing with the third-order FWM process [14]. Polariton
propagation was shown to result in oscillations of the
FWM signal and observation of negative delay response
in In Gai As quantum wells [15] and CdSe [16]. Var-
ious theoretical calculations of F%"M in optically thick
samples predict the appearance of negative time delay
response, signal decay rates faster than the thin sample
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limit, and oscillations in the FWM signal. The calcula-
tions by Belov et aL [17] were limited to samples whose
physical length is small compared to the spatial extent
of the optical pulse (I ( ct„), while Rappen et al. [18]
concentrated on polaritons and Schillak and Balslev [19]
on excitonic resonances.

Each of the individual experiments described above
was explained within its own context, but there seems
to be no general physical picture emerging to describe
the influence of propagation on nonlinear interactions.
Recently, we have presented experimental results and dis-
cussed an outline for a theory of four-wave mixing in an
optically dense atomic medium [20]. The present work
details and extends the theory, providing an intuitive and
universal framework, relevant to the analysis of FWM
in particular and to other nonlinear processes involv-
ing short pulses in general. We present a self-consistent
model that incorporates propagation phenomena into the
analysis of nonlinear interactions and allows interpreta-
tion of measurements even for strongly absorbing sam-
ples. The theory is valid for all cases where the per-
turbative description of the nonlinear interaction is jus-
tiGed and breaks down when saturation efFects become
important, which is the same limit where the standard
perturbation series expansion for nonlinear interactions
diverges. The paper includes a theoretical discussion as
well as experimental results of transient FWM in a res-
onant atomic medium, showing excellent agreement over
several orders of magnitude of signal levels and without
any free Gtting parameters.

Accounting for propagation e8'ects in nonlinear opti-
cal interactions necessitates solving the coupled Maxwell-
Bloch equations. We decouple the nonlinear interaction
and the propagation by assuming small area pulses, i.e. ,
the changes to the ground state population are negligi-
ble. We are thus able to solve for the propagation of
each incident pulse independently, using the formalism
developed by Crisp [4]. The propagated pulse envelopes
(and not the incident pulses) are used in calculating the
induced nonlinear polarization. The nonlinear interac-
tion is treated perturbatively as in Yajima and Taira's
[11] analysis. Emitted fields generated by the interac-
tion are also correctly propagated through the sample to
yield the observed FWM signal. The dependence of the
generated FWM signal on the time delay between pulses
rejects the interaction of the "self-consistent" pulse en-
velopes and not of the incident pulses and it is shown
that the optical density of the medium afFects the mea-
surement both quantitatively and qualitatively. Even for
moderate absorption, the straightforward interpretation
of FWM signal decay rates as the dephasing rates of the
medium gives erroneous results and the efFects of propa-
gation have to be explicitly taken into account for proper
interpretation.

The outline of the paper is as follows. In Sec. II we
present the general theoretical framework for the solution
of both the propagation and the nonlinear interaction.
The analysis introduces all the relevant pulse and mate-
rial parameters and gives the most general solution for
two-level systems. We further show how the results for
the propagated pulse envelopes are incorporated into the

calculation of induced polarizations and emitted fields.
Section III deals with the impulsive limit of pulse en-
velopes, where we develop an analytical result for the
case of small absorption and show the qualitative behav-
ior in the strong absorption limit. In Sec. IV we discuss
the manner by which calculations based on the present
theory can be implemented and show the results of such
calculations both for the propagation of Gelds and for
FWM signals. Experimental results of FWM in potas-
sium vapor are in Sec. V. We show how a "generic" pic-
ture of the measurements may be developed and analyze
the good fit of the experiments to the theory. Section
VI summarizes the main points of the article and pro-
vides indications as to when the propagation efFects are
expected to in8uence the measured FWM signals.

II. CENERAL TWO-PULSE INTERACTION

A. Single-pulse propagation

Consider a collection of two-level (a, b) atoms w'ith an
atomic number density N, embedded in a homogeneous
dielectric characterized by a nonresonant index of refrac-
tion n. The incident electromagnetic field is linearly po-
larized in the x direction and is propagating in the posi-
tive z direction:

E(z, t) = f(z, t) cos[(ut —kz)],

where the slowly varying pulse envelope function is
f(z, t) = ~F(z, t) [e'&~"l and k = neo/c Assum. e a dis-
tribution of atomic transition frequencies g(~p), with
uo being the transition frequency of a single homoge-
neous group of atoms, A(= up —w) is the laser de-
tuning from resonance, and the inhomogeneous distri-
bution function g(up) obeys the normalization condition

f g(ldp)dQ)p = l.
The rotating wave approximation is used to eliminate

the fast oscillations at frequency ~ and obtain the Bloch
equations for the polarization density, which involve only
slowly varying Geld envelopes and density matrix ele-
ments. For each homogeneous group the density matrix
evolution is given by

t9 Z—Pb (z, t, LOP) = P bt (z, t)PD(z, t, (rJP)
t9't

+iA
~

pb (z t (up).
) (2)

'P(z t) = NP b pbo, (Z, t, Cup)g(cup)dip. '

The total induced polarization should now be used as
a source term in the wave equation, which describes the

In this density matrix notation, the oK-diagonal elements
are pg~, p& and pD = p —pgg is the population difFer-
ence. All the homogeneous groups are assumed to share
a single polarization dephasing time T2. The total polar-
ization of the medium is given by
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propagation of the pulse in the medium. The fully cou-
pled Bloch-Maxwell equations are difFicult to solve, but
a reasonable approach is to solve them in the limit where
the propagation can be decoupled from the interaction.
This holds for "weak" pulses, where a passing pulse leaves
most of the atoms in their ground state. The quantita-
tive definition of pulse "weakness" is given by the pulse
area, where the area of a pulse is given by the rotation
angle of the Bloch vector during the interaction and is
defined as

+OO

f(z, t) = — f(z =O, v)
2m

x exp[ —iv(t —nz/c) —A(v) z]dv.

The complex term A(v) combines the absorption and the
dispersion of the induced. polarization, which together
with the incident Geld create the displacement Geld in
the material.

0(z) = P bF(z, t) dt.
B. Nonlinear polarization

The limit of validity of the present derivation is that all
fields involved in the interaction (incident or induced)
have a small area at all times:

)dt

This assumption is consistent with the use of the lowest-
order perturbation theory to derive the nonlinear po-
larizations involved in a four-wave-mixing process. It
amounts to neglecting any saturation efI'ects and real-
izing that the ground state population is not altered by
the interaction. With this assumption, insert pD(z, t) =
p~(z, t = 0) = —1 in Eq. (2) to obtain a linear equation
for the atomic polarization density

(8 1 Z

+ —+ zA
~

Pb (z, t, (uP) = —P, bF(z, t).
Bt T2

' '
h

The Fourier transform of Eq. (6) provides an algebraic
equation for the frequency components of the polariza-
tion and field, p(z, v, ~o), t(z, v), and the solution to this
equation is

pb. (z) v) ~p) = —@&be(z) v) [1/T2+ z(A —v)]

To describe the propagation of a pulse incident into the
medium, the slowly varying envelope approximation is
used in the wave equation, neglecting higher-order deriva-
tives and keeping only the linearized form

(
8 nB' 27C(d Z

~(z, t).
Bz c Btr

Combining Eqs. (3), (7), and the Fourier transform
of Eq. (8), a frequency domain equation describing the
propagation of a single short pulse in an absorbing
medium of two-level atoms is obtained:

The formulation of the Bloch equations and of
Maxwell's wave equation in their linearized forms is made
possible by the slowly varying amplitude and the rotating
wave approximations. The small-area assumption decou-
ples the two sets of equations and results in a full solu-
tion for the envelope of a single short pulse propagating
through an ensemble of two-level atoms. For the case
of nonlinear processes such as four-wave mixing, in the
small-area limit, all saturation effects are neglected and
difFerent fields are taken to interact (to lowest order in
the perturbation) with the ground state independently of
each other. Thus, for two pulses incident on the sample,
the propagated field envelopes Zi 2(z, t) can be derived
by solving for each pulse separately. The self-consistent
pulse envelopes found in thi. s manner serve as the driving
fields in a perturbation series for the higher-order polar-
izations.

We treat the most common four-wave-mixing situa-
tion, where two noncollinear pulses (wave vectors ki, kz)
interact in a medium and induce a four-wave-mixing re-
sponse in the direction 2k2 —k». Similar treatments can
be used for other types of nonlinear interaction, involv-
ing more levels, more fields, or diferent nonlinearities.
The incident fields are assumed to be plane waves and
the angle between the wave vectors is taken as small
enough that the problem is one dimensional along the
propagation direction. The incident pulses have a time
delay ~ between them and nondegenerate interaction is
allowed where the carrier frequencies may difFer wi g w2.
The propagation of each pulse is solved independently in
the frequency domain and by Fourier transformation, the
pulse envelopes fi 2(z, t) [Eq. (11)] are obtained.

We derive the first-order polarization induced by each
pulse by performing a perturbation expansion for the
density matrix elements [11]. The polarization includes
components with spatial dependence exp(tiki 2z) and
the components of interest are

/0
'Bz +A(v) ~E(z, v) =0,

rC

(—1 O) ~Phd
pb

' (z, t, ceo) = Fi(z, t')

x exp[(1/Tz+ iAi)(t' —t)]dt',

A(v) = 2' NP2b~
inc

d., (10)1/Tz+ z(ca) p
—ld —v) (o, »)

—~I b~
Pb (Z) t) MO) Z2(z, t')

Integrating this equation and making an inverse Fourier
transform, the Geld envelope at any distance z into the
sample is given by

x exp[(l/T2+ iA2)(t' —t)]dt', (l2)

where L», 2 Mo &» 2 and the superscripts on pb~ indi-
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cate the spatial dependence of each contribution: (—1,0)
for —ki and (0, 1) for k2.

The interaction of each field with the polarization in-
duced by the other field produces a population difference
grating with wave vector k2 —ki,

(—i, i) 2~pea
pD (z& t& Mo)

h
(t,*(z, t")p~~ 'l(z, t",~o)

~2(z t )pb (z t ~o))
x exp[1/Tq (t" —t)]dt".

The third-order polarization component that creates the
four-wave-mixing signal in the 2k2 —ki direction is given
by

(—i,2)
pb

' (z, t, (u )o=
t

82(z, t'")p~~
'

l( z,
t"', (u o)

x exp[(1/T2 + iA2) (t"' —t)]dt"'. (l4)

+ A(v) is(z, v) = 'P ' (z, v), (15)
iojz c nc

'P~ ' l(z, v) = Np, b

+OO

Pb (z v, ~o)g(~o)d~o

Equation (14) is similar to the expression for the third-
order polarization derived by Yajima and Taira [11],with
allowance for nondegenerate interaction. The difference
between the two approaches is not in the form of the
third-order polarization, but rather in the fields that en-
ter the calculation: we have replaced the incident fields,
with the self-consistent fields, which include the interac-
tion of each incident field with the polarization induced
by itself. This change amounts to using the displacement
Beld D instead of the electric Geld E in the medium.

In order to derive an expression for the field emitted
in the four-wave-mixing direction, we need to solve the
linearized wave equation [Eq. (8)], with the third-order
polarization as a source term. Following the procedure
outlined in Sec. IIA, Eq. (9) is modified to include the
polarization source term

intensity will thus measure

[fs(L, t)i dt

for each time delay w between the two pulses.

III. IMPULSIVE LIMIT: B,ESQNANT
HGMOC ENEOUS LINE

A. Line shape and propagation

A(v) =
1 —zT2 V

(19)

The parameter n in Eq. (19) is the absorption coefficient
for weak, resonant monochromatic light. Naturally, time
resolved measurements require incident pulses with dura-
tions significantly shorter than the dynamics to be mea-
sured. In our case, the pulses need to be shorter than T2
and correspondingly the pulse spectrum is broader than
the homogeneous absorption line. We can gain a great
deal of physical insight by taking the impulsive limit of b-

function pulse envelopes, having p bF(0, t)/5 = 0(0)8(t).
For on-resonance excitation of a single homogeneous line,
the propagated pulses include a contribution of a Grst-
order Bessel function [4]

The derivation leading to Eq. (17) is very general, with-
out a reference to a specific resonant line shape g(wo) or
pulse shape f(0, t). The results of the previous sections
do not depend on the specific line shapes in any way, as
long as the main assumptions and approximations hold:
the rotating wave approximation, the slowly varying en-
velope approximation, the small-area assumption, and
the existance of a single polarization dephasing time.

To determine the propagator A(v) for a specific case,
the integral given in Eq. (10) must be evaluated. For
the simplest case of a single homogeneously broadened.
transition with an incident resonant short pulse we find

g((uo) = h(~) and

(16)

('iv
x exp —ivt —

~

——A(v)
~)

x (z —L) dvdz. (17)

The expression in Eq. (17) takes into account the propa-
gation of the generated field through the sample, adding
the contributions from different z distances with their
proper phases. A slow detector measuring the output

with the boundary condition fs(0, v) = 0. The solution
for the generated field at the exit plane out of the sample
is

~ L +oo
F,(z = L, t) =-

nc

x(z, t) = 2(~zt/T, )'~',

where t = t —nz/c is the retarded time, o. is the
absorption coefficient on resonance as defined in (19),
and U is the Heaviside step function. Integration re-
veals that the area of the pulse decays exponentially
0(z) = 0(0) exp[—az], while the energy does not decay.

Since we use the linear form of the Bloch and. of the
wave equations, a linear systeins analysis [21] can be uti-
lized to understand the origin of this reshaping of the
propagated pulse. The impulse response of the system in
the time domain corresponds in the frequency domain to
a notch filter centered around the atomic transition fre-
quency. The effective "stop band" of this filter is o.z/T&
and this width determines the fraction of energy an in-
cident impulse will lose due to absorption. The appear-
ance of a negative Bessel function can be understood by
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making an analogy to the negative diKraction pattern
produced by an opaque circle on a transparent screen.
A notch filter in space creates oscillations in spatial fre-
quency domain, similar to oscillations in the time do-
main produced by an absorption notch. This analogy
illustrates the dependence of the oscillation period of the
Bessel function on the absorption: a wide stop band leads
to fast oscillations, while a narrow stop band results in
slow oscillations.

B. FWM: Weak absorption

In the weak absorption limit, the exponential part in
the propagated pulse envelope [Eq. (20)] decays much

p, f(z, t)/h = 0(0)
~

b(t) —e '~ 'U(t)
T2)

(21)

The b-function input pulse acquires a negative exponen-
tially decaying "tail". The amplitude of this "reshaped"
negative contribution is linearly related to the absorp-
tion. Combining Eqs. (2)—(4) and assuming that the
population decay rate is much smaller than the polar-
ization decay rate (1/Tq « 1/T2) gives an expression for
the nonlinear polarization

faster than the Bessel function. For nL « 1 the 2J) (x)/x
term may be replaced by unity and the propagated pulse
envelope is written as

f, (t', z)(E, (t", z)E',*(t'",z)
3 t t

p( z
( z)z)(=1( ( ') exp( (/T, )—

—OO —OD —OO

+fz (t",z)f2(t"', z)) exp[T2 (t' —t" + t'")]dt'dt"dt'" . (22)

The nonlinear polarization is calculated to Brst order in
the absorption o.z, separating the cases of positive time
delay (w & 0, pulse f) precedes pulse f2) and negative
time delay:

&.(L, t) = &.(0)U(t - ) -""[1--(L/2)t/T. ]

(r & 0),

p
' ~(t, z) = i020, U(t —r)e ' '[1 —nz(t/T2)]

Fs(L, t) = ts(0)U(t)e' ~ 'e '~ 'nLt/T2 (7 (0) . (25)

(~ & 0) .,

p (t, z) = i020) U(t)e 'e ' 'nzt/T2

(r & 0) . (23)

The field emitted in the four-wave-mixing direction is
derived from the nonlinear polarization by integrating
the contributions from all z sections after propagation
through the rest of the sample, as given by Eq. (17). We
use the exact solution derived by Crisp (Ref. [4], Ap-
pendix B) to solve for the propagation of the different
terms in (23),

The measurement is performed on a slow detector as a
function of delay and the energy in the FWM signal is
integrated for each time delay 7. between the pulses,

S(e) = S(0)IU(e)e ' /*')) —eeI(1/1+ x/Tz))

+U( —z)e' /x'(ezI)z/8I .

The last step in the analytic derivation is to realize that
we can replace 1 —nI (1/2 + 7/T2) by exp[ —nL(1/2 +
~/T2)] and get

&.(L, t) =— ~' 0,'0, U(t r)e-'&—
AC
I

g( ) g(())IU( )
—2 /z' ( z/z2e) — z/2

f, (L, t) =— 0 0 U(t)e / 'e
Vl, C
L nzt 2'(x) dz 7 (0T. (24)

where as before x(z, t) = 2(nzt/T2) / . Under the small
absorption assumption (nL &( 1), the Bessel functions
Jo(x)) 2'(x)/x are replaced by unity. Thus the gener-
ated fields are unaltered by propagation and the resulting
emitted Beld at the exit plane of the medium is

+U( —e)e / *(eeI)'/()) .

Equation (27) provides an analytical expression for the
weak absorption limit, which can be directly compared
to the "standard" result derived for zero absorption.

For positive delays the absorption causes the FWM sig-
nal to decay faster than the "no absorption" limit 2/T2,
giving instead a rate of 2/T2(1+ nL/2). This result can
be interpreted as replacing the real dephasing time by an
"apparent" dephasing time of the form
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T = T2/(1+ nL/2) . (28)

The other part of Eq. (27), for negative delays, is nonzero
only when absorption is present and the signal increases
towards zero time delay at a rate of 4/T2, or at twice the
rate for positive delays. This diR'erent rate may be ex-
plained by the fact that only the tail of the first pulse is
responsible for this negative time delay signal. The max-
imum of the negative delay response near (immediately
before) zero time delay is also lower, reduced by a factor
of (nL) /8.

C. FWM: Strong absorption

The strong absorption limit shows the most dramatic
deviations from the thin sample result. For strong ab-
sorption (nL )) 1) the envelope of the propagated pulses
is determined by the Bessel function in Eq. (20). No
small parameter can be defined for simplifying the calcu-
lation of the generated signal. Instead, we provide some
qualitative observations and look at the results of nu-
merical integration. The propagated pulse envelopes are
given by (20) and we perform the integrals (12) to find
the first-order polarization induced by each pulse

ps~ = ie '~ '0(0)U(t) Jo(x) . (29)

In addition to the exponential decay of the induced po-
larization, determined by T2, a very striking additional
feature is the decay of the Bessel function itself. The
first zero of the Bessel function is at x = 2.40. . ., or at
t = 1 44Tz(nz) . . Thus, for strong absorption, the time
constant for polarization decay is determined by the first
zero of the Hessel function and not by the exponential de-
cay term. Since in two-pulse four-wave mixing the field of
one pulse interacts with the polarization induced by the
other, the efFective polarization decay will manifest itself
in the decay of the four-wave-mixing signal. The oscilla-
tions of the induced polarization predicted by (29) should
also be discernible in the FWM signal. For positive delay
times (w & 0), the signal comes &om the field f2 inter-
acting with the polarization that remains after field t"q

has passed through the sample. For each distance z, the
erst zero of the Bessel function term in the polarization

p&
' occurs at t T2/(nz). The four-wave-mixing sig-

nal includes contributions from all z slices in the sample,
attenuated and reshaped by the propagation to the exit
plane. Numerical solution of the equations shows oscil-
lations in the output FWM signal, with the erst "min-
imum" for positive delays occurring at 7/T2 4/(nL),
indicating that for strong absorption the decay of the
FWM signal is governed by absorption efI'ects and not
by the transverse relaxation. Another feature of FWM
in strongly absorbing systems is the relation between the
positive and negative delay responses. In the weak ab-
sorption limit, we derived a ratio of (nL) /8 between the
positive and negative delay responses around zero time
delay. For nI 1, this rule breaks down and the re-
sponses for negative and positive delays become almost
equal. Also, for large absorption a large fraction of the

energy of the propagating pulse lags behind the leading
impulse, which results in a nearly symmetric shape for
the FWM response at negative and positive delays.

IV. NUMERICAL RESULTS

A. Propagation

The propagation of each of the pulses is solved in the
frequency domain and converted back to the time do-
main, as shown in Eq. (11). Unlike the analytic solu-
tion given in (20) for the propagation of an impulse in
a resonant medium, for any realistic pulse envelope nu-
merical calculations are needed. For a homogeneous line,
based on the linearity of the equations, the solution for
the propagation of any pulse shape is a convolution of
the "impulse response" (20) with the specific pulse en-
velope. Thus the propagated envelope of a pulse with
a duration much shorter than T2 (for weak absorption)
or T2/nL (strong absorption) will be very close to the
analytic result for an impulse. Using Fourier transform
properties, it is also possible to generalize the results to
the oR'-resonant case. The impulse response consists of
two parts: a retarded impulse and a Bessel function term.
OfI'-resonant excitation results in an oscillatory exponent
multiplying the second term, such that the oR'-resonant
propagated impulse becomes

(30)

As before t stands for retarded time while x(z, t)
2(nzt/Tz)i~ and A is the detuning from resonance. At
very large detunings (i.e. , for any finite-bandwidth pulse)
the pulse propagates unaltered since the second term
in the convolution averages to zero, as it should. Note
also that for strong absorption, a detuning smaller than
nI /Tz leads to the on-resonance propagated pulse enve-
lope.

Turning to the numerical calculation details, notice
that the solution for the propagated fields in Eq. (11)
is given for all times and space locations. This allows
the use of a single-step fast Fourier transform on a two-
dimensional (t, z) grid, without the need to actually prop-
agate solutions in the z direction. As an illustration of
the effect of pulse reshaping we show in Fig. 1 the prop-
agation of a hyperbolic secant pulse envelope in a res-
onantly absorbing sample. We plot (a) the power spec-
trum and (b) the field amplitude vs the delay for increas-
ing distance z into the sample. The distance is measured
in units of absorption length o. and the time is scaled
by T2. The interplay between the spectral shape of the
pulse and its time domain behavior is evident: as the dip
in the spectrum deepens and widens, the negative tail
of the pulse gets stronger and develops oscillations. The
period of the oscillations shortens with increasing absorp-
tion and the total area of the pulse approaches zero.
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than T o2, one can compare the measurements to a set of
precalculated, "generic" plots of the impulsive FWM re-
sponse for difFerent absorption values. The absorption
can be estimated from the plot with a shape (on a loga-
rithmxc scale) that best resembles the measurement and
T2 may be estimated by a time scaling that gives the best
fit to the measurement. While this may not be a very
rigorous method, the significant distortion of the pulse
envelopes does not allow any simple extraction of the re-
laxation rate by observation and the procedure outlined
here will result in a quick identification of the relevant
parameters.

A set of generic numerical solutions of impulsive FWM
for a range of absorption values is shown in Fig. 2. The
ratio of pulsewidth to dephasing time is t„/T2 ——0.1 and
the absorption range is aI = 0.01 —10. The graphs plot

Og
aJ

10

'&units
Distance

FIG Propagation of a short hyperbolic secant pulse
in a homogeneously broadened medium, for t„/T2 —— 0 1~ ~

(a) Power spectrum vs propagation distance in absorption
lengths. Frequency is measured in T2 units. (b) Electric
field envelo e S~z t~~vsp ~, ~ propagation distance. Time is scaled~ ~ ~ ~

by T2.

B. FWM line shape

A calculation of the FWM response foll d' l
the proce ure outlined in the previous section Th
u ion for the propagated fields is calculated on a two-
imensional (t, z) grid. In a similar manner, the third-

order polarization calculation is also performed on a grid,
using the self-consistent fields as inputs and exchanging

t
integration by summation. The accuracy requirement f
he calculation are not very stringent: for all cases where

the pulse duration is much shorter than T2, the detailed
pulse shape hardly aKects the results and the grid density
in time is determined only by T2. The exact pulse shape
will manifest itself at the negative side of the zero delay
point at low absorption, where the FWM process resem-

e gri densityb es a cross-correlation measurement Th d d
along the propagation direction is determined by the ab-
sorption. Each z "slice" should be optically thin such
that contributions along the z direction may be summed
instead of integrated. The emitted FWM field is calcu-
ated in the frequency domain in order to properly ac-

count for the propagation and the FWM signal's total
energy for a given delay between the pulses is found. Re-
peating this calculation for each time delay 7 results in
a p ot of the calculated FWM response vs time delay
between the pulses.

For an experiment where neither T2 nor the absorp-
tion nI are known, the process of following through the
whole calculation and then Gtting it to the measured data
might seem quite cumbersome. However, if the absorp-
tion and the de hphasing time may be experimentally con-
trolled separately, one may perform a thin sample experi-
ment (al (( 1) and T2 can be estimated by the standard
exponential fit for the positive time delay data. 'When
this is not the case, but the pulse duration is much shorter

Time Delay Iunits of T ]2

ine s ape for increas-F . 2. Impulsive resonant FWM 1' h
ing absorption, with t„/T2 = 0.1. The absorption values are
from top to bottom) nI = 0.01, 0.1, 0.3 1 3 10. T
e ay etween pulses (r) is measured in units of T2 The.

vertical scale is logarithmic (lo ~ d hogqo~ an s ows ve orders of
magnitude of signal for each absorption value, with the graphs
onset successively for clear readout.
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over five orders of magnitude on a loga-
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1 h th-Taira case~, w i e ower c
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lf 1 bin the FWM signa or

d 1 1
'
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three-dimensional views of impulsive
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V. EXPERIMENTAL RESULTS

A. System description

the ex eriments on an atomicW ho op om p
or s stem, w ere in eh dependent variation o e a-

an d time are carried out yand of the dep asing ime

p . p
g p

e 4S —4P3 2 line at nm.
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insi e an a um'1 minum oven, with a spectrop o ome r
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de with each graph normal-and shows five6ve orders of magnitu e, wi e
d 1 easured in units of~ ~' ed to 1 at zero delay.. The time de ay is mea
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o e

0 3 0.6 1 measured in units o t eofA=O,
input pulse spectrum.
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(Hellma 220-QS-2) on the long horizontal arm, a cold
Anger containing potassium at the bottom, and a sealed
valve with an outlet to a vacuum-pressure manifold on
top. The temperature of the cold Gnger was regulated,
with the rest of the oven 20 hotter. The laser system
consisted of a hybrid mode locked double jet dye laser
(Coherent 702) pumped by a frequency doubled Nd: YAG
laser (Coherent Antares). The dye laser was optimized
for 2-psec pulses with a stable spectrum and clean au-
tocorrelation. The pulses were nearly transform limited,
as was ascertained by comparing the intensity autocor-
relation to the spectrum observed on an optical multi-
channel analyzer. The spectrum for a single pulse, when
compared to that for a train of pulses, showed some spec-
tral jitter, estimated at less than half the pulse spectral
width. The pulse energy used in these experiments was

1 nJ/pulse, which is translated to pulse area less than
0.05 for the chosen line, so that the experiments con-
form to the sInall area assumption. We used the "folded
boxcar" three-dimensional [22] phase matching geometry,
where all beams propagate forward almost collinearly in
the sample. All three input beams were vertically po-
larized and were focused into the interaction zone by a
25-cm lens. The beams were chopped at two diferent fre-
quencies and the signal was detected by a phase sensitive
detector at the sum frequency. Two of the beams were
set for temporal coincidence while the third was variably
delayed. Zero time delay was independently determined
by the observation of interference fringes between any
two incident beams. The inaccuracy in the zero time
determination ls estimated at less than +0.15 pscc.

One major difference between the experimental con-
ditions and. the assumptions of the theoretical section is
that the experiment involves a continuous measurement
of the signal produced by a "train" of mode locked pulses,
while the theory deals with a single "event" involving
two delayed pulses. As long as the time delay between
subsequent pulses in the train is large compared to the
population relaxation time, wz z/Tq )) 1, the theoreti-
cal treatment is valid as is. Transient population grating
measurements, performed under the same experimental
conditions as the FWM measurements, gave an CKective
Tq of 8 nsec. Since the laser operates at 76-MHz repe-
tition rate, the pulse to pulse interval is 13.2 nsec and

„/Tq ——1.65. In this case, the second-order "popula-
tion grating" created by the n pulse in the pulse train,

pD „', can interact with subsequent pulses E'2 „+ and(—1,1}

the sum of all such interactions forms the third-order po-
larization p&

' . To take this effect into account one
needs to make the following replacement in Eq. (14):

the propagation induced tail of the n pulse contributes
to the third-order polarization, but the contribution of
subsequent pulses can become larger since for the n+ 1
and later pulses the entire pulse contributes to the inter-
action and not only the tail. When the population decay
between subsequent pulses is not rapid enough, the main
contribution to the negative time delay signal comes from
such interaction with population gratings that have not
decayed. As a result, the FWM signal decreases (to-
wards negative time) at a rate 2/T2 instead of the 4/T2
predicted by theory (27).

B. FVFM measurements

The time resolved FWM intensity was measured at
bufFer gas pressures between 200 and 800 Torr, to keep
the pressure broadened width larger than the Doppler
width, so the reseInblance to a homogeneously broad-
ened two-level system is very good. The temperature
was varied in the range 410—450 K, where for each pres-
sure setting a set of measurements in decreasing tem-
peratures was taken successively. For each measurement
we calculate the potassiuIn density and self-broadening
from the temperature reading and published values for
potassium vapor pressure and K-K collisions cross sec-
tion [23]. The pressure broadening due to K-He collisions
was inferred from FWM decay times at low absorption
to be 0.5 cm at a pressure of 1 atm. We thus use the
temperature and buffer gas pressure readings to obtain
both nI and T2 for each measurement, which together
with the measured value for Tq and the measured auto-
correlation pulse shape of the input pulses leave no free
fitting parameters in comparing theoretical predictions

0
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with Eq. (14) being the special case of m = 0. For pos-
itive delays, the only change is in the amplitude of the
FWM signal and there is no change in the decay time
other than for time delays very close to zero, where the
two fields Eq 2 overlap in time. The situation is difFerent
for negative delays. In creating a negative delay response,

FIG. 5. Experimental FWM measurement {dots) for
P=400 Torr, 7=410 K, Tq ——30 psec, and nL=0.3, vrith a cal-
culation including the "last pulse effect" (solid line) and a cal-
culation ignoring contributions from previous pulses {dashed
line). See the text for details.
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to the measured FWM signals. The theoretical calcula-
tions include the correction to Eq. (14) due to the Finite
pulse-to-pulse interval, i.e. , using the replacement given
in (31), and thus predict a 2/T2 slope for the negative
delay response at small absorption values. For positive

delays, the predicted behavior is the same as that shown
in the theoretical sections.

Figure 5 shows the lneasured FWM signal for nL
0.3, with a theoretical result incorporating the replace-
ment given in Eq. (31) (solid line) and a calculation ig-
noring the "last pulse effect" (dashed line). The much
better agreement with the curve that includes the last
pulse eKect is evident.

Since the estimated T2 is much longer than the pulse
duration, the impulsive limit is valid for all the mea-
surements. We thus find it most revealing to normalize
the time in all measured results by the corresponding
T2 and get universal curves that should depend only on
absorption. Figure 6 depicts a collection of such mea-
surements, ordered from top to bottom with increasing
absorption. All graphs contain FWM measurements and
theoretical calculations based on the pressure and tem-
perature readings for each one. The fit of theory and
experiment over the full range of more than three orders
of magnitude is excellent. At the measurements with
lowest absorption (a) nL = 0.3 and (b) nL = 0.5, the
exponential decay in both the positive and the negative
delays is clear. The peak near zero time delay at (b)
seems steeper because of the difFerent time rescaling: Tq
in (a) is 30 psec and t„/Tq ——0.06, while in (b) T2 ——60
psec and t„/T2 = 0.03. In (c) the absorption goes up
to nL = 2.0, while graphs (d) and (e) correspond to ab-
sorption of 2.8 and 3.3. The last two graphs (f) and (g)
represent large absorption values of 5.6 and 9.6, for which

i' 4

Time Delay tv~its of T ]
0

0 10
FIG. 6. Experimental measurements of logqo F|A'M signals

in order of increasing absorption. The time delay for each
measurement is scaled by the corresponding Tz, estimated
from the temperature and pressure. Solid lines are theoret-
ical calculations for on-resonance excitation. The pressure
and temperature as well as the estimated Tz and nI for each
measurement are (a) P=800 Torr, T=410 K, T2=30 psec,
nL=0.3; (b) P=400 Torr, T=410 K, Ts ——60 psec, nL=0. 5; (c)
P=400 Torr, T=430 K, T2 ——63 psec, nL=2. 0; (d) P=800 Torr,
T=450 K, T2=33 psec, nL=2.8; (e) P=200 Torr, T=410 K,
T2 ——126 psec, nI =3 3; (f) P=400 Torr, T=.450 K, T2 ——66 psec,
nI =5 6; (g) P=200 Tor. r, T=450 K, T2 ——132 psec, nL=9.6.

Absorption

FIG. 7. Ratio between calculated dephasing times Tz and
"apparent" times T as a function of absorption. Values for Tz
are calculated from published collision cross sections and T is
derived from simple exponential Gts to the positive delay data
in FWM measurements. The actual values for the calculated
and the apparent times are (in psec): (a) 30:26, (b) 60:47,
(c) 63:30, (d) 33:13, (e) 126:44, (f) 66:16, and (g) 132:22.
The solid line is the analytic prediction (derived for small
absorption) of Tq/T = 1 j nL/2
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the FWM signal is almost symmetric around zero time
delay and shows a pronounced hump for positive delays.
The dips predicted by theory for positive delays at high
absorption are smeared in the measurement due to ofI'-

resonant contributions. As mentioned, the pulses were
almost, but not quite, transform limited and contained
some pulse-to-pulse &equency jitter. The calculated dips
are washed away by adding to the signal 5—10%%up contribu-
tion &om ofF-resonant irradiation detuned by a &action
of the laser linewidth. The theoretical curves in Fig. 6,
however, were calculated for the on-resonance response
without any additional nonresonant contributions.

It is interesting to compare the apparent decay rates
2/T (found by a simple exponential fit to the decay of
the curves in Fig. 6 at positive delays) to the prediction
of Eq. (28), T2/T = 1+aL/2. The ratios between the
calculated T2 and the apparent times T are plotted in
Fig. 7 together with the theoretical prediction. The close
relation between the apparent times seen in the measure-
ments and the theoretical predictions is carried all the
way up to absorption of nL 10, even though it was de-
rived exactly only for small absorption. It is thus possible
to use this rule of thumb to extract an estimate for the
real transverse relaxation time &om a FWM measure-
ment on resonance, when the absorption of the sample is
known or measured separately.

VI. CONCLUSIGNS

We have shown that propagation efFects should be in-
cluded in the analysis of any transient nonlinear mea-
surement in optically thick media and have presented a
methodology how to do it. The formalism is developed in
the small area limit, valid for most experiments involv-
ing ultra short pulses interacting with a resonant transi-
tion. Moreover, the methodology presented here is not
restricted to four-wave-mixing interactions. It is appli-
cable, with the appropriate changes, to any experimen-
tal situation where short pulses nonlinearly interact with
an optically thick medium. Separating the propagation
from the nonlinear interaction, i.e. , decoupling the Bloch
and Maxwell equations, provides a physically intuitive
understanding of how propagation afFects the nonlinear
process. The propagation induced reshaping of incident
pulses is shown to manifest itself in the FWM process:
the fields and the first-order polarizations acquire Bessel
function envelopes, which result in steepening and oscil-

lations in the FWM signal. An added benefit of the cur-
rent analysis is the ability to use linear equations, which
reduces the computational load in calculating FWM line
shapes including propagation. The experimental obser-
vation of the eKects predicted by the theory substantiate
its validity and demonstrates its relevance to real exper-
imental conditions.

Because the inclusion of propagation in the analysis
complicates the interpretation of measurements, it is im-
portant to identify telltale signs that indicate when ab-
sorption should not be ignored. Naturally, if the weak
signal peak absorption is negligible (nL & 0.1), propa-
gation induced eKects may safely be ignored. However,
when the existence of propagation efI'ects is suspected,
a cross-correlation measurement of the propagated and
incident pulses can unequivocally determine the degree
of pulse reshaping. In FWM experiments, negative delay
response is a likely signature of propagation induced re-
shaping, but may also result from higher-order nonlinear
processes, &om a two-photon energy level, or from slow
"wings" of the incident pulses. Deviation of the posi-
tive delay signal from the standard signature of a sharp
(pulse limited) rise followed by a pure exponential de-
cay and the appearance of a symmetric response around
zero time delay are strong indications of substantial ab-
sorption, which in turn necessitate the use of the present
formalism.

An added benefit of the present analysis is a rule of
thumb for the apparent decay rate 2/T . We have shown
that for significant total absorption o/I, the FWM signal
will decay at a rate of 2/T = (2/T2)(1 + o.L/2). This
result, derived exactly for small absorption, is found to
be approximately valid over the entire range of absorp-
tion values in the experiments [24]. Since the absorption
may usually be independently determined rather simply,
the determination of the apparent time T enables the
extraction of the actual dephasing time T2 by extrapola-
tion to zero absorption, a very significant result.
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