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Harxnnnic analysis in a large ring laser with backscatter-induced pulling
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Analytical solutions for the beam intensity, interferogram, and instantaneous phase are found for
a ring laser with backscatter. The harmonics of these signals form geometric progressions, whose
ratios depend di8'erently on pumping, pulling, and the net backscatter phase. The latter phase
depends on the time-reversal symmetry of the scatterers and on their location. We also report
confirmatory results in the Canterbury ring laser system, with a quality factor up to 7.5x10 and
a present frequency resolution of 140 nHz, and where thermal changes in the net backscatter phase
dominate other causes of drift.

PACS number(s): 42.60.—v

I. INTKODUCTIQN

The apparent Sagnac frequency detected in a ring laser
is more generally the frequency difference derived &om
optical path nonreciprocity, whether this originates in ro-
tation or not. In general, a time-reversal-violating mech-
anism is required. While the general proof of this was
fully enunciated only recently [1], several partial antici-
pations may be noted in the hterature [2—4]. However,
time-even effects suKce to modify the nonreciprocal sig-
nal and the nominal frequency is pulled or pushed by
a variety of effects. Another belated, if unconnected,
realization of the importance of time-reversal considera-
tions is introduced here in connection with the analysis
of backscatter phases (Appendix A).

Locking phenomena in ring lasers have been studied
extensively on account of their critical importance for
the development of optical gyroscopes and the insight
they give into laser dynamics [5—10]. When backscatter
is present, numerical solutions of the laser equations have
often been resorted to [8]. Recently experimental meth-
ods and theoretical results have given insights into the
effects of pulling [ll—16].

Etrich et al. [14] give a thorough study of possible solu-
tions, both steady state (locked) and periodic (unlocked)
as well as the domains of their stability, of the basic equa-
tions for the dynamics of a ring laser. In particular, they
give an analytic solution to the intensity as well as the
phase for the case of dissipative coupling, when the in-
tensity variations of the two beams are approximately in
phase, while the instantaneous frequency variations are
antiphase. We extend such analytic solutions of the laser
dynamics in the unlocked case so as to obtain analytic
representations for the harmonic structure of the single
beam intensities, the resultant interferogram, and the de-
rived instantaneous phase in a ring laser gyroscope. The
harmonic structure in the Fourier spectrum of the inter-
ferometer signal in a ring laser was observed in our laser
system [17—19], which has an area of 0.7547 m, a quality

factor Q 7.5 x 10, a finesse I' ~ 1.4 x 104, and has
alreadly attained a frequency precision at the microhertz
level [1]. Here we find answers to the questions that were
implicitly raised by this earlier work.

In particular, we establish the theoretical interpreta-
tion of the harmonic structure in each of the single beam
signals, the interferogram, and the instantaneous phase
[17,18]. In the first two cases these are combination ef-
fects of laser gain and of &equency pulling. Within ap-
proximations we derive the characteristic Airy profile in
the time domain and the related geometric progression
in the &equency domain for all of these spectra. For
the dissipative case at least, the harmonics of the single
beam intensity, the interferogram, and the instantaneous
phase form geometric progressions, but the ratios depend
in different ways on the various parameters. A simple
physical interpretation is given in Appendix B. Observa-
tions of the time and frequency domain structure of all
these spectra are reported here and are in agreement with
these predictions. When the loc¹in threshold is of sim-
ilar size to the bias &equency in a ring laser, the pulled
frequency can be measured by monitoring the intensity
of a single beam. The overall phase of the backscatter af-
fects both amplitude and phase variations in either beam.
The temporal intensity variations in each beam furnish
a significant component of the spectral behavior of the
interferogram. The anharmonic effects of intensity and.
phase variations tend to cancel both in the single beam
intensity and in the interferogram. In principle, the time
dependence and harmonic content of the interferomet-
rically derived beat signal, of each beam intensity, and
of the instantaneous &equency derived &om these give
complementary information.

In the more complicated special cases we restrict our-
selves to the standard extremes of conservative (or Her-
mitian) coupling and. of dissipative coupling [5,14,11]
when the net backseat ter phases c+, e for the two
counter-rotating beams have a sum 2g = vr, 0, respec-
tively. We prove, by an extension of the argument of

1050-2947/95/51(6)/4944{15)/$06. 00 51 1995 The American Physical Society



HARMONIC ANALYSIS IN A LARGE RING LASER WITH. . . 4945

Haus et al. [5], that the intrinsic, distinction between
conservative and dissipative coupling at each scatterer
reflects the symmetry or antisymmetry of the physics
of the scattering process under time reversal (Appendix
A). However, as Christian and Mandel [13] and Rodloff
[20] showed, the transmutation between these two forms
of coupling, in particular the sum of the net backscat-
ter phases, depends not only on such fundamental sym-
metries of the scattering centers but also, and critically,
on the distances between the scattering centers and the
beam combiner. One consequence is that the lock-in
threshold and so the observed frequency pulling are func-
tions of temperature-induced changes in cavity length. In
our laser system, where rf excitation reduces Langmuir
eBects, etc. , this turns out to be the dominant form of
Sagnac &equency drift. Understanding the origins of this
drift is our second major practical reason for the present
investigation.

A third reason is that the present study is an essen-
tial prerequisite for a determination of the efkcts of laser
gain and &equency pulling on the magnitudes and sep-
arations of sidebands generated on the Sagnac spectral
line and on its harmonics by both periodic and aperi-
odic variations in the rotation rate, such as the seismic
efFects we study elsewhere [21], and ultimately in a fuller
geophysical analysis [19,22].

Finally, in both this and the present connection we doc-
ument here the numerical analytical methods, which al-
low us to dedrift experimental results numerically. This is
an essential step both in achieving the microhertz level of
frequency discrimination reported before [1] and in con-
structing the instantaneous phase and &equency whose
spectra are studied here.

dE~ 2 2
d't

= (in~ + era —/3E+ —(E ) E~ + R+E+ exp ie+.

Together these terms cover the key physical fea-
tures of laser dynamics included in earlier analyses
[8,11,13,14,20). We deduce the following differential
equations for the phasors' real amplitudes E~ (t) and
phases P~ (t):

E~ dt
= (~a —PE~ —(E~) + pecos(@ ~ (), (2)

dP~ = ~~ p pep sin(g p (), (3)

where the beam-amplitude-scaled. backscatter parame-
ters p~ = ryE~/E+, the relative beam phase

+ (e+ —e )/2, and the net backscatter phase
( = (e+ + e ) /2. The differential equation for g is

= 2vrf —p sin(g —() —p+ sin(g+ () .

If for the moment we suppose that p+ ——p = p, we can
write

respectively) will scale the amplitude of the phasor E~
by a factor, per unit time, of era —PE+ —(E+2. Third,
as the result of a backscattering rate of B+E+ into each
of the + beams &om the other beam, dE~/dt = R+E+
(where we define amplitudes and phases of these complex
backscattering coefFicients R+ by A+ ——r+ expie+', see
Appendix A). In total,

II. PER.IODIC SOLUTIONS
VVITH a&CKSCWTTEa

= f —lq sin @, lq = —cos (.
2R' dt 7r

(5)

A. General

%"e take as our reference point A of the ring the po-
sition of the output mirror leading to the beam com-
biner. Let each beam +, where + denotes counterclock-
wise (CCW) and —clockwise (CW), have a complex am-

plitude given by a phasor E~ = E~ exp i/~. Its phase
= u~ (t —z~/c); &u~ are the corresponding actual

mode frequencies (including corrections for dispersion,
etc.) and z+ (z ) is the optical path length around the
ring from A in a CCW (CW) sense. We take Py as the
total optical path lengths, so that u~P~ ——2vrc¹ The
nonreciprocity in frequency (derived from optical path
nonreciprocity and ultimately from time-reversal viola-
tion) is f = ((u+ —~ ) /2'

Each of the complex time-dependent phasors E~ for
the CCW and CW beams at A changes in unit time
for several reasons, which are discussed in detail in ear-
lier papers. First, there is the natural time dependence
given by the w~t part of P~, this may be expressed by
writing dE~/dt = iu~E~. Second, laser pumping, sat-
uration, and cross saturation (parametrized by a, P, (,

When (the conservative case) ( = vr/2 mode, then l~ = 0
and backscattering aBects the phase of the two phasors
E~ equally and does not affect the relative phase @ whose
measurement is of interest for gyro purposes. This is
equivalent to the condition that the two backscatter pa-
rameters obey the equation [13] R+ + R* = 0 in this
limit.

When (the dissipative case) ( = Omodvr, then l = lo
and is maximal and the phase changes of the phasors are
opposite, maximally afFecting @.

However, the p~ are not constants; the efkct on the
intensities in every case has a similar significance to that
of the backscattering phenomenon itself. As shown by
Eq. (2), the backscattering rates r~ directly affect the
time variations of the magnitudes of the intensities. For
small variations, both intensities are simple sinusoidal
functions of the pulled phase and Eq. (2) shows directly
that, as far as the trigonometric factor in the backscatter-
ing is concerned, the phase di8'erence between these beam
intensity variations is itself 2g. Hence in the dissipative
(conservative) case, the beam intensity variations are in
phase (antiphase, respectively). The pivotal role of the
net backscatter phase g has been recognized by Haus et
al. [5] Christian and Mandel [12,13], and Wilkinson [ll]
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for example. We shall assume the equality only of the
magnitudes r+ ——r = r of the fractional backscatter-
ing coefBcients in the following. This is consistent with
time-reversal invariance of each scatterer (see Appendix
B) and makes an analytic calculation feasible, but is less
severe than the assumption that the beam-amplitude-
scaled backscatter coeKcients p~ are constants.

p being the pulled frequency. An alternative method for
deriving Q will be given in connection with the analytic
signal approach in Sec. III. Further details concerning
this and later derivations are given in Appendix C.

The observed instantaneous frequency, corresponding
to that recovered from the analytic signal, is then, from
Eqs. (11) and (C2):

B. Dissipative case
1 dQ p 1+tan vrpt

2vr dt f —
L cos 27rpt 1+utan27rpt '

In the dissipative limit (( = 0), Eq. (2) takes the form:

1 dE~
E~ dt

= (era —PE~ —(E~) + p~ cosg, (6)

dg E++ E= 27rf —r + sin@.
dt E+E (7)

I.et us define the symmetric (E) and the antisymmetric
(A) parts of the beam intensities by

E=-(E +E ), A=-(E —E )). (8)

From Eqs. (6) and (8),

1 dE 1

2E dt
= ~a —2PE + —[(P —()(E' —A')E

+r QE2 —A2 cos it ],

1 d@ = f —Lsi @,n
2m dt

1 dA

2A dt
= era —2PE.

If the net gain (pumping as reduced by saturation
and cross relaxation) is sufficiently small to have less
e8'ect on these beam intensities than backseat tering,
~vra —(P+() E~ && r. In our case, this is reasonable
since we operate our He-Ne laser in monomode with
total pumping powers of a few watts and exit powers
of the order of nanowatts. For mathematical conve-
nience we make the somewhat stronger assumption that
~~a —2PE~ && ~(P —() E+ r~; this is certainly true if
backscatter is more important than net gain and also
than the di8'erence between saturation and cross relax-
ation. In this case pulling dominates the beam dynamics
and from Eq. (10) A = 0, i.e. , the intensities of the two
beams are equal: E+ ——E . The above makes explicit
the approximation made by Etrich et aL. [14], who merely
assumed this equality. This uncouples Eq. (7) from Eq.
(6), giving the Adler-type equation

where the ratio u:—(f + L) / (f —L). The period of the
frequency excursions T = 1/p.

Prom Eq. (13), the observed frequency varies between
f + L and f —L. However, it is not syminetrical in between
so that its average value, or pulled frequency fo —that
determined from gyro output counts —is not f but p.
Appendix C gives one proof, which leads to the material
below.

Fourier analysis of the instantaneous &equency gives a
geometric progression of harmonics (Appendix C) whose
ratio r is given by

~f -p'I

This may be written as r = R (q), where

R(q)—:q —Qq' —1

1
Q=arg~

~

=argZ,(1 —r exp 27ript)
(16)

where Z is the analytic signal whose real part corresponds
to the Fourier expansion of Eq. (C7). The analytic signal
then has the form familiar from Fabry-Perot theory

and q = f/L Note tha. t R (q) is a monotonically derreas-
ing function of q. In the limit q + oo, R (q) i 1/2q.
Hence, in the above application with q = f /L, for pro-
gressively lower lock-in thresholds, r ~ 0 linearly with
L: R(f/L) + L/2f Hence ha.rrnonics (as opposed to the
fundamental signal) of the instantaneous frequency exist
only because of the existence of backscatter, pulling, and
a lock-in threshold. The instantaneous phase [Eq. (12)]
will have a harmonic structure that is altered from this
geometric progression by a factor 1/n generated by the
1/ur factor arising in the integration.

Further manipulation (Appendix C) shows that this
allows the representation

where [as in the appropriate limit of Eq. (5)] L = r/vr.
This has the solution

Z (t) = C' ) (r exp 2~ipt)" =
n=o

(17)
1 —r exp 2vript

V sin erat+ yg (t) = 2arctan —= 2arctan
cos'rrpt

where

~—:L+ ptan~pt, q:—tan '
~

—~, p —=gf' —L',

its modulus is the Airy function. This is reQected ex-
perimentally in the temporal form of the interferometer
signal A (t) (discussed later on in this section), which
resembles an Airy function; the more nearly the ratio r
approaches unity, the more sharp are its features. This
same general behavior is found whenever the harmonics
of a signal are in geometric progression.
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For intensities, and with A = 0, Eq. (9) becomes

dE = ma —bE + vrl cosg,2E dt
(18)

7f Q h2 (f + l sin 20)
b h~ f + hal sin (2vrpt + p) —lpga exp (—2vrat)

'

(»)

where the shifted phase 8 = apt + y/2 (Appendix C)
and the parameter h = ga2 + p2, corresponding to a
combination of pumping and pulling, and a shifted phase
p = y —arctan p/a.

Hence the associated time dependence of the beam in-
tensities is as nontrivial as that of the instantaneous fre-
quency [Eq. 13)] and in particular shares the same fre-
quency p. Note also that the limiting case I ~ 0, to which
we now restrict ourselves, gives the obvious solution of
the difFerential equation: E ~ era/b The de. nominator
on its own gives a geometric progression of harmonics,
now with the ratio [compare Eq. (15)]

where the nonlinear coupling parameter b—:P + (. This
may be solved analytically, through a generalization of
the work of Etrich et aL [14] (Appendix C), so that

vra hf (1+ cos 2apt)
b hf + al sin (27rpt + p)

(22)

C. Conservative ease

In the conservative case (( = m/2), Eqs. (2) and (4)
become

dt
= (7ra —PE~ —(E~) E~ + rE~ cos g, (23)

1 d@ /E' —E')= f+r j

+ ~sing.
2vr dt q27rE+E j (24)

The resulting interferometer wave form [Eq. (22)] has
a time dependence that is similar to that of the single
beams [Eq. (19)] (Appendix C).

In principle, any experimental interferogram record
X (t) could yield each ratio on analysis (the instanta-
neous frequency being derivable from the corresponding
analytic signal) and (since a, p are derived parameters)
each of the parameters a, l could then be inferred from
a knowledge of f„r,rI The. detailed wave form from the
interferometer is thus a diagnostic of the state of the ring
laser.

(hf )
q al ) (20) From Eqs. (23) and (8),

Since pulling is present and so h ) a, the argument h f/al
of B is greater in the case of the single beam variations
[Eq. (20)] than for the corresponding value f/l for the
instantaneous frequency [Eq. (13)]. Hence the corre-
sponding ratios are in the opposite order, since B is a
monotonically decreasing function. This has the para-
doxical consequence that despite the absence of the har-
monic effects of beam intensity variations, the harmonic
structure of the instantaneous frequency is richer than
that of the single beam spectra. Hence the function B
itself is less and the variations in the instantaneous single-
beam intensities are more nearly harmonic than those in
the instantaneous frequency. Comparing their relative
anharmonicity gives information about h/a and so gives
the gain parameter a directly in units of the (observed)
pulled frequency p. In this sense the effects of beam in-
tensity variations and backscatter tend to cancel. An
extension of this is given in Appendix C.

The observed signal is the result of beating together the
two individual beams, we assume in equal proportions:
the intensities are the same (time-dependent) value E
and the phases difFer by @. This gives an intensity for
the interferometric pattern proportional to

X (t) =
~

~E ~ ~Ee'" ~'= E (1 + cos g) .

As a result the full interferometer signal —incorporating
the time dependence of both the intensity and phase-
has the form in which two major time-dependent terms,
one in the intensity factor [Eq. (19)]and one in the phase
factor [Eq. (C2)], have canceled:

1 dE 1

2E dt
= era —2PE+ —(P —$) (E —A ),E (25)

1dA r
2A dt A

= ma —2PE + — E2 —A2 cos g. (26)

1 d@ lA
2m. dt

(27)

Using the definition A = Eo sino. ,

1 dn 1 dg= icos/, — = f+lt annisng.
2m dt ' 2' dt

(28)

This shows that in the conservative case, and when inten-
sity variations in time are allowed for, phase variations
(nonlinear variations in time corresponding to spectral
components at a pulled f'requency) can exist as for a
changed (reduced), but nonzero, value of lock-in thresh-
old in Eq. (28) since the lock-in threshold l of Eq. (11)
is replaced by / tan o..

Analytic solutions of this equation are possible under
further approximation. If the locking effects are small, o.

may be taken to be approximately a constant n in the
phase equation. We retrieve the Adler type of solution, in
which the lock-in threshold is reduced by a factor tan o.:

Assumptions similar to our previous ones: ~ma —2PE~
(«, (P —() QE2 —A2 (( r, ensure again that pulling
dominates the beam dynamics. From Eq. (26) dE/dt =
0, i.e. , E is a constant (which we denote Eo for clar-
ity) and the intensities of the two beams fluctuate in
antiphase [11].Also
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n = 27rl dtcos@ = —ln[f + msin(2mq't+ o)]. (30)

Equation (30) describes the harmonic structure of the an-
tiphase variations in the beam intensity for small pulling.
Again these variations are seen to be commensurate with
those in the phase itself.

The interferometric pattern is now proportional to

X (t) =i E + E+e'
i

= 2EO (1+ cosn cosg) . (31)

Hence its time dependence will be the product of that in
coso. [see Eq. (30)] and cosQ [Eq. (29)] separately. The
Fourier spectrum will then be the convolution X = A4
of the geometric progression associated with the Fourier
transform @ of cos @ (@=X [cos g]) and the Fourier
transform Q = X[cos n] of the intensity-dependent fac-
tor. The eKect on the beat signal and its Fourier analysis
of the intensity variation is thus seen to be non-negligible
and to be enshrined in 3 [cos n], whose analytic solution
is not available. In the limit in which we take o. to be
approximately constant, Eq. (31) reduces to the general
form of Eqs. (19) and ( 21) and siinilar comments are ap-
plicable; in particular, we expect a geometric progression
of harmonics with the ratio

for small lock in.

/'kf
))

am) (32)

D. Ceneral backscatter phase

We shall need also solutions for the case of general
(, which also will be illustrated from experiment in Sec.
IV B. For these to be analytic, we concentrate on the
eKects of pulling and assume that backscatter dominates
the beam dynamics, setting a = P = ( = 0. The single
beam intensity variations given through Eq. (2), when
rewritten in this limit, take the form

dE~—= p cos (g + () .
E~ dt (33)

We also revert to the assumption, valid in the case of
relatively weak backscatter, that intensity variation is
unimportant for the phase dynamics, so that from Eq.

1 dg = f —csin@,2' dt

where in this subsection only we write / for lq

tO sin (mq't + cr)
g (t) —vr = 2arctan —= 2arctan, , (29)

cos mq't

where m = l tan n, q' = gf 2 —m2, iv = m+ q' tan 7rq't,

o = tan (m/q'), and k = gq'2 + a2. The harmonic
content of the instantaneous &equency is therefore a ge-
ometrical progression as for the dissipative case, with a
ratio rc = B(f/m)

If we then insert this phase solution in the intensity
equation, we And the first-order changes in intensity that
result:

Hence Eq. (33) takes the form

d ln Ey fp cos 28 cos ( + (l + f sin 28) sin ('l
dt

=P
rf +L isn28

36

This has the solution

2@Em
ln E~ = p cos ( ln (f + l sin 28)

P
(37)

+2 sin ( f arctan (tan 8)

l+ f tan8)—p arctan I+&
p

where C is a constant. The dissipative and conservative
limits of these equations show as before that the indi-
vidual beams are respectively in phase and antiphase;
the first term on the right-hand side of Eq. (37) has
the same form for each beam and controls the dissipative
case, whereas the second and third terms in large paren-
theses de6ne the beam intensity variations, with opposite
signs for the two beams, in the conservative case. Hence
the beam intensities can be written as a product of the
exponentials of the three terms on the right-hand side
of Eq. (37) and the harmonic structures of each, in-
cluding the (1/ur)-weighted geometric progression arising
&om the last term, are convolved in the Fourier domain.

Further comments on the general case are given in Ap-
pendix C.

III. ANALYTIC SIGNAL PKOCESSINC
OF INTERPEB.OC B.AMS

The standard method of isolating the phase informa-
tion is to count zero crossings of the interferogram. An
alternative technique proposed and illustrated in this pa-
per is to use the full interferometric wave form to con-
struct the analytic signal, so recovering pure phase infor-
mation. We describe one possible approach in the context
of the signal processing package MATLAB. In the proce-
dure Hu. BR', the real signal A (t) is converted to the
analytic signal Z (t) = X (t) + i Y (t), where Y (t) is the
Hilbert transform

(p/vr) cos(, assumed to be a constant in time, and sim-
ilarly for the derived quantities p, v, y, 8 (for example,

p = p~ = f2 —l&~). It follows that the solution for the

instantaneous phase Q and the derived quantities such
as the instantaneous &equency, and the analytic signal
and interferogram so far as they are not greatly affected
by intensity Quctuations, have the same algebraic form
as for dissipative coupling and in particular a geometric
progression of harmonics, with the ratio ra = R (f/l)
To be precise, Eq. (34) has the solution of Eq. (C2) as
modi6ed by these rede6nitions:

f2 —v pcos28
cosg = f2+ v2 f + 1sin28'
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1 „,X (t')
t —t' (39)

This is achieved most simply by noting that Z (u)
X(Z (t) ), the Fourier transform of Z (t), difFers from
X (u) principally by having all negative frequency com-
ponents set to zero in the latter; what is a cosine in the
real part is a sine in the Hilbert transform and their
negative &equency parts have opposite sign and can-
cel on forming the analytic signal [23,24]. This gives a
minimum-phase estimate of the analytic signal, as is ap-
propriate for a passive and causal physical system. The
instantaneous phase 4 (t) = arg (Z (t) ) may then be de-
rived by using the procedure UNWRAP on the principal-
value phase —a process for which the MATLAB 4.2 rou-
tine is unreliable in our application; we find it best to
rewrite it assuming a monotonic behavior of O (t). The
resulting phase is expected to correspond to the instanta-
neous phase derived kom a technique such as zero cross-
ing, in the appropriate limits to accord with the results
of Eqs. (12) and (29). We have proved in Sec. II8 and in
a variety of circumstances that signals whose harmonics
form a geometric progression have an important role and
that when this is so, the instantaneous phase @ has the
same harmonic structure whether it is derived &om the
analytic signal or kom the associated differential equa-
tion.

Hence the relationship between the Fourier compo-
nents of the instantaneous phase associated with any sig-
nal contains no new information in principle. In practice,
however, it can furnish an independent experimental ap-
proach for confirmation of the applicability of the model.

In practice the drifts associated (as we find) with ther-
mally induced variations in pulling need to be removed.
The standard experimental procedures of using a servo
system to piezocontrol the path length are inadequate
and in any case difIicult for us. We prefer a numerical
dedrifting procedure after the experimental run has been
made. This is reliably achieved by the following method
(referred to by the MATLAB procedural name GPRoc).
For long runs, we use a heavily aliased signal V (t), typ-
ically with 1—2 samples per second, and dealias at the
end by hand comparison with a plot of the running fast
Fourier transform (FFT). We coarsely frequency filter the
interferometer spectruin V(w) = X(V (t) ) so as to can-
centrate on the region of interest, usually near the Sagnac
Earth rotation line ( 69 Hz). The corresponding ana-
lytic signal Z (t) = X (V (~), u ) 0) has a phase 4 (t)
whose frequency spectrum 7 (m) itself contains both the
low-&equency 4g (t) drifts we wish to eliminate —below
a cutofF frequency f,„tof say 0.0005 Hz, this threshold
corresponding to the time constant chosen in any hard-
wired phase sensitive detection process and the infor-
mation of interest @p (t) (say 50—90 Hz). We high-pass
filter 'P (w) m 'Py (w) by removing the lowest components
in all bins up to the cutoff frequency f,„t.Typically only
a few hundred bins in a total of a few hundred thousand
are so afFected; in other wards, f,„t(( tv, the Nyquist
frequency. %e then form the correspond. ing spectrum
Vf (~) = W(Re [~Z(t)~expi& (Py ((u) )]) . This is the
algorithm used in Sec. IU B. Arguably one would get

cleaner and more impressive results by leaving out ~Z (t) ]

and its associated noise in this restoration; however, we
have retained it in all results reported so far so as to dis-
play all sources of the relatively high frequency noise in
the signal, apart from the low-frequency drift term 4& (t).
Clearly one can track almost any carrier as closely as de-
sired and so reduce its real frequency noise apparently to
zero by taking a sufficiently high cutoff frequency f,„t,
just as one can in principle electronically lock as close
as desired to a drifting line by chosing an appropriate
time constant for the electronic servo loop. On the other
hand, smaller bandwidths reduce other noise. The im-
portant consid. eration here in both the electronic and the
numerical case is the choice of cutoff frequency; all am-
plitude noise, and all frequency noise in the range f,„tto
f~ are retained and their efFects displayed. We always
choose f,„t,(( f~ and so retain in principle all amplitude
noise information and nearly all frequency noise informa-
tion in a frequency band of width f~. If the laser drift
is substantial, we find that our procedure does not lock
onto the carrier when the cutoff is chosen to be as low
as f,„i 0.0005 Hz. Nev rtheless, this method on bet-
ter data used with such cutofFs locks and then yields the
remarkably narrow Sagnac frequency line previously re-
ported [19,1]. A subsequent run 96AG26 has yielded an
even narrower line (see Sec. IVB).

A defect of this method is that it is not possible to
preserve fully the sideband structure of the line that is
being locked. This, with a more satisfactory alternative
for sideband analysis, will be discussed elsewhere [21] in
the context of seismic studies.

IV. EXPER.IMENT

A. Canterbury ring laser

There has been renewed interest recently in the pos-
sibility of a significant step forward in ring laser tech-
nology to "supergyroscopes, " larger than have heretofore
been considered practical [25,19]. Drifts associated with
&equency pulling remain a major limitation on the per-
formance of such devices.

Our He-Ne ring laser system [17—19] is defined by a
rectangle af four supermirrors, nominally 99.9985% re-
Hectors, and having measured total losses at manufac-
turing in the range 8—14 ppm, of which up to 10 ppm
constitute the (designed) transmission loss and 3—5 ppm
are measured as scattering loss. The mirrors are mounted
in superinvar mounts and are placed directly on a 1.2 m
x 1.2 m x 25 mm Zerodur plate, itself mounted on a 700
kg granite block. Stainless steel boxes, which are sealed
by Viton O rings on the Zerodur, surround but do not
touch these mirrors and the connecting Pyrex tubes (i.d.
10 mm) do not intersect the beam, which is always within
the lasing gas. Part of this tube is a narrower fused sil-
ica tube (i.d. 4 mm, length 200 mm) with a cylindrical
radio frequency exciter surrounding it. Since the beam
never intersects a solid surface, maximal quality factors
become feasible. The laser has an effective area of 0.7547
m2 (as determined from the longitudinal mode frequency
spacing and the measured dimensions) and a (recently re-
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measured) quality factor Q = 7.5 x 10io. Alignment of
the mirrors can be done only in open air with the cover
plates removed and prior to pumpdown. To assist, we
recently installed a basic clean air system (an Envirco
Corp. Hospi-Gard system, with throughput 14 m /min
and 99.97% retention of particles ) 0.3 pm). The ring
laser is operated in monomode with a radio &equency
pump power of the order of a few watts, a circulating
power of the order of milliwatts, and an exit beam power
of the order of nanowatts. If we take the sidereal day
to be 23 h, 56 m, the Earth's rotation has an angular
velocity A of magnitude 7.292 x 10 5 rad/s. Its Sagnac
effect generates a spectral line (which we call for brevity
the Earth line) in the Fourier transform of the interfer-
ometer signal whose (beat) frequency is nominally

fb = 4A 0/AP. (4o)

In this equation, the perimeter P is determined from ra-
dio frequency measurements of the free spectral range as
3.47710 + 0.00010 m, the He-Ne laser wavelength A =
633.0 nm, and the corresponding frequency fo is 473.6
THz; hence, at our latitude A of 43'34'37" [which intro-
duces a factor cos (A+ z)], fg = 68.95 Hz. This value is
modified in practice by the backscatter-induced pulling
discussed here and by dispersion-induced pushing and
can be modified by a transverse magnetic field on the
plasma. The scale factor G of this instrument (the ratio
of the angular frequency of the interferogram to the nor-
mal projection 0' of the mechanical angular frequency)
is therefore 8.62 x 10 . (In gyro jargon this is G' = 6.65
counts/arc s.)

The granite table in turn is supported by metal pan-
tographs, incorporating worm gear drives (to allow some
height and tilt adjustment) and resting on a cubic me-
ter concrete pier, itself bonded with stainless steel rods
into the local basalt rock. This system is installed in an
underground cavern 30 m below ground level. This gives
major benefits for mechanical stability and for temper-
ature stability. The latter is further enhanced in that
the room in which the laser is housed (5 m x 5 m) is
thermally in good contact with the cavern. An ancillary
room containing much of the peripheral equipment —rf
generator, computers, etc.—has more thermal insulation
in order to raise the temperature and lower the humid-
ity and give less short-term changes to cavern temper-
ature. Adjustment of the net backscatter phase ( is
most simply achieved by moving weights to Hex the Ze-
rodur table and so changing the various partial perime-
ters z, which appear in Eq. (Al). The signal, whether
interferometric or single beam, is detected by a photo-
multiplier and captured on a two-channel Strobes Ac-
quisition PC unit (equivalent to Rapid Systems 360)
using CHART software. Processing including FFTs
of 8 ksample —128 ksample records is performed using
MATI, AB 4.2 on a PC 486 and FFTs of records up to
6 million samples on a SUN SparcStation 2000 system.

On the model proposed by Aronowitz [7], the fractional
amplitude scattering coefBcients may be estimated as-
suming that a &action r& of the intensity of any beam
is scattered uniformly at each reHection. In a cavity of

perimeter P and with four mirrors, these reflections oc-
cur at a rate of order 4c/P, and if the scattering is as-
sumed for simplicity to be uniform, a fraction dQ/4vr of
this intensity is scattered into the other beam. dO is the
acceptance solid angle of that beam and is of the order
of pro, where 0 is the diKraction angle characterizing the
beam. 8 = A/7roo, 00 being the spot size at the waist.
Hence the fractional amplitude backscatter rate r~ is of
order 2rpcA/ (7rPcro) and for the Canterbury ring laser,
where we estimate oo 0.66 mm, one might expect a
lock-in threshold l 10 rp Hz. For mirrors with the
manufactured values of scatter (of order ppm in inten-
sity), this implies rp 10 and so lock-in thresholds
l 10 Hz, which is significantly less than the unpulled
Sagnac frequency f induced by the Earth's rotation. The
laser is thus expected to be unlocked solely by the Sagnac
effect of the Earth's rotation.

Pulling effects could therefore be as low as 1/2 f or 1%,
even in dissipative coupling. This, however, represents
an ideal from which we are presently somewhat removed,
basically because of those economies of construction for
our laser, which require us to use Viton 0-ring seals and
prevent a standard clean room environment. Under the
conditions in which the data reported here were taken,
it is common for the lock-in threshold to be a more sub-
stantial fraction of, or even exceed, the Sagnac frequency.
In the last case the ring may be unlocked only by choos-
ing the conservative coupling regime. Also for reasons of
economy, we have been unable to achieve the full poten-
tial of the cavern for temperature stability; some sources
of heat from ancillary equipment are yet to be isolated
properly and thermal lagging of the fairly extensive pas-
sages of the cavern to reduce convective air flows has
yet to be installed. Since, as shown below, temperature
variation is the principal cause of beat frequency drift at
present, it is planned to reduce this by better thermal
insulation, reduced heat Buxes, and fuller mechanical de-
coupling of the Zerodur plate.

Under present conditions, temperature changes cause
drift in the pulled frequency of up to several hertz over
runs of several hours' duration and cause the average
mode frequency to drift at the rate of the order of one
megahertz per minute. The latter estimate (drift in the
mode frequency) is obtained by a variety of methods.
The simplest, but least direct, is to monitor the pulled
beat frequency by a JFTA analysis and observe a cyclic
pattern as the mirrors shift from thermal expansion and
cycle the system (and so the lock-in threshold and the
frequency pulling) between the conservative and dissi-
pative regimes. More directly, we have beaten a single
output beam (from say the CCW beam) against a New-
port NL-1 stabilized laser, which is frequency shifted into
near coincidence by an acousto-optic modulator, and de-
tecting the mode shift using a Newport SR-130 super-
cavity as a Fabry-Perot analyzer. This reflects both the
perimeter change with temperature and the drift in the
Newport NL-1 stabilized laser. Third, we have increased
power to enter the multimode states and then hetero-
dyned the beats between adjacent longitudinal modes
(nominally 86.34 MHz, corrected by their dispersive split-
tings) against a local rf frequency scanner, and observed
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the relative &equency drift. All three methods, but more
particularly the first and the third, indicate a common
dependence of &equency drift on thermal expansion of
the ring.

The drift of the pulled &equency is affected by a total
perimeter change because of the consequential changes in
dispersion as the modes wander through the gain curve of
the He-Ne plasma; this source of drift itself is dealt with
by stabilizing the perimeter. Apart from this, the pulled
&equency drift is affected equally by any change in mir-
ror separations z, through Eq. (Al). Several important
consequences follow. Since a factor 2 appears in the expo-
nent of Eq. (Al), when backscatter changes (as opposed
to dispersion changes) are the dominant source of drift, a
full cycle of change in the drift is achieved when the cav-
ity length is changed by a half (as opposed to a whole)
wavelength. In this sense, the effects of backscatter cycle
twice as quickly as those of dispersion, given the same
temperature-induced changes in physical positions. The
dependence of the pulled frequency on backscatter phase
can be (and currently is) more important in practice than
its dependence on the dispersive effects of changes in
mode &equency. When backscatter dominates drift ef-
fects, stabilization of the perimeter and so the mode fre-
quency is of very limited value in stabilizing the beat
frequency against temperature-induced changes in ring
dimensions, since any localized perimeter adjustment of
say one mirror position has a different symmetry from the
roughly homogeneous effects of temperature, and will not
in general aid towards restoring the original net backscat-
ter phase g. Rodloff [20] overcame this in a relatively
small ring by using more than one piezocontrolled mirror
element to permit independent adjustment of several dis-
tances z contributing to the backscatter phase and so
to eliminate changes in (. The introduction of any piezo-
electric element itself compromises thermal stability and
as described above perimeter stabilization through use
of a single piezoelectric element is ineffective in reduc-
ing pulled beat frequency drifts over time scales of the
order of minutes. The topic of this paper, in particular
the consideration of alternative schemes of direct stabi-
lization of the backscatter phase using a more relevant
diagnostic than the perimeter or the mode &equency, is
then of considerable practical importance as well as in-
terest.

In view of the significantly reduced pulling and so en-
hanced stability achievable in conservative coupling, we
suggest as a candidate for this diagnostic the relative
phase of the intensity modulations for the counterrotat-
ing beams. Servoing any perimeter adjustment, even for
a single piezocontrolled mirror element, to maintain the
value 180 for this relative phase should ensure a substan-
tial reduction in drift not only because the net backscat-
ter phase g is then held constant, but also because at
this value (when ( = m/2) pulling effects are minimized.
Clearly this scheme will not be helpful in simultaneously
stabilizing the perimeter and so many dispersion-related.
drifts, unless at least one more control is introduced. We
may ask whether it sufFices to record one beam only with
the interferogram and then deduce the phase relation-
ship between the single beams from the information con-

tained in the two records, including their relative phase.
The answer is not immediately obvious, since intensity
variations in either beam are correlated with their (un-
detected) phase only through the above theory and the
connection involves in principle the difference e+ —e of
the individual backscatter phases as well as their sum
2(. However, within the model of Sec. IID, the tempo-
ral phases of the three beams are related [Eq. (C16)]
and two-channel detection should sufFice to determine
and monitor (. We have not been able to verify this ex-
perimentally and quantitatively at this stage; sometimes
the single-beam spectra remain rigidly in antiphase while
the interferometer phase varies smoothly with respect to
each single beam over wide variations of (. This is at
least partly because the interferometer phase (relative to
either single-beam phase) is a sensitive function of in-
terferometer alignment and partly because of the varia-
tion in backseat ter magnitude with monotonic thermal
d.imensional changes.

B. Experimental observations

With this ring laser system, the most sensitive run to
date is a week-long run (94AG26; 6.92 d, 19—26 August
1994, 598122 s, 20 samples per second). Only a single
beam intensity was monitored in this run, so that we de-
pended on pulling effects to modulate the beam intensity
and reveal the Sagnac fringes. Even so, the signal-to-
noise ratio was of the order of 30 dB (contrary to some
conventions, we define the decibel level by 10log&0 V and
not 20logzo V, where V is the raw photomultiplier tube
voltage, since the latter is already a measure of intensity
and not amplitude). In our initial analysis, the one con-
sidered in greatest detail below, the cutoff frequency f,„&
and Nyquist frequency f~ used in the numerical dedrift-
ing method were 0.0005 Hz and 0.625 Hz, respectively,
since we chose every 16th sample in the run. This was
so as to give a manageable number (N = 747654; such
numbers are reduced slightly to a power of two times an
integer for faster FFTs) of samples for processing. Since
the run duration was retained, the frequency resolution
capability inherent in its reciprocal, the frequency bin
size (1.6914 pHz), was preserved. This gives a Sagnac
line from the Earth's rotation that can be fitted by a
Gaussian with an accuracy of 140 nHz in the line posi-
tion (Fig. 1). This frequency accuracy is a factor 8 bet-
ter than that (1 pHz) given in our last report [1]. The
linewidth from this fit gives a full width at half maximum
power of 6.2 pHz.

The expected rms frequency fluctuation [1] as mea-
sured by a full width at half maximum power (FWHMP)
has the form

6f = 2h fosB/Q2P T
This "quantum noise" limit has been documented for
lasers and compared with 1/f noise, etc. , on several oc-
casions [26—28]. This width will be affected by a vari-
ety of considerations. One curious property of all figures
[29,17—19] such as Fig. 1 is that the FWHMP is invari-
ably a small number (say 4) times the frequency bin size
fb;„=1/T, which itself changes by more than four or-
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FIG. 1. Sagnac line from Earth rotation for the run
94AG26 (19—26 August 1994), using dedrifting as described
in the text.

ders of magnitude in this progression. This refl.ects in
part the tendency to choose a standard value for the file
size N, namely, a value that is convenient for processing
purposes. The bandwidth B is the Nyquist frequency
K/2T (since the electronic bandwidth is much greater)
and from Eq. (41) the ratio of FWHMP to bin size is the
product of ~% and a number that depends only on the
laser, not the data sampling rate or length:

Sf
fbin

Ii fos

Q2P (42)

To estimate this number, we need the product Q P~.
The measurement of Q has been based on two different

measurement techniques, one involving a ringdown time
when radio frequency pumping is turned oK and. the other
involving the asymmetry in the cavity response to a swept
frequency [30]. A recent remeasurement of the ringdown
time in our ring for this purpose gives w = 25 + 1 ps,
where the error is comparable with the simultaneously
measured decay time for the plasma glow and hence Q =
2' fo7 = 7.5 + 0.3 x 10

This figure is a new record, as far as we are aware, for
the quality factor of an optical device. It demonstrates
an improvement in the general performance of the ring
over the two years since the previous reported value (4.5x
10 ) was so obtained, reflecting newer mirrors, improved.
cleanliness of outgassing, the feasibility now of vacuum
bakeout, and the installation of a clean air system. It
is still significantly less than the quality factor [Q
27rP/A (1 —R ) = 8.6 x 10 ], which is commensurate
with the mirror specifications at manufacture (total loss
per mirror 1 —R of &10 ppm), corresponding in fact to a
total loss per mirror of 115 ppm, comparable to the loss
determined by the manufacturer on mirrors returned by
us. The associated finesse E is AQ/P, giving P = 14000
and similarly E = 160000.

We now obtain the total power loss P arising from all
causes including vignetting, etc. , from the measurements
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FIG. 2. Instantaneous frequency drift during the run
94AG26 of Fig. 1.

of Q and of output beam power PI at any port under
single-mode operation. We find (at near the limit of our
power meter) Pq ——1.5 + 1 nW. Since Q = 27r foE,/P,
the circulating power E = 2PIP/c7, and 7 is the power
transittance of a mirror (1.2 + O.l ppm in our case)
we can estimate the power loss as P = 2PqP/rc7
(1.3 + 0.8) x 10 . This gives in Eq. (41) a FWHMP
of 4 + 3 pnz for the initial choice of sample number
(% 750000). This is less than the observed value,
which therefore is a consequence of other effects. The
efI'ect of Nuttall windowing of the data needs detailed
analysis and gives a width of the same order as a few
bins [29]. Processing much larger files should increase the
numerical bandwidth and the quantum noise component
of the FWHMP and reveal the shot noise. We have not
been able to confirm this; at the limits of our processing
ability on a sUN SparcStation 2000 we chose an efFec-
tive sample rate of 10 samples/s and so N 6 million,
for which we might expect via Eq. (42) a FWHMP ap-
proximately equal to 13pnz, approximately double the
observed FWHMP for the original N value; in fact no
appreciable increase of this FWHMP was seen. This is
unexpected, even with the errors mentioned. . The effect
of the dedrifting algorithm on quantum noise also needs
fuller analysis to help determine whether our ring qual-
ity factor Q is so high that quantum noise as well as 1/f
noise has been reduced to an insignificant level.

We give in Fig. 2 the instantaneous frequency as a
function of time in this data run. The first half of this
run has a markedly smaller drift than has previously been
reported, reflecting recent improvements to the mechan-
ical isolation of the Zerodur slab and to the thermal sta-
bilisation of the cavern, for example, by moving dehu-
midifers outside the control shacks and. by installing heat
exchangers on the dehumidified air to bring it nearer the
cavern temperature before its recirculation. Our mir-
rors were not optimally clean, however, and the present
results are capable of significant improvement. As such,
the role of backscatter is significant, even with the present
low temperature drifts. This, with many other such re-
sults, some of which are given later and some of which
involve comparing the observed temperature drifts with
the known thermal expansion of the Zerodur block and
are not detailed here, indicates that drifts are associated
principally with changes in backscatter phase. With the
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relationships between these various signals, like the lock-
in threshold, is a sensitive function of the net backscatter
phase and so of the mirror separations. Removing the as-
sociated drift of the pulled &equency requires a difFerent
kind of stabilization method to the perimeter stabiliza-
tion normally used to stabilize a mode in a cavity and
could conceivably be performed by comparing the phase
of the intensity variations of two such signals so as to
maintain conservative coupling and minimal pulling.
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discrepancy in the pulled frequencies for ( = 0, 7t' shows
us that the monotonic change of the mirror positions has
steered the laser beam onto new mirror spots where the
backscatter characteristics are appreciably difFerent and
helps to explain why in the bottom rows of the table the
ration r does not increase again after the expected (and
found) overall decrease in the first rows.

In monitoring the relative phase of CW and CCW
beam intensity variations, it is convenient to form a Lis-
sajous pattern from these by x-y plotting on an oscillo-
scope. The system is attracted to either the conservative
case of antiphase intensity variations or the dissipative
case of in-phase variations, with a strength that is con-
siderably greater when backscatter is relatively large or
when other coupling effects conspire to raise the lock-in
threshold. For example, when natural neon is used this
strength of attraction increases as the lock-in threshold t

approaches the unpulled frequency f, whereas with iso-
topically enriched neon (Ne:Ne 1:1)it is easier to
verify that separating mirrors by up to a quarter of a
wavelength takes the relative phase of the two beam in-
tensities smoothly through the range 0—m. We attribute
the relative difIjLculty of the same demonstration for nat-
ural neon (Ne:Ne 9:1) to the efFective increase in
beam coupling of dispersion efFects associated with hole
burning in the plasma for the natural isotopic mixture.
Such a behavior may be expected from the earlier analy-
ses, as described in Sec. IID. This suggests that the an-
alytical solutions given earlier in this paper should there-
fore cover, at least approximately, a majority of the cases
of interest and importance provided isotopically enriched
neon is used and that I is not greater than f

APPENDIX A: BACKSCATTERING PHASES

In this appendix we review and extend the analysis
of Rodloff [20] for the distance dependence of the net
backscatter phase and reinterpret and extend the analysis
of Haus et aL [5] for the time-reversal constraints on this
phase at each scatterer.

Backscattering contributes to the time evolution of
each beam's phasor at, say, A. The various backscat-
ter centers around the ring are labeled by n, each be-
ing at the optical path length z ~ from A in the ap-
propriate direction. At the nth center, each phasor
E~ has a distance-induced phase shift relative to A
of exp( —itu~z ~/c). Each wave then scatters ofF cen-
ter n with a local amplitude and phase shift defined
by a complex backscattering amplitude factor A ~ to
give a phasor A ~E~ exp (iw~t —iu~z ~/c). This then
propagates back to A, with the efFect of adding a fur-
ther phase factor exp (iur~z +). Hence the phasor ac-
cumulates a distance-dependent phase shift at A of
exp —in+ (z + —z + + P+) /c. To a very good approxi-
mation (of the order of 10 rad in our system) we may
ignore the nonreciprocities in or*,P~ (and use instead the
average values cu, P, respectively) in the phase of this ex-
pression, so that for this part of the calculation we may
take z + P —z = z and use uP = 2mcN to show
that the return journey doubles the distance-dependent
phase [20]; the efFect of backscattering at A is then to
inject per unit time a complex &action

B+ ——P A + exp (2iuz /c)

V. CONCI U SIONS

The harmonic structure of the interferogram and of the
single beam intensities, while also if approximately of the
character of a geometrical progression with the pulled fre-
quency as the fundamental, is in general less rich than
that of the instantaneous phase, the amplitude variations
taking strength from the higher harmonics. The phase

of one amplitude E+ into the other E~.
The form of this expression is of fundamental im-

portance. Note first that the distance-dependent phase
is identical for both beams; the backscatter fractions
R+, R differ only through the difference between A ~,
i.e. , the nonreciprocity of local backscattering amplitudes
[20]. We define amplitudes and phases of these &actions
by R+ ——r+ exp is+ and similarly for the local scattering
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a, b

(A2)

where A is a numerical factor, a, b, c are initial, final,
and intermediate electronic states, radiation states are
suppressed for simplicity, (e, u), (e', u') denote the po-
larization vector and the &equency of the incoming (ab-
sorbed) and the reradiated (emitted) photons in the
corresponding virtual interaction process, and k, T are
Boltzmann's constant and temperature. The photons
are associated with the incident electric field and the in-
duced polarization P, respectively, and interact with the
electronic systems through the coupling Hamiltonian V,
which, depending on the choice of gauge, may be written
as —qA(e) p/m or —qE(e) r [31,32]. In this problem we
take initial and final states a, 6 to be degenerate, so that
only Rayleigh scattering is significant: u = w .

In the case that we apply closure to the intermediate-
state-dependent denominators and ignore the photon en-
ergies in the denominator (thus assuining that the elec-
tronic energy differences, being nonresonant, will be more
significant), the efFective operator O satisfies the con-
straint of being HT symmetric (O = Qt). This leads
to the response-tensor Hermiticity condition required by
Haus et a/. for dissipative coupling, directly from the
fundamental property of antilinearity of time reversal
(a IVI b) = (a V b)' = (b Pt a), coupled with the re-
alization that in an otherwise time-even system a ket Ia)
may be replaced by its time reverse Ia) in the summa-
tions of Eq. (A2) without affecting the thermal or the

amplitudes A„~——A ~ expie ~. The net phases e+, e
are critically dependent not only on the phases e„~of
the backscatter at each center but also on the separa-
tion z between the centers through the common factor
exp (i2~z„/c).

As regards the former dependence, Haus et al. [5]
showed (ignoring the efFects of partial perimeters z ) that
the symmetry and reality (more generally, the Hermitic-
ity) of a response tensor such as the susceptibility or
polarizability is sufBcient to guarantee conservative cou-
pling at the local level for each scatterer. In the notation
used here, the value vr/2 for 2( = e„++ e„refiects a
Hermitian character for the polarizability tensor linking
the applied electric field to derived polarization in the
scattering particle n.

This property can be traced further still, as indeed
for the Sagnac frequency itself [1], to fundamental con-
straints arising from time reversal. A more fundamental
description of the origin of such Onsager-like symmetries
of response tensors is that of time-reversal symmetry. We
show and extend this here within a general quantum me-
chanical formalism. The counterpart in a quantum pic-
ture to the susceptibility tensor of Haus et al. is the
expression

energy factors. More details of such arguments are in
earlier works [31,32].

APPENDIX B: PHASOR DIAGRAMS FOR
CONSERVATIVE AND DISSIPATIVE COUPLING

Physical interpretations of the role of laser gain may be
ofFered in the context of dissipative and of conservative
coupling [11]. The counterrotating beams form a stand-
ing wave light pattern at rest in the local Lorentz frame,
the beat signal being produced as the detector moves
past the beads of the necklace [33]. In the absence of
backscatter and pulling, the necklace is unafFected by the
instantaneous position of the mirrors and detector. How-
ever, as has been shown vividly in recent demonstrations
[15,16], for the dissipative case backscatter or vignetting
has the efFect of constraining the movement of the beads
of the necklace, which responds as far as is practicable
by altering the bead positions so as to minimize losses [5]
in such an active device. If an imperfect output mirror
is only slowly dragged along the necklace, the beads on
the latter are carried along with it; the laser is locked.
At faster speeds the laser unlocks and the beads "slip"
periodically on the mirrors, thus undoing some of their
enforced motion in between the more "frictional" parts
of the interaction. The first efFect of this is that the neck-
lace is moved in a jerky or sawing motion, thus adding
harmonics to the original interferogram and also giving
a periodic variation to the instantaneous frequency Eq.
(13). Second, the laser beams have to recover lost energy
in the interim through laser gain. This makes the in-
tensity of each beam Huctuate accordingly [Eq. (2)]; the
difFerence in this dynamic behavior of the instantaneous
frequency (the bead position) and the beam or interfero-
gram intensity (the bead size) is a direct reHection of the
importance of laser gain on the time scale of all related
effects (the inverse of the pulled &equency).

In the case that a = P = ( = 0, Eq. (1) takes the
simplified form

dE~
dt

= iug E~ + r+ E+ exp is+.

A simple perspex model on an overhead projector dis-
plays the major predictions (Fig. 6); the phasor diagrams
follow those of Wilkinson [11].Two phasors represent the
beam amplitudes and rotate with respect to each other
since tv+ —ur g 0. A proportion r+ (assumed constant)
of one phasor is added to the other, afFecting the time
dependence of the magnitude and angle of each phasor
in a way that is characteristic of the additional phases
generated by the backscattering factors expie+ through
the sum ( = (e+ + e ) /2. If g = 0 mod~, corresponding
to a symmetrical pattern of phasor addition [Fig. 6(a)],
it is readily perceived &om the diagram (or better, from
a model) that the phasors have the same length at any
instant (i.e. , beam intensities are the same function of
time), but that their relative angle (&equency pulling)
is n1aximally afFected by backscatter. This corresponds
to dissipative coupling. If g = n/2modm, phasor addi-
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f —v pcos20 l + f sin20
cos , tanf2+ v2 f + l sin20' pcos20

The moments of the wave form are de6.ned in general

by fo = (1iT) f~ fo (t) dt. The first moment or mean
frequency is

2(f + l) "~' dx f + lfo=
o (cos '2: + u sin 'x) ~u

(C3)

(see integral 647 in [34] or integral 2.553 in [35]). Simi-
larly,

(cos 2x + u sin 2z)

FIG. 6. A simple visualization of the effects of pulling on
phasor amplitude and angle. A perspex parallelogram struc-
ture (filled areas) smoothly hinged at the small circles permits
a proportion (dashed vector) of one beam phasor (thin solid
vector) to be added to another, giving the final phasors (thick
solid vectors). C—:(u+ —u ) t increases in time linearly and
is the nominal Sagnac phase; Q (t) is this phase adjusted for
pulling. (a) Dissipative coupling. Q (t) is alternately smaller
and larger than C (t) as the latter varies from 0 to ~ and
from vr to 2m, respectively. On average, it is less, hence the
frequency is pulled down. (b) Conservative coupling. The
geometry ensures that Q (t) is equal to 4 (t) and is a linear
function of t.

l
f,' —fo = Qp (f —p) =

2
(c5)

A Fourier analysis gives

2 /2~nt )
fo (t) cos ! ! dt

o 4 T )
2 (f + l) i cos (2nx) dz

7c ~j2 cos x+ tcsln x

2f2 cosny dy = 2pr"f —l cosy

(see integral 648 in [34] or integral 2.553 in [35]). Hence
the standard deviation in the pulled &equency is

tion has an antisymmetrical character [Fig. 6(b)] and the
phasor length variations are in antiphase, while their rel-
ative angle is a constant, so that the instantaneous phase
shows no pulling eKects in the approximations used here.
This corresponds to conservative coupling.

APPENDIX C: FULLEST NOTES ON
DERIVATIONS OF SEC. II

1. Dissipative ease

0—:7rpt + g/2, (C1)

so that

For the dissipative case, we note that an alternative
method for deriving @ is given in connection with the
analytic signal approach in Sec. III. Note from Eq. (11)
that the limiting case l —+ 0 retrieves the linear accu-
mulation of the phase @ -+ 2vr ft, which corresponds
to a signal of constant frequency f Note also th. at
f + v = f sec apt (f + l sin 20), where

(see integral 3.613 in [35]).
Equation (14) admits the solution f = p (1 + r2),

2pr for an arbitrary constant p. Hence Eq. (13), and by
integration Eq. (C2), can be reexpressed as

p(1-")
!fo —— , g = arctan!1+ r —2r cos 2apt (1+r cos27rptj

(c8)

where the integration constant is subsumed into Q. This
leads to the Airy function as described in the text for the
representation of the pulled wave form.

For the case b = 0 (in which the effect of pumping a
is either weak or, for short times, comparatively unregu-
lated) the solution is

E = e '
(f + l sin 20) . (c9)

This result, valid for times previous to its runaway be-
havior becoming inappropriate, clearly displays inten-
sity variations in sympathy with the instantaneous fre-
quency variations and with the same modulation depth.
When neither 6 nor a is zero, Eq. (18) can be lin-
earized and so integrated by making the substitution [14]
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8J
dt

+2vrlJcosg = 2mbt e cosg. (C10)

E = vra/ [b —J exp (—2mat)], which gives the linear dif-
ferential equation

harmonics for the are paradoxically less for the inter-
ferogram than for the instantaneous frequency since the
intensity fIuctuations tend to ofFset the harmonic eKect
of the phase fIuctuations.

The integrating factor for Eq. (C10) is E
exp (2vrl f dt cos P) = f + I sin (27rpt + y) and so

J = 2vrblp
dt cos 28e ' + K

l
(C11)f + I sin (27rpt + y)

2. General case

In the general case, it is useful to note that the ex-
trema of the beam intensities and of the instantaneous
frequency occur at times t~, t~ when from Eqs. (33) and

b/pe2 t
(p sin 20 + a cos 20) + 2vrMpK/h z

h2 (f + 1sin28)

(34)

cos (g (t~) ~ () = 0, cos g (t~) = 0, (C15)

A„= Pfrl/2+ t—(rI+ —Qrr '), (C13)

where P, Q are phase factors dependent on angles such
as y, p. For low gain or lock in (hf )) al), the geometric
progression has the ratio rI lA /A il —+ al/2hf

The interferometer wave form [Eq. (22)] has a time
dependence that is similar to that of the single beams
[Eq. (19)]. Indeed, the denominators of these equations
are identical and hence the harmonic structure that they
on their own imply is also the same. The numerator how-
ever involves a difFerent admixture of dc and fundamental
signals, so that the general harmonic amplitude has the
form [in analogy to Eq. (C13)]

A„= P'iry/2+ (rl+—' —Q'rl '), (C14)

where again P', Q' are phase factors. Once again, for
low gain or lock in, A is proportional to rI+ so that
the harmonics form a geometric progression with ratio
rI -+ al/2hf; when either t or a tends to zero, rI also
vanishes; harmonic content of the interferogram from a
ring laser is contingent on the existence both of pulling
and of laser gain and the relative strengths of the higher

lt being a constant of integration, so that Eq. (19) fol-
lows. The last term in the denominator of Eq. (19), not
retained by Etrich et aI, is needed for compatibility with
Eq. (C9), but can be ignored in the long time limit.

Equation (20) led to an argument in which backscatter
and beam intensity variations were seen to tend to cancel.
This scenario is modified. by the harmonic contributions
from the sin 20 factor in the numerator of Eq. (19), which
are important only when t is a substantial fraction of f.
In the general case, we find from inserting the Fourier
decomposition of the denominator of Eq. (19) into that
equation that up to an overall constant the nth harmonic
has the amplitude

respectively. Hence the extremal phase value for, say, a
maximum of the instantaneous frequency is the numer-
ical average of those for the maxima of the two single
beam intensities. In the limit of small backscatter and
pulling (when vP is approximately linear in time, with
coefficient 2vrp) the extremal time tJ; for the instanta-
neous frequency fIuctuations also is the average of the
corresponding times t~ for the two single beams. The
separation in time immediately gives the relative phase

(C16)

For stronger pulling, the nonlinearity in the dependence
of @ on time will complicate these mutual phase relation-
ships, which will be defined by the solution of Eq. (C15)
together with Eq. (35) for the extremal times. Since this
nonlinear behavior gives the result [Eq. (12), with the
redefinitions of this section] that the instantaneous fre-
quency spends the majority of its time below its median
value, the separations between the extremal times may
be expected to be less than those given by Eq. (C16).
We note that even in this nonlinear case, all beams as
well as the interferogram have their phases adjusted by
the phase difFerence e+ —e in such a way (viz. , entirely
through the quantity @ ) that the respective times at
which the intensities of the counterrotating beams reach
their respective extremal values depend on the backscat-
tering phases only through g.

It may be noted also that a Fourier analysis of I' (t) =
tan@ gives a geometric progression similar to Eq. (C7):
I'2 „——I'2 „r&,where (again from integral 3.613 in [35])
ry = B(1/r) . For sm—all r, r~ = r/2; the t—angent of
the instantaneous phase is more harmonic than the raw
signals. As r tends to 1, r~ tends to —1: substantial an-
harmonicity is shared by both kinds of spectra. However,
the relationship between these ratios is nonlinear.
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