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Theory of double photoionization of a two-electron atom:
Circumventing the boundary conditions
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We describe a method for calculating cross sections for double ionization of a two-electron atom
(or ion) by one or more photons, and we present results of an application to double ionization of
He by one photon. The method does not require the explicit inclusion of the asymptotic boundary
conditions for two-electron escape; rather, the contribution from the single ionization channel to the
inclusive rate is removed by using the projection operator that projects onto this channel. Energy and
angular distributions for double ionization can be obtained by modifying this projection operator.

PACS number(s): 32.80.Fb, 32.80.Rm

I. INTRODUCTION

The theoretical treatment of double ionization of an
atomic system by one or more photons is complicated
not only by the importance of electron-electron correla-
tion but also by the boundary conditions for two-electron
escape. In this paper we describe a method for treating
double ionization of a two-electron atom (or ion) without
the explicit inclusion of boundary conditions. The inter-
action of the atom with the radiation field is treated as a
perturbation, but within the framework of perturbation
theory the method is in principle exact. We present re-
sults of an application to double ionization of helium by
one photon, along with a comparison to other theoretical
and experimental data.

Our method is based on an expression for the total Aux
passing through a hypersphere of very large radius. In
place of asymptotic boundary conditions we invoke pro-
jection operators. Thus, double ionization is separated
from single ionization by projecting out the bound states
of the one-electron ion (or atom) left behind after single
ionization. Energy and angular distributions for double
ionization can be obtained by modifying this projection
operator, as shown below. In the next section we describe
the theoretical approach. We begin by considering just
one-photon ionization, and then we generalize to multi-
photon ionization. In Sec. III we present some results.

We use atomic units, and we assume that the atom (or
ion) is initially in a bound state represented by l@o), with
bound-state energy Eo.

A. One-photon ionization

The rate I'q for the atom to ionize by absorption of one
photon is, in lowest order perturbation theory,

I'i = 2~) . I(@-IV+I@o)I'~(E- —E-) (2)

G (E) = 1/(E —H ), (4)

and noting that, if E is real and if g is positive but in-
finitesimal, we have

ImG (E+ ig) = 7rh(E —H );—
this enables us to express Eq. (3) in another well-known
form:

where E = Eo + w and where the sum over n includes
an integral over the continuum. The summation becomes
implicit if we rewrite Eq. (2) as

I i = 2~(@oIV-~(E- —H-) V+ l@o).

Introducing the resolvent operator G (E), defined as

II. METHOD I'i ———2im(@olV G (E + i')V+l@o). (6)

We denote the interaction of the atom with the radia-
tion field as

V(t) —= V+e * '+ V e'"',

where u is the frequency and V = V+. As just noted, we
assume that the radiation is sufficiently weak that V(t)
can be treated as a perturbation. I et H be the Hamil-
tonian of the bare two-electron atom (or ion), and let E
and I@ ) be its eigenvalues and eigenvectors, where n is
a continuous label when it runs over continuum states.
The continuum eigenvectors are normalized on the en-
ergy scale. We neglect spin-orbit coupling in the atom.

The rate I'q is for total ionization, and therefore in-
cludes the contributions from both single and double ion-
ization. To extract the rate for double ionization we be-
gin by introducing the factor G (E +irl)(E +i' —H ),
which is just unity, to the left of G (E + iq) in Eq. (6),
and we use

G (E + iri) = G (E —iri) —2m.i8(E —H )

to rewrite Eq. (6) as

I'i ———2Im(C, ' l(E +irl —H )IC, )
+47r(@plV 8(E —H )V+I@'p),
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where

l4(i'l) = G (E +i')V+l@,).

It follows from Eqs. (3) and (8) that

r, = 21m(eI ll(z. + q —H.)lcI ').

(9)

(10)

bound. If (r2l@ ) represents a bound state of the resid-
ual one-electron ion (or atom), whose energy is e, and
if f (Ai) is the amplitude for electron 1 to emerge into
the solid angle Oq and for electron 2 to be in the bound
state m, the boundary condition appropriate to single
ionization is

At this stage we can drop the infinitesimal term ig, it be-
ing understood that l@i ) satisfies outgoing-wave bound-
ary conditions (appropriate to one or two electrons mov-
ing outwards to infinity). Since 21m(z) = —i(z —z*), we
have, &om Eq. (10),

Using Green s theorem in six dimensions, noting that
(H —H") = (T Tt), w—here T is the total kinetic energy
operator for the electrons, we can transform the volume
integral on the right-hand side of Eq. (11) to a surface in
tegral, which gives the Aux passing through a hypersphere
of (infinitely) large radius. Hence, when I'i is expressed
in the form of either Eqs. (10) or (11), it depends only on
the asymptotic form of l@i ).

Proceeding further, we collect the coordinates ri and
r2 of the electrons relative to the nucleus into a single
six-dimensional displacement vector R = (ri, r2). The
wave function (Rl@(i l) describes the motion of the elec-
trons in the final state, after the atom has absorbed the
photon. The asymptotic boundary condition for two-
electron escape is most conveniently specified in terms
of the hyperspherical coordinates B, 0;, Oi, and 02,
where R = gri + rz, with ri ——lril, r2 ——

l 2l, where
a = tan (ri/rz), and where Ai and 02 are, respec-
tively, the solid angles de6ning the directions of rz and
r2. If both electrons escape, they collectively have a
(six-dimensional) aymptotic momentum K which points
along R, with K /2 = E (where K = lKl). Denoting
the amplitude for two-electron escape as E(Oi, A2, n),
the asymptotic boundary condition is [1—3]

R —«~, n~~/2 (15)

where ki /2 = E —e, (, = (Z —1)/ki, and the
sum is over bound states only. If instead electron 2 es-
capes and electron 1 remains bound, we interchange the
coordinates of the two electrons on the right-hand side
of Eq. (15), multiply the amplitude by (—1)s, and let
o. ~ 0. Hence to remove the contribution of the single-
ionization channel to ri, we simply multiply lc'i ) by
the projection operator Q which annihilates the bound
states of the residual one-electron ion (or atom) that is
left behind after one electron has been removed. This
projection operator is Q = 1 —P where [4]

P = Pg + P2 —PiP2, (16)

and where P~ is the operator which projects onto the
subspace of bound states occupied by the jth electron;
in position space we have

where the sum is over all bound states of the residual one-
electron ion (or atom). Note that P~ is rather simple (it
involves a sum over bound states that are known exactly).
The operator Q, while removing the single-ionization
channels, leaves unchanged the asymptotic behavior of
two-electron escape, i.e. , Eq. (12). Consequently, the rate
for double escape is

iKR+i g ln(KR)
(RlcI'l) ~ ' „,~(n„n„~),~5i2

r++ = i(c,"lq(H. —Ht)qlc('l)
= 21m(e&, 'l lq(Z. —H. )qle('l).

(18)

(19)

R —i oo, a g 0, ~/2 (12)

where, with Z the atomic number of the parent nucleus,
with ki and k2 the speeds of the electrons relative to
the nucleus, and with ki2 the relative speed of the two
electrons,

Z Z 1= —+ ——
kg k2 ki2

Note that (E —H )Qlci ) is of order O(1/Rz)ql@i ),
and although we could drop Z on the right-hand side of
Eq. (19), since it is real and therefore does not contribute
to the imaginary part of (C)i llQ(E —H )Qloi ), its
presence is required to ensure that the real part of this
expression is finite.

Recalling that T is the total kinetic energy operator
for the electrons, we have, from Eq. (18),

Note that the Pauli principle implies that, if S is the total
spin quantum number of the electrons,

r++ = '(e,"lq(T —T&)qlc ~'l). (20)

P(&i, &2, o.) = (—1) +(&z) &i)~/2 —o.). (14)

However, the limit B m oo does not guarantee that both
electrons escape; we must also have n g 0, vr/2. If o. = 0
or vr/2, one electron remains behind, possibly bound to
its parent nucleus —corresponding to single ionization.
Suppose that electron 1 escapes while electron 2 remains

Using Green's theorem to convert the volume integral
to a surface integral and using the asymptotic form of
Ql@i ), given by Eq. (12), we obtain

sin o.' cos 0! dO q d02 dn.

(21)
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where II includes the "optical potential:"

H = QH Q+QH PG (E )PH Q. (24)

To summarize, the rate for double escape can be ob-
tained without invoking the complicated boundary con-
ditions that apply to double escape; we only need to solve
an inhomogeneous equation [Eq. (22) or (23)] subject to
outgoing-wave boundary conditions. After determining

I@1 ), we can evaluate the volume integral on the right-(1)

hand side of Eq. (19). While it may appear that all we

have done is replace I@1 ) by Ql@1 ) in the volume in-
tegral, we stress that in deriving Eq. (19) it was essential
to transform to the surface integral as an intermediate
step.

B. Energy and angular distributions

The integrand on the right-hand side of Eq. (21) is
proportional to the triply differential cross section:

d 0
oc KIE(oi, o2, a)l,

dOg dO2do.
(25)

corresponding to the probability of ejecting the two elec-
trons into the directions Oq and O2, while the ratio
of their momenta is tan o. = ki/k2. We now show
that it is possible at least in principle —to extract the
triply difFerential cross section, without explicitly invok-
ing the boundary condition. To this end we introduce
Qx = go Q, where, in coordinate space, y = y(O1, O2, n)
is a real multiplicative function depending only on angles,
i.e., on o. , Oi, and O2. (Note that Qx is, in general, not
a projection operator. ) We define

I'i +
M —= Im[&QC'1' l(E- —H-) I

Qx@'i")

+&Q.c' 'I(E- —H-) IQ+")]

We can determine I@1 ) by solving the inhomogeneous
equation [see Eq. (9)]

(E. —H. ) l~,")= V+ I@p)

subject to outgoing-wave boundary conditions. Actu-
ally, we only require a knowledge of Ql@1 ), not the full(~)

I@f1 l). If we put IC'1 l) = (P+

Q)limni

) in Eq. (22), and

premultiply by P and Q in turn, we can eliminate PI@f1 l)
to give an equation for QI41 ) directly:

(E —H )QICi ) = Q[1+ H PG (E )P]V+I@p),

(23)

M) 0, cr =+, (29)

where UN(z) is the Chebyshev polynomial of the sec-
ond kind and where, if PLAlM(O1, O2) is the spherical har-
monic which couples the one-particle spherical harmon-
ics YA (Oi) and Yl (O2), so that M = m + m' and
IA —ll (L (A+ l,(„„)&L'M(O1 O2) + [&L'M(O1 O2)1*

v 2(1 —bM p) + 2hM, p

(30)

&L'M (Oi O2) —IXL'M (Oi O2)]*
» 2)—

+2i

M ~ O. (31)

Note that the Zi~, with M & 0 and o. = +, are
real two-particle spherical harmonics. The polynomials
IINLM (Oi, O2, li) satisfy the usual orthogonality rela-
tion on the hypersurface:

N&L~M~~~ (Oli O21 li)IINLM~(O15 O29 li) sin (li)

(li)dOldO2dli ~N'L'M'A'l'cr', NLMAlcr.

We can expand IE(O1, O2, o.)l in the form

KIT(O1, O2, n)l'

Ni MAla
liNLMAL FINLMAl (Ol O2 o') (33)

where in general the sums over L, M, and 0. are re-
stricted by symmetry considerations. The coeKcients
of this expansion can be evaluated by inserting y
IINLMAl (Oi, O2, n) in the volume integral of Eq. (26);
utilizing the orthogonality property above yields

the hypersurface) commutes with y. To extract the triple
difFerential cross section we could choose y(O1, O2, n) to
be proportional to a b function in the angles, but it is
perhaps more convenient to proceed as follows. We in-
troduce the complete set of (real) polynomials that are
orthogonal with respect to the weight appearing in the
surface integral of Eq. (28). These polynomials are

2
IINLM~(O1) O21 lA) = UN(COS 2CX)ZLM~(O1) O2) )

We have GNLMAl (Ol, O2, o') = F [IINLMAl ]. (34)

2

+(+' 'IQ(T —T')Q I+' ')] (»)
= K I O»O2, o. y O»O2, o.

x sin (n) cos (n) dOidO2dn, (28)

where in the second step we again used Green's theo-
rem, noting now that the radial derivative (normal to

Once these coeKcients have been determined we know
the triply difFerential cross section.

C. Multiphoton ionization

To the extent that the interaction V(t) is periodic there
are no temporal boundaries, and the solution I4(t)) to
the time-dependent Schrodinger equation is given by the
Floquet ansatz [5]:
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Ic(t)) = -").-'-'Ic-)

where E' is the quasienergy eigenvalue and where the har-
monic components IC' ) satisfy the coupled equations [5]

(e+m~ —H. )Ic ) = v+Ie, )+v Ic +,).
(36)

Wt (t) ia(t) P W ia—(t) P

If we write

IC"(t)) =e ").e * 'I@' )

(42)

(43)

IC'0') =
I @o) (37)

Within the &amework of perturbation theory we may,
to leading nonvanishing order, replace I4 ) by I4~ )),
where

W'(t) = ) e ' 'W', (44)

the new harmonic components IC" ) satisfy the coupled
equations

and where I4 )) is of ImIth order and for m ) 1 is
given by

(t + m~ —T —Wo)I@ ) = ) W„I4' „).
n+0

(45)

(z .—H. ) Ie(-)) = V+I+(--,'), (38)

V(t) = —A(t) P, (39)

where A(t) is the vector potential and where P is the to-
tal canonical momentum operator for the electrons. [We
are free to remove the A (t) term by a gauge transfor-
mation. ] The wave functions that describe the motion of
free electrons in the presence and absence of the radia-
tion field are related by the unitary operator e
where

t
a(t) = — Ct' A(t').

Thus we introduce the state vector

where E = Eo+m~. The flux formula, Eq. (18), could
be immediately generalized to N-photon ionization were

I4~ ) to satisfy the correct asymptotic boundary condi-

tions. Unfortunately, I4~ ) does not satisfy the correct
asymptotic boundary conditions when N ) 1. The rea-
son is that, since we have assumed the interaction V(t)
to persist for all time, an electron that has escaped from
the nucleus will nevertheless continue to move in the ra-
diation field and may therefore absorb and emit virtuaL

photons. Consequently, the index % of I4~ ) refers to(x)
the total number of real and virtual photons absorbed.
Within the &amework of perturbation theory, an elec-
tron, as it leaves the nucleus, may absorb N —m real pho-
tons, and m virtual photons, where m = N;„,. . . , N,
with N;„the minimum number of photons which the
atom must absorb to singly ionize; only for N = 1 are no
virtual photons absorbed.

The way to circumvent this problem is to transform
the Hamiltonian so that an electron at asymptotically
large distances does not experience the radiation Geld.
This is most conveniently done if V(t) is expressed in the
velocity gauge, and therefore we write

Within the framework of perturbation theory we may,
to leading nonvanishing order, replace IC" ) by IC"( ),
where

m

(Z .—H.)Ie' ') = ) W„'(")IC'-„")),m &1,
n=1

(47)

where 8 ' is the leading order, i.e., nth order, ap-
proximation to W', with R'0 ——W. Since the right-
hand side of Eq. (47) vanishes at asymptotically large

distances, IC'~ ) satisfies the correct asymptotic bound-I(X)

ary conditions, i.e. , Eqs. (12) and (15) with E replaced
by E~ . It follows that the rate for double ionization by
N photons is

I'++, (C, '( )IQ(H Ht)QIC, '( ))

= 21m(C~( )IQ(E~ —H )QIC~( )),

(48)

(49)

where the presence of E~ on the right-hand side of
Eq. (49), while not contributing to the imaginary part
of (4~ IQ(Eri~ —Ha)QI@~ ), ensures that the real
part of this expression is finite.

We can express I'~+ in terms of the original harmonic

components IC ), as follows. For simplicity, assume
that the light is linearly polarized, in which case we can
write

a(t) =—ao sin((ut). (50)

It follows that, with J (x) the regular Bessel function,

—ia(t) P ) —inst J ( P) (51)

(46)

and where IO'( )) is of ImIth order and for m ) 1 is
given by

I~'(t)) =—"" Ic'(t))
From Eqs. (35), (41), (43), and (50), we have

(41)

The Hamiltonian of the atom interacting with the field
is transformed from H + V(t) to T+ W'(t), where, with
W the sum of the atoinic potentials, W'(t) is the space-
translated potential

IC" ) = ):J---(ao . P)
I
C'-) (52)

and hence within the framework of perturbation theory
we have, expanding the Bessel function in a power series
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and keeping only the leading term,

2-'a . P ~

[@i(rn)) ) ( ao ' ) [@(n)) ) 01A ~
( ))

Consequently, combining Eqs. (48), (49), and (53), we obtain the final result

N N
1

&—Nmin + —+min

N N
1= 2Im 2» " "'(N —n)!(N —n')!+—Nmin + —Nmin

x(e(")[(a P)( )q(Z —H )q(a P)( )[e(, )).

(54)

(55)

Recall that N;„is the minimum number of photons
which the atom must absorb to singly ionize, and note
that we have used the fact that for n ( N;„,or/and
n' (N;„,we have (4„"~(ao. P)( ")q(H —H )q(ao.
P)( ) ~4, ) = 0. For N = 1 we recover Eq. (19)
&om Eq. (55). The [4' ) can be obtained by solving
Eq. (38).

III. APPLICATION

We have calculated the cross section for double ioniza-
tion of He by one photon, and also the total cross section,
using Eqs. (19) and (10), respectively. We solved Eq. (22)
by expanding [@o) and [4~ ) on a basis composed of the
functions S"t(rq)S„"&(rz)+&M(Aq,02), where S"&(r) is a
(complex) radial Sturmian function [6] (which is a poly-
nomial of degree n —l —1 multiplied by e'""). As usual, we
chose K to lie in the upper right quadrant of the complex
plane, so as to describe both closed and open channels
[5, 7].

In Table I we present results for the total cross section
(single plus double ionization) and we compare to the
data recently measured and compiled by Samson et al.
[8]. The contribution of double ionization to the total
cross section is roughly, on average, about 3% (see Fig.
1) but the discrepancy between our calculated results and
the experimental data is smaller than 3%%uo at the higher
photon energies.

In Fig. 1 we present results for the ratio of cross sec-
tions for double to single ionization, and we compare to
both theoretical [9, 10] and experimental [11—17] data of
others. The experimental data are quite scattered. Nu-
merous calculations have been reported for double pho-
toionization of helium (see, e.g. , [18—23]) and we can-
not present all results; we have chosen to compare with
two sets of recently published results. The calculations
of Hino et al. [9] were based on many body perturba-
tion theory. Their results are in excellent agreement with
ours, but it is unclear whether this is fortuitous; besides,
our results, while obtained &om an ab initio approach,

TABLE I. Total cross sections for ionization of helium
by a single photon (frequency u) obtained from theory (this
paper) and from interpolation of the measured data given in
Ref. [8). Numbers between square brackets indicate powers of
10.
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174.254

Theory
0.567
0.524
0.484
0.416
0.348
0.294
0.250
0.214
0.184
0.160
0.140
0.123
0.109

9.63[-2]
8.58[-2]
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0.538
0.501
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0.403
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0.249
0.218
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0.163
0.142
0.123
0.107

9.36[-2]
8.36[-2]
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FIG. 1. Ratio of cross sections for double to single ion-
ization of helium (by one photon) vs photon energy in eV.
Theory: present, solid line; Ref. [9], dotted line; and Ref.
[10], short broken line. Experiment: Refs. [11],(0); [12], (*);
[»] (&); [14], (~); [»], (x); [16], (&); d [»] (C))
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are not converged to better than a few percent with re-
spect to the size of the Sturmian basis set. The calcula-
tions of Proujx and Shakeshaft [10] were obtained from
an approach which explicitly incorporated the boundary
conditions, but within a stationary phase limit [1]. Again
a Sturmian basis was used. We suspect that inexact con-
vergence (of the basis) is at the root of why the results of
Proulx and Shakeshaft are significantly higher than the
present results.

In conclusion, we have formulated a method for calcu-
lating cross sections for double ionization which does not
require the explicit inclusion of the asymptotic boundary
conditions for two-electron escape. We have tested the
method in an application to one-photon double ioniza-

tion of He. In principle, we could calculate di8'erential
cross sections, but we did not do so since they are most
conveniently calculated in hyperspherical coordinates, as
described in Sec. IIB.
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