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Gap 2n pulse with an inhomogeneously broadened line and an oscillating solitary wave
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The gap 2~ pulse or gap solitary wave of self-induced transparency at an inhomogeneously broadened
line of a resonant Bragg periodical structure has been found theoretically as an exact solution of the
coupled-mode Maxwell-Bloch equations. In the case of a slight violation of the Bragg condition at exact
two-level resonance, the analytical solution for the gap 2m pulse with phase modulation has been ob-
tained. Furthermore, the existence of an oscillating pulse that periodically changes in amplitude and in

the sign of its velocity has been numerically shown.

PACS number(s): 42.50.Rh, 03.40.Kf

I. INTRODUCTION

Interest in nonlinear optics of periodical structure has
considerably grown in the last years. Most of the
theoretical research in this field concerns the properties
of gap solitary waves [1—11]. Due to the nonlinearity of
the interaction between field and medium these localized
light pulses are propagated at a Bragg frequency within
the linear forbidden gap band of the periodical structure.
They appear both in the resonance grating like the vec-
tor, two-wave soliton of self-induced transparency (gap
2m. pulse) [1] and in the periodically modulated medium
with Kerr nonlinearity [2—7, 10,11]. The nonlinearity
causes the localization of two strong, coupled Bragg
modes within one pulse; while in linear systems the
diffraction leads to pulse dissipation. The coupled-mode
Maxwell-Bloch equations describe the problem of
coherent interaction between an intensive field and an
infinite periodical structure formed by the set of thin lay-
ers of two-level atoms. At exact resonance (6-function
spectrum line) these equations are replaced by a com-
pletely integrable sine-Gordon equation for a one-
dimensional [1] and a two-dimensional [9] medium. The
exact, solitonlike solution of coupled-mode equations for
the field in nonlinear refractive periodic waveguide has
been obtained by Aceves and Wabnitz [5]. Note that, in
general, the coupled-mode equations for resonance and
Kerr nonlinearity are not completely integrable, and their
exact solutions are gap solitonlike waves or "gap soli-
taires" [11]. The process by which the gap solitary waves
are formed in finite medium by an incident field was stud-
ied by numerical integration [6]. For the resonance lat-
tice the delayed pulse reflection has been found [1,8].
The first experiments have displayed the optical bistabili-
ty at the Bragg frequency [12,13], predicted earlier
theoretically [14], and the nonlinear Bragg reflection
from the resonant polymer, periodic structure [15].
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These warrant optimism for the success of future experi-
ments to find the gap solitaires.

In the present paper, we study the propagation of field
in resonant Brag g grating with an inhomogeneously
broadened spectrum line which is the more realistic phys-
ical problem. The exact gap 2m pulse solution has been
obtained for two-wave, Maxwell-Bloch equations of self-
induced transparency (SIT) at arbitrary line shape. The
gap solitaire also exists under a slight violation of the
Bragg condition in a homogeneously deformed structure
at exact two-level resonance. In that case there is a small
region of incident field amplitude within which the pulse
evolution leads to an oscillating state with a periodically
changing of (1) the field amplitude, (2) the inverse popula-
tion of atoms, and (3) the sign of pulse velocity.

II. THE COUPLED-MODE MAXWELL-BLOCH
EQUATIGNS AND A GAP 2n PULSE SOLUTION

The one-dimensional resonant Bragg grating (RBG) is
assumed to consist of periodically positioned thin layers
containing two-level atoms. The incident quasimono-
chromatic field with wavelength I, is normal to resonance
planes of the grating. The structure period d exactly
satisfies the Bragg condition d =m A, /2, where m is an in-

teger. To give a concrete expression to the model, the
period of structure d is taken here to be equal to A, and
the resonant layer thickness must be smaller than A, . In
that case there are only two diametrically opposite points
on the Ewald sphere, so it is possible to limit the number
of Bragg modes using a two-wave approach. The RBG
can be realized using a periodic structure of quantum
wells with two-dimensional excitons in a semiconductor
[16], a copolymer multilayer structure [15], or a periodic
erbium-doped fiber waveguide [17].

Provided the exact two-level resonance the coherent in-
teraction of quasimonochromatic field

6'(x, t) = ,' [E+(x,t)exp(ikx —icot)—
+E (x, t)exp( —ikx i cot ) ]+c c—.

with the resonant matter described by semiclassical,
coupled-mode Maxwell-Bloch equations. These describe
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the slowly varying envelope of complex electric-field am-
plitudes of the forward and backward waves E—+, the di-
mensionless characteristic of complex atomic polariza-
tion P', and the inverse population of atoms n. The equa-
tions have the following form [1]:

Q,+—(x, t)+Q,—=P'(x, t),
P,'(x, t) =n (x, r)[Q+(x, t)+Q (x, t)),
n, (x, t)= R—e[P'*(x, t)[Q+( xt)+Q (x, t)]] .

Q(x, t) =Qoexp[i(a ix —
an't + g) ]sech@&, (5)

P (x, t, b co) = [P(b co)sech' tanhy —io (b co)sech']

Xexp[i(aix a—~t+ g)],
n(x, t, bco)= —I+2/(bco)sech y,

where y = (x —Ut ) /U r, g is an initial phase, U and r are
the pulse velocity and duration. Then the Bloch Eqs. (3b)
and (3c) can be integrated directly

Taking into account the inhomogeneously broadened
line form g{hco) with a sufficiently small line width b.coo

to be localized within the Bragg gap band, these equa-
tions are replaced by the following:

Q,+(x, t)+Q+(x, t)= f P(x, t, bco)g(bco)deco,

Q, (x, t) —Q, (x, t)= f P(x, t, hco)g(bco)deco,

where

g(bco)=[1+(a2—r, bco) r ]

P(b, co)= —Qorg(hco),

cr(bco) =Qod(a2 —r, bco)g(bco),

(8)

P, (x, t, b,co)+ ir, hcoP(x, t, b co)

=n(x, t, bco)[Q+(x, t)+Q (x, t)],
n, (x, t, hco)= —ReIP*(x, t, b.co)[Q+(x, t)+Q (x, t)]J,
where Q —=2r, (p/A)E , P =P'—exp( ib, cot), —coopera-
tive time is given by r, =8vrT& /3cpi, , T, is the atomic
exited level lifetime, p is the density of the resonant
atoms, p is the matrix element of the projection of the
transition dipole moment, c is the light velocity, t =r /r,
and x =x'/cr, are dimensionless time and space coordi-
nates, and the difference of atoms resonance and field fre-
quencies is A~=co —~o. The parameter of coherent in-
teraction ~, characterizes the mean photon lifetime in the
medium preceding resonant absorption. It Axes the num-
ber of structure periods Xby the condition N )cr, /d.

By means of the transformation

a&(U —1)=7 r f Ecog(kco)g(Leo)deco,

= I +2r f g( b, co)g ( b.co)d b, co .

(10)

The condition of compatibility of Eqs. (10) and (11) gives
the connection of values r and az [which are independent
in (7)]

(2a2 —r, hco )g ( Leo )

2
deco —0 .I+r (a2 —r, waco)

(12)

Returning back to the wave amplitudes Q+ and Q (2)
using the solutions (5), (8), (9), (11), and (12) of Eqs. (3)
and also noting from Eqs. (3a) and (4) that Q, = —Q„we
derive the following solutions:

Q +—=r '(1+U ')exp[ia2(x ut)/U +—iP]

Substitution of expressions (5)—(8) into Eq. (3a) yields the
ratios for parameters U, ~, and a& 2

a) —a2/U

the Eqs. (1) are reduced to the form Xsech[(x —Ut)/Ur] . (13)

Q„—Q„,=2f P, (x, t, bco)g(hco)deco,

P, +i&,hcuP =n0,
n, = —Re(P. 'Q),

(3a)

(3b)

(3c)

and

Q„—Q„,= —2 J P„(x,t, b, co)g (b,co)d hco . (4)

It is easy to see that Eqs. (3)—(4) are separated for the
functions Q and Q and hence can be solved independent-
ly.

The left-hand side of Eq. (3a) distinguishes Eqs. (3)
from the completely integrable Maxwell-Bloch equations
in the SIT problem of a homogeneous medium [18].
However, Eqs. (3) for the function g(hco)=5(co —coo) is
known to have a sech-form soliton solution [1]. General-
izing this, one seeks the one-soliton solution of Eqs. (3)
as follows:

Thus, we have found the exact solutions (13), (11), and
(12) of Eqs. (1) which describes the gap 2' pulse of self-
induced transparency in the resonant two-level Bragg
grating for any arbitrary form of an inhomogeneously
broadened line. The gap 2m. pulse consisting of two
strong coupled Bragg modes (13) propagates at the fre-
quencies within the stop gap band of the structure at the
velocity u (11) depending on the spectral line g (b.co), with
the pulse width ~ and the phase parameter e2. This pa-
rameter can be calculated from the connection condition
(12). In particular, if the function g(b, co) is taken symme-
trically with respect to the frequency ~0, then the value
a2=0 and the field envelopes (13) become the same form
as in the case of the exact resonant gap 2rr pulse [1],
though the pulse velocities di6'er. For instance, for a
Gaussian line form

g(bco) =(&rrbcoo) 'exp[ —(bco/bcoo) ]

and a narrow homogeneous field line (r, r) ' «b, coo the
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integral (11) is calculated by approximation. It can be
found that the velocity

v = [1+2&rrr (r, rbtvo) ']

is faster than v =(I+2r )
'~ for g(bco)=5(co —coo) due

to the small parameter (r, rbtvo)

Q+ = —,'(Q'+ Q')exp [ iy(t —x )],
Q =

—,'(Q' —Q')exp[iy(t +x)],
P =P'exp(iyt)

passes Eqs. (16) to the following:

(17)

III. GAP 2m PULSE AND OSCILLATING SOLITARY
WAVE IN A PERTURBED RBG

d =( I+E)A, ,

Acoo/coo «c, « 1 .
(14)

Actually, the considered model of the RBG implies the
existence of two different resonances that are realized
simultaneously: (1) the frequency two-level resonance and
(2) the space phase Bragg resonance. In the above result
the spectral line is assumed narrow enough to ignore the
deviation from Bragg resonance. Here we are studying
the field dynamics taking into account a small violation
of the Bragg condition. It will be shown that a phase-
modulated, exact gap solitaire solution exists, and there is
a thin region of incident pulse amplitude where the oscil-
lating quasistable pulse is found by numerical calculation.

Consider a homogeneously deformed RBG where a
small violation of the Bragg condition for the grating
period is given by

n, = —Re(P'*Q') .

Comparing Eqs. (17) with Eqs. (3) and (4), one notes that
their form coincides if the function g(hcv) in Eqs. (3) and
(4) is taken formally to be 5(b, tv —y/r, ). Thus, the solu-
tions (5), (8), (11), and (12) obtained above can be used
directly. For a2=y/2 (12) and velocity (11)

v = I+2 r/(I+r y /4)

the solutions of Eqs. (18) are

Q'=2r 'exp[i y(x vt)/—2v + i/]sech[(x —vt)/v r],
Q'=v 'Q' .

(19)

(20)

Finally, passing from functions Q' and Q' (20) to wave
amplitudes Q+ and Q (17), one gets the exact solution
of Eqs. (16),

Q+=r '(1+v ')exp[iy[(x vt)/2—v —(x —t)]+if]
To simplify the calculation, the field is assumed to be

at an exact two-level resonance and g(bco)=5(co —coo).
In this case the main discrete coupled-mode Maxwell-
Bloch equations [1]

X sech[(x —vt)/v r],
Q =r '(1 —v ')exp[iy[(x vt)/2v +—(x+t)]+igj

X sech[(x vt)/v —r],
(21)Q,+ (x, t) +Q„+(x, t) =X;exp( ikx; )—P(x, , t )5(x —x, ),

Q, (x, t ) Q(x, t) =X—; ex p(ikx; )P(x;, t )5(x —x; ),
P, (x;, t ) = n (x;, t )[Q+(x;, t )exp(ikx; )

+Q (x;, t )exp( —ikx; )],
n, (x, , t ) = —Re [P*(x,, t ) [Q+ (x, , t )exp( ikx, )

+Q (x;, t )exp( ikx; ) ] j—

n = —1+2(1+r y /4) 'sech [(x —vt) /v r),
(15) P =(1+r y /4) '[ —2tanh[(x vt)/v—r]

X sech[(x —vt) /v r]
+i yrsech[(x vt)/vr] j—

(x; are the coordinates of the resonant layers, the func-
tion 5(x —x; ) =1 if x E(x, +A, '/2) and 0 at any points,
k =2m. /1, ' and 1,'=A, /cr, ) after the averaging over the
region hv )&d lead to the following equations:

Q, (x, t)+ Q„+(x, t) =P(x, t )exp( i yx), —

Q, (x, t) Q„(x,t) =P(x—, t)exp(iyx),

P, (x, t) =n (x, t) [Q+ (x, t)exp(iyx)

+Q (x, t)exp( iyx)], —

n, (x, t) = —
Re [P '(x, t) [Q+(x, t)exp(iyx) ReQ+(x =0, t) =Qosech[(t —to )/ro],

ImQ+(x =O, t) =0,
Q (x =1,t)=0, Q*(x, t =0)=0,
n (x, t =0)= —1, P(x, t =0)=0 .

+Q (x, t)exp( iyx )]j, —
(22)where y =km. «1 and the slow variation of the function

exp(iyx) for the space of the period d is used. The trans-
formation

Xexp[iy(x —vt)/2v +i/] .

The gap 2m pulse (21) propagates in a perturbed, de-
formed RBG at the speed v (19) and connects two waves
with different amplitudes and phase modulations as mell
as an inverse population pulse.

As it was noted above, the exact solution (21) is just the
partial solution of Eqs. (16). To get a boundary condition
under which this gap solitary wave varies and to make
clear its stability, we simulated numerically the process of
producing the localized pulse in a perturbed RBG under
irradiation of the medium boundary by an incident field.
The numerical integration of the set of Eqs. (15) uses the
method of characteristics and takes into account (14) and
the boundary conditions



a ~. ~

~ ~

j ~ ~ ~

(I I, ,, &f,ff', jf',fl'&
fg I

tl fif} fPff}f&flj }, ff&f', /I'fi'(&I& I,

f P I f' I 'f tf f lf I' &' ' I-

t }fffff f}ff'ff (}ffff fft}off'f'fifi}"'I'&&I!,
I jI I

IIH&jlf (fj//if ff f ff f (}}f}f}(ff (&}j'I',}, I ( jl(«
I

lj'&/«(ff ((ff (ffffff f'(If'f f;I!',If,j,f, ,' '
& I Ill&

& I&if lf}ftffffffj f}ff ff}( ff(/j& & l
ll& I I

I t &l'll'& gt ff 'I/lf ffl (fjf f }fff/(/&
&&I&gift(&((j/(jjf

f(f/ I f/(jf(jf'I/I jl', lj' I'I'I«', '&l, l'I'I/if f j'&I&'&jjI I& tll I & I lit&& I

t & t &»I» Ile te&,

t~ ~ , ~

t i ~

y y, ~

a ~

t
~ ~ t

~ ~

t

~ I
'&&'C&tl » 'l&r .ll » I(c

I~

»i
i lt il &I

el I&
~ & I

~ l
~C

I IC&
I»&

'» ltt&till l
~ I& I&

C&C»tt»~»&I & l& c»I
I&

Hc
&fl
'&I& tt t

~ & le»& C&

I t» &

~&l&t& tl(»~
& llill&

&I

"~

~ t

o

y 0 ~ t
'W

0

~ -
~

- ~

~ . ~

I
t ~

~ ~ ~ ~ e ~ t
~ g

t ~

t
0 ~

~ - t
t t~ t

~ - t t
a

y ~ ~ t

a ~

. 0

I
a

0ti

~ g t
~ t~ 0

It ~

~ ~

~ ~

a

~ ~ - ~

a

~ t

Q ~

a
~ ~

~ ~~ 0t
~ 0

~ 0~ 0, ~ ~

r

~ t ~

~ ~

a t

a
~ ~ ~ t ~ t

~ t
~ ~ ~ ~

~ - ~ ~

lifl(lf(f(lflf(t('('I'('(I(I(i&I „,,()( I'((I(I'( I'f ", .
, l(, ( Ifi( (f(f f f ( (( ( ( (Ii'( (I I

f

Ii(i}i((II(I(I(j}jl(t(((((((I
(((((l((l(((I((JI(II" 'c (I II I&IIIIIII(I Ill(jill('& II(& I II(I (( Ij I I&I &l

f f f }f(}f f f f &i}t&l&f&sf f.f ~
f

f,f} t(}

I }If((f& }/&/&'. & }f& I /&»»
,lj/f }f}I'
jjf,},,
& /jj( ]}}]

I",,&&,/I&/f«&& }&jj/I
& «& &

/&/}}

, /IP }
}}l}}

&//I//f&
/

'.
,

t&&,//&I '

/(' »'&»
j!/ }f

&I

;(j}f/}///»

&ff'
((//}f(

'f/(}f} }/
((&}I« &}}&

f//i/'}}, j '
"&&',,& && i&}i/}}I'

&/&}}f }/&

(/e(}} jf}}//I

jjf

j f II I I
& & e& e ee &,', 'I I. '

L""""'

C

& I &I I tll

I

jg'I& I '
I ll ' jt Ij ', , 'It» I&

~ le 1 II '«I
& e& lc I& t e . &&''ile ~ ~ I &&

ttl, I» I '
I ji, IIgl&HI&t Ijt I&tilt&I& HI ttl» I

«II i&el& IHt&III, '
C &&

&&II» &t& Ij 'll, j.«'
ji&I (I& le

llljHII I I&'
ill& ltj'H

Hjg II 'jilg t &lg
I&Ill&Ill&I 'IIIII Ig&IIH Ij& lt I(i&itt Il

&
IIII il &IgjjjH

g I i

jglg&Ht » & i&&tgg'I'j&H
&I l il' ' » &&H

I»gt&II
'

II&t I &HHI I I&il
I I II'H ttl&l» II &I I &HH&

Ij )'j jg&HH&eti &I, 'lli l &ggj»g& lti&I& l&IIII Ij&H &II » I',
I&t&II HHtg I »& Itt &&&HI » I&

',
II I I&

l&H&j I IIII 'II&l

HH&ei e u: &t&t&g HH& e&ii » » I &Il
H&&t&t&l. I&t II H&'j

& &g&&e&iell;:

j(I, 'gjgg j»&l&»'::&.

C

~ ~ ~ yO~ ~

~ ~

~
- (

~ Q ~



51 GAP 2m PULSE WITH AN INHOMOGENEOUSLY BROADENED. . . 4943

broadened line, both dissipative processes —the resonant
absorption and the diff'ractive Bragg dissipation —are
suppressed due to nonlinearity. The existence of gap soli-
tary waves in resonant and Kerr periodical media shows
that the phenomenon of nonlinear suppression of Bragg
diffractive scattering of a field pulse is rather general and
can be realized in physical systems with different types of
nonlinearity. The simple estimates show that the gap 2m

pulse can be observed experimentally, for instance, in a
periodical structure of GaAs quantum wells with two-
dimensional excitons at low temperature [16]. When an
exciton density p =2 X 10' m, k =806 nm, and

T& =180 ps, the cooperative time ~, =0.6 ps and the
number of structure layers X, which is necessary to form
a localized pulse, is fixed by the expression
N )cw, /d =225.
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