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Coherent states for four-mode systems in quantum optics

Bindu A. Bambah and G. S. Agarwal
School of Physics, University ofHyderabad, Hyderabad, 500134, India

(Received 22 September 1994)

We introduce and study the properties of a class of coherent states for the group SU(1,1)X SU(1,1) and

derive explicit expressions for these using the Clebsch-Gordan algebra for the SU(1,1) group. We also
derive a phase space representation based on pair coherent states rather than the standard harmonic-
oscillator coherent states. We discuss the utility of the resulting "bi-pair coherent states" in the context
of four-mode interactions in quantum optics.
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I. INTRODUCTI(ON

Multimode radiation fields admit a variety of coherent
states [1]. The utility of these states depends on the con-
text in which they are to be used. Consider, for example,
a two-mode radiation field with modes denoted by the an-
nihilation and creation operators a, b, a, and b . The
simplest type of coherent states that can be considered
for this system will be the product state la, p), where

ably, q &=pl(, q &,

Qil& q&=qual( q&
(1.4)

The relevant operators here are

K&+ =a bt, K, =ab, K; =
—,'(ata+btb+1), (1.5)

which form an SU(1,1) algebra with the commutation re-
lations

[K,+,K, ]=—2K;,
[Kf,K —, ]=+K —,

(1.6)

lg, N, m ) =exp(ga b g'abt)lN —m, m ), —

(a a bb)lg, N, m—) =Nip, N, m ) .
(1.2)

(ii) For the class of problems involving four-wave mix-
ing, where the pump field is treated classically and undep-
leted, the relevant set of states, called the Caves-
Schumaker states, defined by the relation

lg) =exp(ga b g'ab)l0, 0),— (1.3)

have been used in the context of the phenomena of
squeezing [3].

(iii) Consider the down-conversion of photons of fre-
quency 0 into two photons of frequency cu, and cob. As-
suming that one is dealing with situations where the two
photons are created or destroyed together, the operator
Q, =a a bb is conserved. —In such a situation it was
found to be more convenient to introduce "pair coherent
states, " which were simultaneous eigenstates of ab and
Qi [4]

However, depending on the context, one may not need
the full set la, P) and it might be more useful to have a
new set of coherent states. Let us give three examples:

(i) Consider the radiation field of frequency co with ar-
bitrary polarization and its transformations on the Poin-
care sphere. Here a a+b~b is conserved. In this case, it
would be more appropriate to consider the underlying
SU(2) group (obtained from a b, ab, and a ta

blab

) with-
the associated coherent states [2]

The conservation law for Q, is related to the Casimir
operator C for the SU(1,1) group,

(Ki+K, +K, E',+ )

2 z

which can be written as

C= —,'[1—(ata —btb)~]= —,'(1—Q2) . (1.8)

Thus the eigenstate of Q& is also an eigenstate of C and
the pair coherent state is related to the eigenstate of K

&

introduced in Ref. [5].
It is thus clear from the foregoing that multimode sys-

tems will be characterized by a variety of coherent states
and every set of coherent states would describe altogether
different physical phenomena. It is also important to
note that states like (1.2) and (1.3) can be produced by
evolution under the effect of an appropriate Hamiltonian.
States like (1.4) have, however, been shown to be pro-
duced by a dissipative process [4].

In this paper, we consider processes involving four
modes of the radiation field, as there has been a consider-
able amount of recent work on physical systems requiring
four modes of the field [6—8]. Clearly, such systems
would admit a large number of different types of coherent
states. In view of this, we consider processes where the
direct product of SU(1,1) groups will be relevant. This
would be the case in problems where one studies the
emission of two photons of frequencies co, and co& and
where each of them is emitted in either of the two modes
of polarization, as in the case of a calcium cascade [6].
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Other examples of processes where four modes of the ra-
diation field are important involve phase conjugate reso-
nators [9] and the process of down-conversion in the field
of a standing pump wave [7]. In the latter case, the for-
ward wave will produce the modes a and 6 and the back-
ward pump will give the modes c and d. The Hamiltoni-
an for such interactions will have the form

K =(ah+cd) =K, +K2 (1.10)

These states will be degenerate, and we will discuss in
Sec. II the origin of this degeneracy.

Another system in which these states would play a role
is in double beam polarization-dependent two-photon ab-
sorption processes, which have been recently considered
[8]. In general, such processes involve four modes: two
modes of polarization and two colors. In an atomic sys-
tem involving the J=0~1~0 cascade, the absorption
and emission will involve photon pairs, with each pair
consisting of photons of the same polarization but
diff'erent colors. The efFective two-photon Hamiltonian
for this process can be written in the form

H, =R[G(ah+cd) ~e ) (g ~+c.c.],
where 6 represents the two-photon matrix element, and
the excited state ~e ) is connected to the ground state ~g )
via a two-photon transition. If, in addition, the two-
photon transition is driven by an external coherent pump
of frequency co&, such that the condition of two-photon
resonance is satisfied, then Eq. (1.11) will be supplement-
ed by

H,„,=( GiiiOee)(g~e '+H. c. ) . (1.12)

A detailed analysis following Ref. [10] shows that the ra-
diation field is in a state that is the eigenstate of the
operator 0 =ab +cd.

From the foregoing it is clear that many other physical
systems will require the coherent states of the group
SU(1,1)X SU(1,1), which we call "bi-pair coherent
states. " The plan of the paper is as follows: In Sec. II we
use the Clebsch-Gordan algebra of the Kronecker prod-
uct of SU(1,1) XSU(1,1) to derive an expression for the
bi-pair coherent states (BPCS) in terms of the individual
pair coherent states. In Sec. III we introduce a projec-
tion operator which projects out the BPCS onto the prod-
uct of pair coherent states. We conclude with some pos-
sible applications of the BPCS to other fields. It is worth
noting here that the states associated with the related
product group SU(2) X SU(2) have been the subject of ex-
tensive investigation in the context of the semiclassical
(Rydberg) states of the hydrogen atom [11].

II. CONSTRUCTION OF BI-PAIR COHERENT STATES

H=ef*ab+el, cd+c.c. ,

where ef and eb are the forward and backward fields. In
such a context, it would be interesting to study the
coherent states of the operator

dual pair coherent states of each SU(1, 1) group by using
the Clebsch-Cxordan (CG) coefficients of SU(1,1)X SU(1,1)
[12,13]. We consider pairs of photon operators

K, =atbt, K, =ab, K'i =
—,'(ata+b b+1),

K~+ =c d, K2 =cd, K2= ,'(ct—c+dtd+1),

which satisfy the algebra

[K;+,K~ ]=—25;JKJ',

[K,K —
]=+o;,K*

The corresponding Casimir operators are

(K;+K; +K; K;+)
K, (i =—1,2),

(2.1)

(2.2)

(2.3)

which can be written in terms of photon operators as

C =—'[1—(ata —btb) ],
C =—'[1—(etc —dtd) ] .

(2.4)

In the photon number basis the action of the C; is

C, in, +q, , n, &=
1 —

q;
!n, +q, , n, & . (2.5)

These generate a representation D ' and D ' of SU(1,1)
1 2

corresponding to the basis functions
~j;,m; ), labeled by

the eigenvalues j, and m, of the Casimir operator C,. and
E,',

C;lj;,m, &
= j;(j;+1)l!j;—m; & (2.6)

K,'~j, , m, &=m, ~j, , m, & . (2.7)

The states
~ j;,m; ), which are relevant in the context of

this paper, are the ones that correspond to the positive
discrete series representation of SU(1,1), with the lowest
state being

~ j, , —j; ). m; takes on the values

m; = —j;,—j,. +1, . . . . In what follows we shall be us-
ing both of the bases, as the quantum-optical applications
involve the photon operators, whereas many of the stan-
dard group-theoretical treatments use the

~j;,m; ) basis
[5,12]. The state

~ j;,m; ) can be written as

(a)' '(b)'
~n, +q„n, )=, ~0, 0) (i =1) .

[(n;!)(n;+q;)!]'~
(2.9)

and state
~
n2+ 82, n2 ) is defined similarly with a~c and

b~d. Furthermore,

(2.8)

with
~ j2, mz ) defined by replacing a~c and b~d In the.

conventionally used number-state basis, this corresponds
to ~n, +q, , n, ), where

We construct the "bi-pair coherent states, " which are
coherent states of SU(1, 1)X SU(1, 1) in terms of the indivi-

b b ~ni+qi, ni ) =ni ~ni+qi, ni ),
d dlnz+q2, n2) =nqln2+q2, n2) .

(2.10)
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and

I,—j;—1=n,. +q, ,

I, +j, =n, (i=1,2),
(2.1 1)

Thus we can establish the connection between the two
bases by the identification

The "bi-pair coherent states" are now the eigenstates of
K, C, , and C. If we restrict ourselves to the positive
discrete series representations of SU(1,1), then the

Kronecker product D ' XD ' reduces to the sum of ir-
m ) t7lp

reducible representations, i.e., the Clebsch-Gordan series
for SU(1,1) given by [12]

q, = —(1+2j;), (2.12) D'XD '= (2.22)

with q, =0—j;= —
—,'.

The pair coherent state corresponds to the simultane-
ous eigenstate of the operator K; and C, i.e.,

(2.13)

In terms of the basis states
I j;,m; &, I g;,j, & can be written

as [5]

where the allowed values of J are given by—J= —j,—j2+n. In the number-state basis we label
the irreducible representations by D q, where q = —2J —1,
and we may write the Kronecker product as

D 'XD '= g D'i
q=q&+q2+1

(2.23)

Thus a given representation in the Kronecker product is
Axed by J, j1, j2 or q, q1, q2 and we have two alternative
ways of labeling the BPCS, i.e, I g, q „q2,q & and

gj,j„j2,J &. There is an added degeneracy
parametrized by

(i =1,2) .

The normalization of these states X is given by

(2.14) q
—(q, +q2+1)

n = —J+j,+j2= (n =0, 1,2. . . ) .
2

(2.24)
The eigenvalue problem that we wish to solve is

In the number-state basis
I n; +q, , n; & the state labeled

I g;, q; & can be written as [4]
n.

l

lg;, q;&=X~ g In;+q;, n; & (i=1,2),
'n, =a V.n;!(n;+q;)!

(2.16) K Ig, q„q„n &=ply, q„q„n &,
r (2.26)

(2.25)
el(, q &

= J(J+1)lg—, q & =( '
q /4)I(, —q—& .

Labeling the states g, q & by the degeneracy parameter n

and q, and q2, the eigenvalue equations (2.25) are

(2.17)

These states constitute a complete set in each sector q, ,
and the completeness relation in each sector is given by

CIg, q„q2, n &=
2n +q1+q2

2

2n +q1+q2+ 1

2
+1 lg, qi, q2, ii & .

J d2(; —X,.
' g;I'rC, .(2 g;I) g;, q;&&g;, q; =1, (2.18)

where the identity refers to the subspace characterized by
a fixed value of q, This can be written as

The basis states for the representation D are labeled by
the eigenvalues J and Iof C and E, . The coherent state
g, J,j„j2&, which satisfies (2.25), can be written in terms

of this basis as

Jd'0 —I (2lg; I (21(;l)lg;,q; &&0;,q; I

=1 (2.19)

K =ab+cd =K 1+ +K2
K'= —,'(ata+btb+ctc+dtd+2) =K;+ICz .

The corresponding Casimir operator will be

(z+z +re z+)--
2 Z ~

(2.20)

(2.21)

for the normalized states (2.16).
We now consider the group obtained by the addition of

these SU(1,1) generators, i.e.,

E + =a b +c d =X 1+ +%2+,

OO (p )I+I

~ [(M+J)!(M—J—1)!]'~2

(2.27)

The normalization factor XJ is given by

[( lgl )2J+1I (2lpl )]1/2 (2.28)

It is clear from (2.27) that the bi-pair coherent states are
complete in the same subspace as the states I J,M, ji,j2 &,

i.e., the subspace given by the representation D . The
resolution of the unit 1~J] in each subspace characterized
byafixed value of j1,j2, and Jis
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Jd'g —J 2g i(2lgl 21 )(2lgl)l(, JJ),J2&&(,J,J(,J2I —
1(~) (2.29)

The explicit form of this bi-pair coherent state in the product basis
l j„m, & l j2, m 2 & using the CG coefficients of SU(1,1)

1s
00 (/-)M+ J

[(M+J)!(M J 1)!]1/2
1

(2.30)

where C 'M M are the CG coefficients in the j;,m;& basis for SU(1,1) whose explicit forms and properties are

given in Appendix A [12]. Using the fact that —J+j, +j2 =n defining M +J=k, M —J—1 =k +2n +q, +q 2,
n, +n2=m, +m2+ j,+j2=M+ji+j2=k+n, and q =2n+q, +q2+1, and using the relations (2.11), we can write
expression (2.30) in the photon number basis as

oo k

lg, n, q(, q2 & =N„g +k '!~( + +k)lni +q!,ni & ln2+q2"k=o [(k)l(k+2n+q, +q, +1)!]'"„„
Substituting the explicit expressions for the CG
coefficient given in Appendix A in Eq. (2.30), we get an
expression for the BPCS in terms of the CG coefficients
in the photon-number basis. In order to understand the
properties of the coherent state (2.31) we examine some
special cases where the CG coefficient has a simple form.

(a) Vacuum state (/=0) of SU(1,1)XSU(1,1). This cor-
responds to IC lO, n, qi, q2&=0. Only the term k=O
contributes to (2.31) and ni+n2=n Usin. g the recursion
relation for the CG coefficient n1 times we get

, 1,0, 0 =ÃI
[(k+ 1)!(k)!]'/

x 1

„„(k+1)'"
x&„,,„,kin„n, &ln„n, &,

(2.35)
where

(n)!(qi)!
(n, )!(n n,)!—

1/2

C~'~' =C~'~'
( —1) '

n] n2, n O, n n

(n+q2)!
X

(ni+qi )!(n ni +q2)!

1/2

(2.32)

[J,(21(l)]'"
(2.36)

In this case, the joint probability distribution of finding
n, photons in the mode a and n 2 photons in the mode c is
given by

lo, n, q, ,q, &=
2n +q1+q

n+q1

Xy( —1) '
n n+q1+q2

n1 n1+q1

where Co'„' „' = [(n +q, )!(n+q, +q2)!]/[q, !(2n+q,
+q2)!]]'/ is a normalization coefficient given in Appen-
dix A. Thus the vacuum state can be written as

x'lgl "' "'
„( )=

[(n +n +1)!] (2.37)

The single-mode probability distribution P„and the
1

mean number of photons ( n, & are given by

2lt2

s'.
, (g) =y r„.,..(lgl) =x' gl

n 2
n2 n, + !

2

(2.38)

xlni+qi ni &

xln n, +q2—, n n, & . —(2.33)

(0,0, 1

(k+1)'"
1

(n +n +.1)i/2
(2.34)

Therefore (2.31) reduces to

It should be noted that expression (2.33) can also be de-
rived directly without going through the CG algebra [8].
As mentioned in the Introduction the vacuum state is de-
generate, with the degeneracy parameter given by n.

(b) qi =q2 =0; q = 1; /%0. In this special case, we start
with an equal number of photons in the modes a and b
and in c and d. We choose q = 1 so that
n =[q —(q, +q2+1)]/2=0 and n, +n2=k. The
relevant CG coefficient is given by

lyly, (2lgl)

n&, n& 1

(2.39)

A measure of the nonclassical nature of the distribution is
given by Mandel's Q parameter, which for the mode a is
given by

(2.40)

lglr2(2lgl)

2I)(21gl)
(2.41)

We have checked, numerically and graphically, the
behavior of Q vs lgl and found that for values of lgl &2,
Q is nearly 0 and slightly negative. This shows that the
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I.O

0.8

o6—

0.4-

FIG. 1. I'k vs k [expression
(2.42)] for I(I =10 (solid line).
The dashed line is the corre-
sponding Poissonian with mean
( k ). The inset shows the
behavior of the mean (k) as a
function of I(I.

o.2

o.o

distribution P„ is nearly Poissonian for low values of I(I.
1

In fact, upon comparing the distribution P„vs n& for
1

various values of Ig with the Poissonian of mean (n] ),
we find that for I/I (2 the two distributions almost coin-
cide, showing the Poissonian nature of the single-mode
distributions.

The joint probability distribution P„+„can be calcu-
1 2

lated from P„„bythe relation
1~ 2

P (Igl)= g &„,
nl, n2

The average value ( k ) is given by

(2.42)

(2.43)

In Fig. l we plot Pk vs k and compare it to the corre-
sponding Poissonian with mean value ( k ), and it is clear
that the distribution of the sum n, +n2 is sub-Poissonian.

We do not treat in detail the method of production of
such states. However, from Eqs. (1.11) and (1.12) and
previous works [10,14], the mechanism for the generation
of these states is evident.

tt( *)=«
and

I
a )) is the unnormalized coherent state

(3.2)

—
,

In & .
, &n!

(3.3)

Q(g]s g2) q] sq2 ) I ( g]rq] &$2&q2 (3.4)

The Schrodinger equation can then be transformed into a
differential equation for g(a*) as shown by Klauder and
Sudarshan [14]. One of the phase-space distributions
used in quantum optics is the Q function defined for the

2 —~a~2single-mode field by g(a")I e /m. . This can be gen-
eralized to other situations such as the SU(1,1) group or
equivalently for two-mode fields, as has been done by
Barut and Girardello [5]. We will now use a generaliza-
tion of this method for the case of bi-pair coherent states.
Since we consider four-mode radiation fields, we will have
to work with an eight-dimensional phase space. Howev-
er, we could examine a subspace of this eight-dimensional
space, keeping in view the occurrence of photons in pairs.
Therefore, we introduce an analog of the Q function
defined via the projection of the four-mode state I g) onto
the product of pair coherent states,

III. PHASE-SPACE REPRESENTATION OF BPCS
IN TERMS OF PAIR COHERENT STATES

The relations analogous to (3.1) to (3.3) for this four-
mode basis can be obtained by using the unnormalized
pair coherent state basis, which we denote by I )),

In quantum optics, phase-space representations are ex-
tensively used to study the quantum statistics of the radi-
ation fields. These representations are useful in extract-
ing precise information on the quantum nature of the
field. For a single-mode radiation field, one can expand
an arbitrary state

I g ) in the coherent state basis as

00 n

Ig„q, ))= &„=p Qn!(n+q])!
n+q„n &,

QO

I/2 q2)) = g Im+q2, m ) .
=p Qm!(m+q, )!

(3 5)

I@&=—f ]ti(a*)e !~' Ia&)d'u,

where

(3.1)
The completeness relation for the unnormalized states
Ig, , q, » is
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Jd'0; —
Ik; I'& (2lg;I)lg;, q;»«g;, q;I=1, , (3.6)

where the unit operator 1[ ~
refers to each subspace

characterized by a fixed value of q;. Summation over q, is
required to get the unit operator in the whole Hilbert
space. The state Ig& in the subspace of the four-mode
Hilbert space specified by the values of q, and q2 is

I p, q~, q2 &
=f J d'g~d'g2 —lg&l" —

lgzl "&„(21(~l)&„(21&21)g(gf,&2,q~, q2) lg~, q~ && l(2, q2 &&, (3.7)

where

y(g;, g,*,q, ,q, ) = « g„q, I « g„q, ly& . (3.8)

a' a a a'

Summation over q& and q2 would lead to the state I P &

over the entire four-mode Hilbert space.
The eigenvalue equation for

I f & can be converted to a
difFerential equation for the function g in the basis of pair
coherent states by using the differential operator repre-
sentation for K;* and K,

+ (q, +1)g~
1

r

(q2+1Ci
1

rc, Ig, , q, » =
q, +g, lg, , q, »,

I I

r

+q; I(; q;» (3.9)

(q)+q2+ I)
4 4

(3.14)

g, =z cos (8),
$2=z sin (8),

(3.15)

To solve the above set of coupled differential equations
we define the complex variables z and 0 by

The action of the Casimir invariant can be expressed as a
differential operator by using Eq. (3.9) and the fact that
C, and C2 are conserved quantities,

Eq. (3.13) for f* takes the form

+—(2q&+2q2+3) + =4/'f ';
dz2 z dz z2

(&g„q, lc, = 1 2

((g;,q; I
. (3.10)

while (3.14) becomes

(3.16)

We now apply the above prescription for obtaining the
projection of the BPCS Ig, q & onto the states

d2
Lg(f )= +[(2q2+1)cot(8)

f(k 0i 0f qi q»q)=&&»qi 4 q2I( q& . (3.11)

« g, q I&+ lg&, g&, q&, q2 » =g' « g, q lg&, gz, q&, q2 »,
(3.12)

«p, qlcl&„&„q„q&» = (1—
q )

Calling the overlap of the unnormalized
(( g, q I g&, g2, q &, q2 » =f*, the eigenvalue equations for
I g, q & can be converted to equations for f ',

+(2q&+ I) tan(8)]

= —[q —(q, +q2+1) ] .

We now use the separation of variables

f '(z, 8) =g(z)h (8),
to reduce Eq. (3.16) to

h(8) z
2 +z(2q, +2qz+3) —4g'z g(z)

dz2

(3.17)

(3.18)

Using the differential representations (3.9) and (3.10) of
E + =K &+ +K 2+ and C, we can obtain the following
differential equations for the function f*:

c3 8 8

g(z)L0[h (8)], —(3.19)

which after division by h (8)g(z) leads to

1 p d
z +z(2q, +2qz+3) —4g*z g(z)

d ~ 2

g z dz dz

(3.13)
Le[h(8)] . (3.20)
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1

h(0)
Le[h(0)]= —A, (3.21)

g (0) dz2 dz
z +z(2q, +2q2+3) —4(*z g(z) =A .

(3.22)

Thus the left-hand side is a function of z alone and the
right-hand side is a function of 0; hence, we must have

Substituting the values of z and 0 we have the final ex-
pression (apart from normalization factors) for f given by

J(g* g* g)=A*(g) ' (g*+g')

XIq [+4/(g,*+$2 )]P„' '

(3.31)

To determine A we use Eq. (3.17) to obtain

1 Ls[h(0)]= —[q —(q&+qua+1) ]=—A . (3.23) f f lf I'd'k(g~)d'k(g2) =1, (3.32)

The normalized overlap function can be obtained from
the completeness relation

= —[q —(q, +qz+1) ]h(0), (3.24)

z +z(2q, +2q2+3) —4g*z g(z)

=[q —(q, +q2+1) ]g(z) . (3.25)

The unnormalized regular solution for g(z), which is
finite and regular at z=O and consistent with the limit
g'=0 is [15]

Thus Eqs. (3.16) and (3.17) reduce to two uncoupled
equations,

d h dh+ [(2q2+1)cot(0)+(2q, +1)tan(0)]
d8

where

d A(g;)= —E (2lg;l)lg;l 'd g; . (3.33)

f=&[P0f+0z )1 '"I,[+4Pki++4 )](0/+02 )"
r

q, , q, 0f —
0z

0f+0z
(3.34)

To sum up, using the di6'erential representation of the
generators of the SU(1,1) Lie algebra we have derived an
expression for the overlap of the unnormalized states:
((g&, q&, gz, q2lg, q » =f, given by expression (3.31). The
normalized overlap function can be obtained from ex-
pression (3.32) to get

q q ) I (+4/'z)
g(z)=D (z) (3 26) Thus the state l g& q & can be obtained from the relation

where D is a normalization constant, which may be a
function of g and z*. Now to obtain a solution for
h, we use the transformation x =cos (0)—sin (0)
=(g, —g2)/(g2+ g, ) to reduce the equation for h (3.24) to
the following:

x ((g, ,q„g„q, lg, q »

Xlg), q)» lpga, qp» . (3.35)

2 d2h dh
(1—x ) +[(q, —q~) —(q, +q2+2)x]

+n(n+q, +qua+1)h =0 . (3.28)

This is the di6'erential equation for the Jacobi polynomial
P„' '(x) = ( —1)"P„' '( —x); thus

h(0)=B( —1)"P„' '[sin (0)—cos (0)]

=BP„' '[cos (0)—sin (0)],
where 8 is a constant. Thus the expression for f* is

(3.29)

f'(z, 0)= &(&g*) '(z) ' ' I,(&4(*z)P„' '(x),
(3.30)

where A is a constant that can be a function of g; and g.

+[—(q, +qua+1) +q ]h =0 . (3.27)

By using n =
—,'[q —(q&+q2+1)], where n is an integer,

we recast Eq. (3.24) into

2dh dh
(1—x ) +[q, —

qz
—(q, +q2+2)x]

In Appendix B we show by explicit integration that the
expression obtained from Eq. (3.35) is identical to that
obtained in Eq. (2.31).

We evaluate the quantity ifl =Q for some special
cases of physical interest.

(i)
l

=0.

2n =q —q( —
q2

—1,
(3.36)

1)(n —m)(gn )n(gn )n
—m

(3.37)

and using Eq. (3.35) and the results of Appendix B, after

where N is the normalization obtained from (3.22). By
using the explicit expansion of the Jacobi polynomial [15]

r

Cf+0z

Il +q ) pl +q 2
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some rearrangement we have

q1, q2, q
Pl 1,1f g, 1l

( n]i n2!( n$+q, )!(n~+q2)!)'

(iii) q, =0; q2 =0. Here we use the fact that
P„' (x)=P„(x), where P„(x) is the Legendre polynomial
and q =2n + 1. Thus, If I

becomes

(3.38)

where C„'„'„is the CG coefficient given in expression

(2.31); thus our result is consistent with Eq. (2.33).
(ii) q =q &

+q2 + 1 and
I g I

%0. kt +02
(3.40)

(3.39) Using (3.35) state I$, 2n+1& is

oo k k!
, 2n+1& =N 5„+„„+k(n)!n2!n! )

[k i(k+2 + l)~]' "' "'" (@+2 +1)!
1' 2

X g( —1)'
z ln&, n, &In&, nz& . (341)

(l!) (n I)! (—n2 —l)!(n
&

n+l )!—

For the case q = 1 or n =0, Q~ becomes

(3.42)

and
00 k

1
5(n &+n2, k)

k=0 [k!(k+1)!)' „„(k+1)'2
1P 2

xln„n) &In„n, & .

(3.43)

IV. CONCLUSION

Thus we see that the above the expression for
I g, 1 & is

identical to Eq. (2.34) obtained in Sec. II.

unusually large Auctuations in the number of pions
known as Centauro events have been recently shown to
describe bi-pair coherent states where the charged pion
states can be thought to be right and left and circular po-
larized states [17]. Imposition of isospin conservation
leads to pair coherent states, and the BPCS should be
useful when pairs of charged pions participate in the
dynamical process. These and other related problems are
the subject of future research.

APPENDIX A

In this appendix we list some properties and expres-
sions for the Clebsch-Gordon coefficients for the coupling
of two positive discrete unitary representations of
SU(1, 1), which are required in Sec. II [12]. The CCx

coefficients are defined by the relation

In conclusion, we have introduced a class of coherent
states, the bi-pair coherent states, which can provide a
useful tool in tackling problems involving two-photon
beams, each polarized in an arbitrary way, or in dealing
with problems involving pairs of down-converter crystals.
By using the boson realization of SU(1,1) we have shown
that the BPCS are related to the group-theoretic-addition
properties of two SU(1,1) groups. We can provide a rep-
resentation of the BPCS in the basis of pair coherent
states. In view of the tremendous range of applications of
pair coherent states, the utility of the BPCS is not limited
to quantum optics, but has applications in other 6elds as
well. An example of such an application in particle phys-
ics is in the phenomenon of multipion production in cos-
mic ray events and particle collisions. Events with

m1

Applying the lowering operator K =K, +%2+ on both
sides, the following recursion relation can be derived:

=[(M+J)(M —J—1)]' C ' 'i m

2+j2+ )] c-",'-~,-,+~, M ~

(A2)

After some algebra and repeated applications of the re-
cursion relation we have
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with

(M+J)!(m,+j, )!(m, +j, )!(—2j, —1)!(—2J —1)!(j,+j, J—)!

(m, —ji —1)!(m2 j—2 —1)!(M—J—1)!(j, j—z —J—1)!(jz—j,—J—1)!

(m, —j,—1+I)!(m2+j, —J—1 —I)!
X g( —1)'

(I)!(m i+J—j2+I)!(mz+j2 —I)!(j2 J+—j i
—I )!

1/2

(A3)

(
' —' —J—1)!(—' —' —J—2)! 1/2

CJ' ' =( —1) '+ ' ~[ —2J —1]1/2—j),J) —J, —J
( —2ji —1)!(—2J —1)!

Thus,

(M+ J)!(m2+j 2)!(m, +j, )!(—j, j2 —j——2)!(ji+j2
—J)!

(m, —ji —1)! (m2 j2 —1—)!(M—J—1)!(ji j2 —J——1)!(jz—ji —J—1)!

(m, —ji —1+I)!(mz+ji —J—1 —I)!
X g( —1)'

(I)!(m, +J—j2+ I)!(mz+j2 —I)!(j2 —J+j,—I)!

Using the fact that —J+j&+j2=n and defining

I+J=k, ~—J—] =k+q, q=2n+q&+q2+$, n&+n2=m&+m2+j&+j2=~+j&+j2=k+n
the expressions (A2) and (A4) for the CG coefficients in the photon-number basis become

[(ni)(ni+q, )]' C„'„'„' +„=[(k)(k+q)]' C„"i'„„+„,—[(n~ +q~ +1)( n+21)]' C„"",„+,„+„
and

(A4)

(A5)

(A6)

C„' „' „"+„=(2n+qi+q2+1)i~~

with

(k)!(n i )!(n2)!(n)!(n+q,+q2)!
(n, +qi)!(n2+q2)!(k+2n+qi+q2+1)!(n+q2)!(n+qi)!

&
(n+nz+q2+I)!(ni+q, +I)!

X g( —1)'
I!(n, n+ I)!(n z

——I)!(n —I)!

1/2

(A7)

q&, q2, q
O, n, n

(n+q, )!(n+q, +q2)! 1/2

(qi )!(2n+q, +qz)!
(A8)

The expression due to Biedenharn and Holman can be converted into a more convenient form for the purposes of com-
paring (2.31) and (3.35) using the method of Racah [18]and the identity

a ! (a —b)!(a —c)!b!c!, (a b —s)!(a—c ——s)!(b+c—a+s)!s!

with a =n+n2=q2 —I, b =n2 —l, and c =n —I we get

k!(n, )!(n2)!(n)!(n+qi+q2)!(nz+q2)!(n+q2)!
(n i +qi )!(k+2n +qi +q2+ 1)!(n+q i )!

(n, +qi + I)!
X g( —1)'

I!(n, n+I)!(s—)!(—qz+s I)!(n+q2 —s)!(n2+q—z
—s)!

Then summing over 1 using the identity

( —1)'(u —I)!,(u —z)!(x+z —u —1)!=( —1)'
I!(x—I )!(z—I )! x!z!(x—u —1)!

with u =n —n
&

—1, x = —n
&

—q, —1, and z = —q2+s, and defining m = —q2+s, we have

(A9)

(A10)

(A11)

q], q2, n nl n2.(ni+qi). (n2+qp). k ~

k+2n+q, +qua+1!

X g( —1)
(q2+m)!(n —m)!(n2 —m)!(n, n+m)!(n +q—, —m)!

(A12)
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As will be seen from Appendix 8 this form is convenient when it comes to comparing expressions (2.31) and (3.35).

APPENDIX B

In this appendix we will show that the two expressions for lg, q &, Eqs. (2.31) and (3.35), are equivalent by the explicit
evaluation of the integral given by

lg, q &=, 1' fd'g d'g lg I" lg I"&„(21&iI}&„(21(zl)f(gtg*,g)lgt, q » lgz, q » . (81)

Using Eq. (3.30) we have

f(~.4.~)=«~.q.~'q I~.q»=[~(~ +4)]- "I,[V4~(~*+4)](~"+4) P."" '.
+

Thus

q&=
z fd gt fd gzlgtl Igzl &q (2gil}&q(2lgzl}[P(i+gz)]

xI (Q4g(g, +g')(g,"+(')"P„' ' ' '. Ig„q, » lg, ,q, » . (83)

Substituting the values of
I g„q i » and

I gz, qz », substituting g, =
I gi I

e ' and gz
=

I gz I
e ', and using the expansion for

the Jacobi polynomial (3.37}as well as the expansion of the Bessel function I [15]

(i z)k

Iq(z) =(-,'z)' g (84)

we get

l~'&=, r r r r f«, '"" "f« "'" "-""'
nl, n2 k=01=0m =0

f lg
I"' " &„(21& )dig I f lg

I"' " &„(2141}d141

n+q, n+qz
X

(n, in, i(n, +q, )1(n, +q )i)l/2 ki(k+q)! I n m—m i '1' i z 'z' z (85)

The integrations over 0, and Hz give us two Kronecker deltas 5[n i
—(m+1)] and 5[nz (n m+ 0 —l}]—,—and the in-

tegral over g, and gz can be carried out using the identity

4f I gt I

"' "
&q (2lgtl)d lgt I

=(n t )'(ni+qi }' (86)

By carrying out these integrations using the 6 functions and rearranging we have

oo k

, q &
=N' ~(,n +n, n+k),=, (k!(k+ )!)'"

17 2

1/2
n, !nz!(ni +q, )!(nz+qz )!k!

(n+q, )!(n+qz)!k+q!

X ( —1) In, +qi, n, & Inz+qz, nz & .I 1

I!(qz+ l)i(n I)!(nz ——I)!(n, n+I)!(n+q, —I)!— (87)

This is the same as expression (2.31) (apart from normalization) derived in Sec. II using the CG coefficient in the form
given in Appendix A. In fact, this method can actually be used to derive the CG coefficient of SU(1,1).
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