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Macroscopic coherence via quantum feedback

P. Tombess* and D. Vitah
Dipartimento di Matematica e Eisica, Uniuersita di Camenno, 62032 Camerino, Italy

{Received 31 August 1994)
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I. INTRODUCTION

Interest in the foundations of quantum mechanics re-
ceived a great revival during the last decade [1]. One
possible explanation of such a revival is the development
of experimental technologies. Nowadays, experiments on
single quantum objects are feasible [2] and the possibility
of checking the consequences of the Copenhagen inter-
pretation seems realizable. One of the fundamental prob-
lems is to observe quantum-mechanical features in mac-
roscopic objects. Quantum theory, indeed, may ade-
quately describe macroscopic objects by means of a linear
superposition of states with macroscopically distinguish-
able properties. The signature of the superposition of
quantum states is the existence of interference fringes.
Even though the theory we present could be applied to a
wider class of physical systems, to be more concise we
will focus our attention on the possibility of observing a
macroscopic superposition of quantum states in quantum
optics. Thus our macroscopic states will be coherent
states, and we will show that, under suitable conditions,
one should be able to observe the interference fringes of
the quantum superposition of two coherent states, even
though the number of photons involved has to be rela-
tively small. Macroscopic objects are never isolated be-
cause they interact with their environment. It is the cou-
pling to the environment that causes the destruction of
the quantum coherence on a very fast time scale [3].
Some years ago, Yurke and Stoler [4] showed that, after a
characteristic interaction time, a Kerr medium may pro-
duce a superposition of coherent states when it is il-
luminated by a coherent beam. However, as soon as one
tries to detect the interference fringes with some experi-
mental apparatus, they disappear exponentially fast with
the number of photons in the beam and in a time of the
order of the inverse of the damping constant of the ap-
paratus. Kennedy and Walls [5] presented a general
model for dissipation with squeezed quantum fluctuations
and showed that, with such a bath as a model for the ex-
perimental apparatus, not on1y is one able to preserve the
macroscopic superposition of quantum states, thus
confirming previous heuristic results [6], but one can also
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prepare states with low quantum noise in a quadrature
phase. Despite these intriguing results, however, the fun-
damental question one should be able to answer is: How
can a squeezed bath be realized? Our previous work [7]
was devoted to showing that one possible answer to the
above question is to use suitable feedback to mimic the
squeezed bath, and that the result we obtain could be ex-
perimentally realized. We will show in the present paper
that the same model could be applied to observe the in-
terference fringes of the macroscopic superposition when
we consider a different limit with respect to Ref. [7]. The
feedback model of Ref. [7] is not the only way to simulate
a squeezed bath. For example, the output of a degenerate
parametric oscillator (DPO) below threshold in a cavity
with a large linewidth can approximate a squeezed white
input as well [8]. Anyway, we think that the feedback
scheme proposed here is preferable with respect to the
DPO scheme because it can be applied at any frequency
and it is not limited to a single frequency (one half of the
pump frequency) as in the DPO case. Moreover, the
DPO output can mimic a squeezed white bath only for
cavities whose linewidths are much smaller than that of
the DPO cavity. This is another limitation that does not
affect our feedback model of a squeezed bath. The out-
line of the paper is as follows: In Sec. II, we introduce
the model and we apply the quantum theory of feedback
recently proposed by Wiseman and Milburn [9,10] to it.
In Sec. III, we study the time evolution of an optical
Schrodinger cat state and we discuss the conditions under
which the dissipation-induced disappearance of the in-
terference fringes can be significantly slowed down. Sec-
tion IV is for concluding remarks.

II. THE FEEDBACK MODEL

We shall describe quantum feedback by adopting the
formalism recently developed by Wiseman and Milburn
[9,10]. The basic ingredients of this theory essentially are
the stochastic evolution of the density matrix of the sys-
tem conditioned to the performed measurement, the
homodyne current of the measurement process, and the
way in which the current is fed back to the system. Let
us consider the model first proposed in Ref. [11] for a
quantum nondemolition (QND) measurement of a field
quadrature of a cavity mode. W'e suppose that the cavity
supports two different modes, described by the Bose de-
struction operators a and b, and that they interact by
means of the interaction Hamiltonian Hl =AyX& Y,
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where X&=(ae'~+a e '~)/2 and Y =(be'~+b e '~)/2
represent the generic quadratures of the two modes, i.e.„

X& is the quadrature to be QND measured while Y
represents the quadrature of the meter which is part of
the measurement apparatus, and y is the coupling con-
stant. This coupling can be realized for example for plac-
ing a nonlinear crystal within the cavity. In the interac-
tion picture the total density matrix D evolves according
to

(2bD, bt btbD, —D,b b)—

++1.„~g(t)(b 'sD +D bte's —2( Y ),D, ), (2)

where 0~ g & 1 is the efficiency of the homodyne mea-
surement while g(t) is a Gaussian white noise introduced
by the measurement process. By tracing over the meter
variables we obtain the equation for the conditioned den-
sity matrix for the mode a,

2

p, =Xp, — [X~,[X~,p, ] ]
+b

+&g g(t)(ie'~ 'p, X&
—ie 'P+ 'X p

+2 sin(y+5)(X&), p, ) (3)

with g =gX /yb. Equation (3) represents the first funda-
mental ingredient of the theory of Wiseman and Milburn
[9,10], while the second is given by the expression of the
homodyne current, which can be written as [10]
I, (t) = —2iIX sin(y+5)(X((t) ),+rig/(t)/v'g. We now
feed the current I,(t) back to the system by means of a
superoperator A which we will show later on and
represents the third fundamental ingredient of the theory
of Wiseman and Milburn. Thus, the conditioned density
matrix only due to the feedback can be written as [9]
[p, ]/& =I,(t}&p,/rig. In any feedback process there is,
of course, a delay time due to the feedback loop, which
makes the physics non-Markovian; however, it is possible
to consider such a delay time much shorter than the
characteristic time of the system, which usually is the in-

D =ED — [H—,D]+ (2bDb bb—D Db —b) . (1)
2

X describes the unperturbed motion of the mode of in-
terest a. It is assumed that the damping rate yb for the
mode b is su%ciently high that it can be adiabatically el-
iminated and, of course, it represents the meter variable
by means of which we get the quantum nondemolition
measurement of the quadrature X& of the mode a. The
evolution equation for the total density matrix condi-
tioned by the homodyne measurement of the quadrature
Ys = (be ' +b e '

) /2 is [10]

D, =&D, iX[X&Y,,D, )

+A(ie'~+ 'pX ie '—~+ 'X p)+ p .
%'2

2g
(4)

%'e now see that the two phases y and 5, representing the
phase of the quadrature of the b mode interacting with

X&, and the phase of the homodyning measured b quadra-
ture, respectively, are not independent of each other and
we can set P =y+5. By measuring the Y& quadrature we
actually get a QND measurement [15]of X&. This will be
a perfect QND measurement as long as we can consider
the coupling constant y very big and the e%ciency q=1.
Thus, Eq. (4) describes the evolution of the density matrix
of the signal mode a once a QND measurement of its
quadrature X& has been performed and part of the infor-
mation obtained is fed back to it by means of the action
of the superoperator A. Let us assume that the
following form of the feedback super operator holds,
%'p = —i G [Xe,p ], where G is a constant representing the
gain or efficiency" of the feedback process. It can be ob-
tained by feeding back the photocurrent to the cavity
with a driving term in the Hamiltonian involving a
di6'erent quadrature 0 of the signal mode, where 0 is
another phase parameter that can be controlled by the
experimeter. %'e finally obtain

p=Xp ——[X&,[X&,p]]—G cosg[Xe, [X&,p]]
I

62
+iG sing[X&, [X&,p] ]— [Xe, [Xe,p]] .

2g

with I =X /y& and we have introduced [ J to denote the
anticommutator. We now consider the standard Liouvil-
lian for the signal mode Xp=(y, /2)(2apa —a ap—pa a). After writing explicitly the commutators and
the anticommutator, Eq. (5) can finally be written as

verse of the decay rate of the mode of interest. Under
such an assumption, the feedback loop does not introduce
any delay and we are allowed to consider the process
Markovian as we have actually assumed. However, the
feedback process is physically added to the evolution of
the system of interest and its stochastic difterential equa-
tion has to be introduced as a limit of a real process.
Thus it should be considered in the Stratonovich sense
[12],while the previous derivation of the stochastic equa-
tion for the conditioned density matrix Eq. (3) has to be
considered in the Ito sense [13]. By using standard rules
[14] to convert the Stratonvich equation into the Ito one,
we can write the final unconditioned evolution equation
[i.e., averaged over the Gaussian distribution of the white
noise g(t)] for the reduced density matrix of the mode of
interest [10]

2

p=&p — [Xq, [Xq,p]l
27b

p= (%+1)(2apa —a ap —pa a)+ —X(2a pa —aa p —paat) —~M(2a pa —a "a p —pa a }2 2 2

M*(2apa —aap —paa )+i ist[( aea'~ —'+a ate '~+ ')+Icos(g —9)a ta, p],
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where

y =y, +G sin(g —8)sing,

1 I 6 6N= ——+ +—cos(g —8+/)
y 4 4g 2

2
M= ———e + e +—e cosP

—2;g 6 —;(+g)

y 4 4g 2

(7a)

(7b) where

(7c)

ae '&+p* (y— y—, /2)t ae ' +p* y, —t/2
2e

'
2g 2ee' —e' e' —e'

a+p e '~ —(y —y, /2)t

and by using the identity [5]

f 2, cr+A(t)&&o+B(t)l
&o+B(t)lo+ A(t)&

(10a)

We have already shown [7] that, under suitable condi-
tions, this equation gives almost perfect squeezing of the
measured quadrature of the mode a in the steady state,
thus allowing the interpretation that a squeezed bath can
be physically realized in such a way. Using a QND mea-
surement step (or any other intracavity measurement
scheme) in the feedback loop is a necessary condition for
obtaining nonclassical effects. In fact, as shown by the
"no go" theorems of Ref. [10], any feedback loop based
on extracavity measurements, such as direct photocount-
ing or homodyne detection, is not able to produce non-
classical states of light if the internal dynamics does not
have the capability of producing them by itself.

III. TIME EVOLUTION OF AN OPTICAL
SCHRODINGER CAT

a+p'e
e

e —e
—2i g

—2i8

After some Gaussian integrations, one obtains

P(x(, t) =g N &pla&

a,p t//2n. tJ (t)

[x~
—5 t)( t ) ]

X exp
2o. (t)

where

cr„(t)=—,'+v(t)+Re[p(t)e '~],

A (t)e'~+B *(t)e
5 t)(t) =

(10b)

(12)

The dynamics of a field mode in the presence of a
squeezed bath has been already discussed in Ref. [5],
where it is shown that a squeezed bath is more eScient
than a thermal or vacuum bath for the detection of the
linear superposition of macroscopically distinguishable
states. In fact, the inevitable destruction of the corre-
sponding interference pattern due to the presence of dissi-
pation can be significantly slowed down by the squeezing
of the bath quantum fluctuations. Therefore, it is in-
teresting to study the time evolution of these
Schrodinger-cat-like states and to see if a preservation of
macroscopic quantum coherence similar to that discuss
in Ref. [5] can be achieved in the case of the physically
realizable feedback model presented here.

Interference fringes are the relevant signature of the
linear superposition and they can be detected by using
homodyne techniques [4] where the output current is
proportional to an experimentally adjustable field quadra-
ture. To be more precise, quantum interference can be
seen in the probability distribution of the QND measured
quadrature X&, P(x&)=&x&lp(t)lx&&, where lx&& is the
eigenstate of X& with eigenvalue x&. This probability dis-
tribution can be obtained from the exact solution of Eq.
(6), once the initial condition for the density matrix is
chosen of the form p(0)=g &N t)la&&pl, (where la&,
lP& are coherent states of the mode a), by relating the
characteristic function y( A, , A.*;t ) to the generalized P
function

P~~ ( o,o', t ) = 2 f d A y( A., A*, t )exp [ A, , *,( o + A ( t) )

with

G G»ngv(t) =
4g 2 sin(g —8)

—(2y —r, )»
1 —e

(2y —y. )

—r, » 1

I 1 —e +—cot(g —8)sin(g —
8+ /)6

2

X
y

(14a)

)M(t) = ie'~ 'sin(g —8) G sing—6
2g sin(g —8)

—[2r- r. ]»
1 e

X
(2y —y, )

»

ie '~ 'sin(g —8) I 1 —e+
2i 0 e2ig a

. G sin(g —8+(t ) 1 —e+l 2i8 e 2ig y
(14b)

As a special case of the general result Eq. (11), we con-
sider the initial superposition treated by Yurke and
Stoler [4], produced by unitary evolution of a coherent
state in a nonlinear medium p(0) = [e ' / la &

+e'
l

—a&][e' &al+e '
&
—al]/2. With this

choice Eq. (11) simplifies to

P(x~, t ) = ,' (p'(x&, t )+p' (x&,t)—
—A(o +B(t))*(, +2p (x&, t )p (x&, t )

X»n[II(xg, t)]l&al —a& I
"("] . (15)
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The first two terms p+ (x&, t) describe the two Gaussian
probability hills corresponding to the two coherent states
I+a) of the initial superposition and they are explicitly
given by

1
p+ (xr, t)=

+2mcr (t)

where

exp
(x&+g(ct, t))I

2o. (t)

g(a, t)= Re[[e'~(a+a*e ' )(1—e 'i~ i)]e ' +[(ae'~+ct*e '&)(I —e 'i~ i)]e
2&2 sin (g —0)

(17)

The third term in Eq. (15) describes the quantum interference between the two coherent states in the presence of the
measurement apparatus, where the function

Q(x t)= Im[[e'~(a —a*e ' )(1—e '~ ')]e
2&2sin (g —8)o, (t)

+ [(~e ig ~we ig)—
( 1 e2i(g —8) ))e

r ra ~
(18)

gives the probability oscillations associated with the in-
terference fringes and the factor

I ( ct
I

—ct ) I"'"
=exp[ —2IaI p(t)] describes the suppression of quantum
oherence due to dissipation. It is clear that this suppres-

sion is almost immediate for macroscopically distinguish-
able states (i.e., large Ict ), unless rI(t) =0. It is, therefore,
important to analyze the behavior of this decoherence
function g(t), which is equal to

—(2y —y )t

q(t) =1— (19)
2cr (r)

To be more specific, if we want to see whether or not the
proposed QND-mediated feedback is able to facilitate the
detection of macroscopic quantum coherence, we have to
compare rl(t) with the corresponding decoherence func-
tion of a standard vacuum bath, which is given by [5]
g„„(t)=1—exp( y, t). Thi—s function shows that in the
standard case, after a time I =1/y„ it is g„,(t)=1 and,
therefore, the quantum interference is quickly washed
out. On the contrary, by using Eq. (19), it is possible to
find a very important consequence of the feedback mech-
anism studied in this paper: it is possible to choose the
feedback parameters so that q(t) (t)„„(t),thereby slow-
ing down the destruction of the interference pattern due
to the inevitable presence of damping. To be more pre-
cise, if we consider the "stable" case y )y, /2 in which
the system can reach the steady state showing squeezed
quantum fluctuations [7], even though the condition
rI(t) (g„,(t) can be satisfied, the presence of the lower
bound rl(t) ~ y, t/(1+y, r ), for any choice of the param-
eters compatible with the stability condition, only pro-
duces a small enhancement of the interference fringes
visibility with respect to the standard vacuum bath. %'e
have no need, however, to stay below threshold if we
wish to observe the interference fringes of' the superposi-
tion of the two coherent states at not too large time, i.e.,
times smaller than the critical time when we expect that
the above description will break up and the system will
begin to oscillate in a complicated way. If we disregard
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FIG. 1. The exponent q vs y, t for the vacuum case (dashed
line) and for the model with feedback, Eq. (19) (full line). The
inset shows the probability distribution of the QND measured
quadrature X& at y, t =0.09. In the model with feedback (full
line) an interference pattern still persists, while it has already
disappeared in the vacuum case (dashed line). Parameter values
are y= —7y„ IctI =5, 6 sin (g —0)/g= 10

the above stability constraint, the function g(t) can be re-
duced well below its vacuum value. This can be better
shown in Fig. 1, where we have chosen y= —7y, with
IctI =5 and y, t =0.09. In the inset is shown the interfer-
ence pattern which is completely washed out if, at the
same time, one considers rl„,(t) instead of Eq. (19). The
preservation of macroscopic quantum coherence in both
the stable and the unstable cases is not as good as the one
that can be obtained in principle from a pure theoretical
squeezed bath, in the case of maximum squeezing

IMI =&X(N+ I). In fact, as shown in Ref. [5], in this
case the decoherence can be signi6cantly slowed down be-
cause the initial slope of g(t) can be arbitrarily decreased
by increasing the bath parameter N, which is completely
free in this abstract model. On the contrary, in our phys-
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ically realizable model, the bath parameters M and N are
complicated functions of the feedback parameters [Eqs.
(7b) and (7c)] and they cannot be varied in an arbitrary
way.

IV. CONCLUSIONS

We have shown that the adoption of an appropriate
feedback loop based on a QND measurement of a field
quadrature simulates the presence of a squeezed bath.
When the feedback scheme is used in the unstable case, it
is able to significantly slow down the destruction of the
interference fringes associated with macroscopic quan-
tum coherence caused by dissipation.

In this paper, we are not concerned with the generation
of optical Schrodinger cats. We simply assume that a
linear superposition of coherent states is prepared in
some way at t =0, and we propose to use feedback to
hinder the decoherence mechanism produced by dissipa-
tion, always present in any measurement process. The
relevant point of this paper is that the use of a suitable
feedback scheme can appreciably increase the decoher-
ence time of a generic optical Schrodinger cat.

At first sight, this paper seems to have a close relation-
ship with the paper by Brune et al. [16],where an adap-
tation of a QND measurement of the number of photons
stored in a high-Q cavity is proposed for the generation
of Schrodinger cat states. However in our model, the
QND measurement of the field quadrature X& plays a
quite different role. In fact, in Ref. [16], the QND mea-
surement of the photon number is performed by detecting
the dispersive phase shift produced by the field on the
wave function of nonresonant atoms crossing the cavity.
When a coherent state is initially present in the cavity
and the atom velocities are conveniently selected, an
atom detection projects the field into a linear superposi-

tion of two coherent states with difFerent phases. There-
fore, the QND measurement is used for generating an op-
tical Schrodinger cat. On the contrary, the QND mea-
surement of the field quadrature in our model is an im-
portant step in the feedback loop which, when used in the
unstable case, is able to significantly increase the decoher-
ence time of any linear superposition of coherent states
and permits the observation of the interference fringes by
homodyne detection. Analogous considerations can be
made on the relation between our work and Refs. [17],
where a back-action evading apparatus based on a para-
metric amplifier is proposed for the production of super-
position of macroscopically distinct states. In fact, also
in these papers a QND scheme is used for generating op-
tical Schrodinger cats, not for slowing down the destruc-
tion of macroscopic quantum coherence due to the mea-
surement.

For an experimental realization of the above scheme,
the number of photons in the beam has to be adequately
small but with modern technologies this is not a great ex-
perimental problem. What could be more difficult to
realize is the QND measurement, which is essential in the
above discussion; however, very recently Grangier et al.
[18] were able to perform a QND measurement via feed-
back, even though the feedback mechanism in their case
turned out to be completely internal to the system. This
fact and the intriguing possibility of using the QND-
mediated feedback seems to us appealing enough to war-
rant the interest of experimenters despite its intrinsic
difficulty.

ACKNOWLEDGMENT

This work was partially supported by the European
Community under the Human Capital and Mobility Pro-
gramme.

[1]A. S. Wightman, in Probabilistic Methods in Mathematical
Physics, edited by F. Guerra, M. LofII'redo, and C. Mar-
chioro (World Scientific, Singapore, 1992), and references
therein.

[2] H. Dehmelt, Am. J. Phys. 58, 17 (1990).
[3] A. O. Caldeira and A. J. Leggett, Physica A 121, 587

(1983);Phys. Rev. A 31, 1059 (1985).
[4] B.Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986).
[5] T. A. B. Kennedy and D. F. Walls, Phys. Rev. A 37, 152

(1988).
[6] A. Mecozzi and P. Tombesi, Phys. Lett. A 121, 101 (1987);

J. Opt. Soc. Am. B 4, 1700 (1987).
[7] P. Tombesi and D. Vitali, Phys. Rev. A 50, 4253 (1994).
[8] C. W. Gardiuer, Quantum Noise (Springer, Berlin, 1991),

p. 328.
[9] H. M. Wiseman and G. J. Milburn, Phys. Rev. Lett. 70,

548 (1993).
[10]H. M. Wiseman and G. J. Milburn, Phys. Rev. A 49, 1350

(1994).

[11]P. Alsing, G. J. Milburn, and D. F. Walls, Phys. Rev. A
37, 2970 (1988).

[12]R. L. Stratonovich, Introduction to the Theory of Random
apoise (Gordon 8c Breach, New York, 1963), Chap. 4.

[13]L. Arnold, Stochastic Differential Equations (Wiley, New
York, 1974).

[14] C. W. Gardiner, Handbook of Stochastic Methods
(Springer, Berlin, 1983), Chap. 4.

[15]V. B. Braginsky and F. Ya. Khalili, Quantum Measure
ments, edited by K. S. Thorne (Cambridge University
Press, Cambridge, 1992).

[16]M. Brune, S. Haroche, J. M. Raiinond, L. Davidovich,
and N. Zagury, Phys. Rev. A 45, 5193 (1992).

[17]S. Song, C. M. Caves, and B. Yurke, Phys. Rev. A 41,
5261 (1990);B. Yurke, W. Schleich, and D. F. Walls, ibid.
42, 1703 (1990).

[18]P. Grangier, J.-Ph. Poizat, P. Grelu, F. Castelli, L. A. Lu-
giato, and A. Sinatra, J. Mod. Opt. 4j., 2241 (1994).


