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Chaotic and regular behavior of a trapped ion interacting with a laser field
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We study analytically and numerically the motion of a trapped two-level ion in the presence of a
resonant laser Beld. Using a semiclassical description, we find that for sufKiciently strong laser fields
atomic motion becomes chaotic for a wide range of parameters and initial conditions. The traces
of chaotic motion are reQected in the population inversion of the trapped ion, and thus could be
observed by using the quantum jump technique.

PACS number(s): 32.80.Pj, 42.50.Vk, 05.45.+b

I. INTB.QDUCTION

The interaction between a single trapped ion and a
laser Beld has become a problem of increasing interest
during the last few years, especially in the field of quan-
tum optics and precision spectroscopy. Of particular in-
terest is the situation in which the laser Beld is quasi-
resonant with a metastable transition of the trapped ion.
From an experimental point of view, dipole-forbidden
transitions have been used to cool an Hg+ ion to very
low temperatures via sideband cooling [1] and to mea-
sure the temperature of the ion using the quantum jump
technique [2]. From a theoretical point of view, dissipa-
tion in the system is negligible which leads to a number
of interesting phenomena [3—5].

Most of the theoretical analysis of the interaction be-
tween laser Belds and ions without dissipation is based on
two approximations: (i) the so-called Lamb-Dicke limit
and (ii) the secular approximation. . In the Lamb-Dicke
limit, the motion of the ion is restricted to a region that is
small as compared to the laser wavelength, which intro-
duces important simplifications in the problem [6,7]. The
secular approximation is related to the fact that for ions
confined in a Paul trap one usually replaces the time-
dependent trapping potential by a harmonic potential.
This amounts to averaging the atomic motion during
small time intervals, and therefore neglecting the rapid
oscillations (micromotion) of the ion in front of its slow
motion (secular motion). In fact, in the Lamb-Dicke limit
and for laser frequencies not too far oK the atomic res-
onance this last assumption is very well satisfied in the
context of laser cooling [8]. Under these approximations,
the problem of the motion of a two-level ion interacting
with laser light (without dissipation) is very similar to
that found in cavity QED, where instead of the motion
of the ion in a harmonic potential one has a single mode
(cavity made) of the radiation field. Using this similarity,
one can prepare nonclassical states of motion of the ion
[4], as well as observe the collapse and revival of its pop-
ulation inversion [3]. However, in situations where the
Lamb-Dicke limit is not satisfied, all these phenomena
are expected to be modified. In particular, the micromo-
tion of an ion in a Paul trap can become important and
lead to other phenomena not considered so far. It is thus

clear that a full description of this problem, including the
micromotion of the ion in the trap, would be desirable.

In this paper we analyze the interaction of a two-level
ion in a Paul trap with a laser Beld on resonance with
the two-level transition. We employ a semiclassical de-
scription, whereby the motion of the ion is treated clas-
sically. Furthermore, we consider the laser Beld in a
standing-wave configuration, since this notably simplifies
the problem. We expect, however, the same qualitative
behavior for laser Belds in traveling-wave configurations.
We will show that under certain conditions the motion
of the ion is chaotic. Essentially, this occurs when the
energy due to the laser-induced potential (a sine func-
tion) is comparable to that of the trapping potential, and
for initial conditions rather close to the separatrix of the
time-independent problem. The ion, in this case, tends
to jump from one of the induced wells to another in an
stochastic way. We use the Melnikov analysis [9] to de-
termine the range of physical parameters which leads to
instability and chaotic Inotion. We also characterize the
regular and chaotic motion by usual methods: the Lya-
punov characteristic exponent and the power spectrum.
We explain qualitatively the numerical results through
analytical expressions derived when micromotion is ne-
glected. In such a case, the problem is exactly solvable
and therefore no chaotic motion occurs. We note that
a full quantum treatment of the motion of an ion in a
Paul trap, in the absence of any laser Beld, has been
given in Refs. [14,15]. On the other hand, laser cooling
in the Lamb-Dicke limit including micromotion has been
studied in Refs. [8,16].

Recently observed dynamical efFects with a small num-
ber of laser-cooled trapped ions suggest the occurrence of
(classical) chaos in ion dynamics [10]. For this system,
chaos has been attributed to the nonlinearity arising from
the ion-ion Coulomb repulsion [ll], rather than to the
ion-trap system. Thus the existence of chaos in ion traps
has been connected so far to the presence of two or more
ions in the trap [12,11,13]. So, for those studies, the sec-
ular approximation is taken when considering the action
of the trapping potential. We wish to stress the fact that
the existence of chaos in ion traps has been connected so
far to the presence of two or more ions in the trap. As we
show in this paper, chaos can also occur with a single ion

1050-2947/95/51{6)/4900{6)/$06. 00 4900 OC1995 The American Physical Society



CHAOTIC AND REGULAR BEHAVIOR OF A TRAPPED ION. . .

in the trap. Recent advances in laser cooling and trap-
ping of single ions in traps could lead to an experimental
observation of this phenomenon in the near future.

This paper is organized as follows. In Sec. II we intro-
duce the model and derive the evolution equations for the
motion of the ion. In Sec. III we derive analytical results
under certain limits. In Sec. IV we derive an expression
for the Melnikov function, which determines the "degree
of chaos" for a given set of parameters. A discussion of
the numerical results is given in Sec. V. Finally, Sec. VI
includes a summary of the results.

the absence of dissipation), where now the efFective Rabi
frequency depends on the specific location of the ion x.
From these equations one has that o. is a constant of
motion. Taking as the initial state of the two-level system

1
(lq) + e *'le))

2

where lg) and le) denote the ground and excited state,
respectively, we have that (o ) = cos(0). On the other
hand, one can easily solve the equations for o„and o in
terms of x(t), obtaining

II. MODEL

We consider a single two-level ion trapped in a Paul
trap. The ion interacts with a resonant laser standing
wave, propagating along the x direction. The Hamilto-
nian describing this situation in a rotating frame at the
laser frequency is (h = 1)

II = + U(r, t) + o. sin(kx+ P).
p' no
2m '

2

U(r, t) = —mW(t)(x'+y' —2z'),
2

where

(d
W(t) = —[a —2q cos(rut)],

4

with ~ being the micromotion frequency, and a and q
depending on the specific geometry and applied voltages
to the trap. Note that the motions in the x, y, and
z directions are completely decoupled. This is due to
the fact that the laser field only modifies the motion in
the x direction through the photon recoil accompanying
each absorption and emission of laser photons. Thus the
motion in the y and z directions does not depend on the
laser field, so that y and z fulfill Mathieu equations and
therefore they present regular behavior. Consequently,
we will restrict ourselves to the one-dimensional problem
of the motion of the ion along the x direction.

Starting from the Hamiltonian (1) one can easily de-
rive the equations describing the evolution of the ion. In
particular, the equations for the internal dynamics are
the following:

o =0,
o.

y
———Ap sin(kx + P)o.„

o-, = Apsin(kx+ P)cr„,

(4)
(4b)
(4c)

where the sigmas are spin- 2 operators describing the two-
level system. These are the familiar Bloch equations (in

Here, r and p denote the position and momentum of the
ion (center of mass), m is the ion mass, o is a spin-2
operator for the two-level system, Op () 0) is the Rabi
frequency for the laser-ion interaction, and P gives the
relative position between the center of the Paul trap and
the laser standing wave. U(r, t) is the trapping potential
and is given by

(oz(t)) = sin(0) cos Op

(o', (t)) = sin(0) sin Op

sin[kx(t') + P]dt'

t

(6a)

sin[kx(t') + P]dt' . (6b)

we have

'r = Ldt/2,

(ga)

(sb)

x" = f(7.)z——icos(z+ P),

where f (r) = a —2q cos(2&), and

2k Op cos(0) 2 Ap—= 4cos 0 g

With these definitions we reduce the number of param-
eters involved in the problem to four dimensionless pa-
rameters: a, q, P, and B. Note that 0 is proportional to
the Rabi frequency Bp, the energy recoil k2/(2m), and is
inversely proportional to the square of the micromotion
frequency u. This combination of parameters in 0, to-
gether with the specific characteristics of the trap (a and

q) determine the motion of the ion. In the limit 0 —+ 0,
Eq. (9) reduces to the Mathieu equation [18], whereas
for a, q i 0 (or, equivalently, 0 —+ oo) one recovers the
pendulum equation. Qn the other hand, the solution to
Eq. (9) determines completely the evolution of both the
external and internal dynamics [cf. Eq. (6)].

III. ANALYTICAL APPROXIMATIONS

A. Secular motion

This approximation is based on the substitution of the
time-dependent trapping potential by a simple harmonic
oscillator. This amounts to neglecting the micromotion.
The secular frequency that characterizes the trap is

Equations (6) show that a chaotic motion gives rise to
chaotic dynamics for both o„and o . This fact provides
a method to detect chaos in the n.otion, since in ion
traps one can easily measure u, by the quantum jumps
technique [2].

For the equations describing the external dynamics
(center-of-mass motion) we have

nok
z = —W(t)x — cos(0) cos(kx + P).

2m

Defining new variables,
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v = —ga+ q2/2.
2

Under this approximation, the Hamiltonian for the one-
dimensional (1D) problem becomes

1 220p+ mv—x + o sin(kx+ P),2m 2 2

which, obviously, is integrable. The motion of the ion
depends on the relative strengths between the harmonic
oscillator and the laser-induced potential. For example,
for P = 37r/2 (the minima of both potentials coincide at
x = 0), we have that when 4v2/w )) 0 it is the har-
monic potential the one that influences the motion of the
ion, whereas in the opposite limit, the laser interaction
dominates.

In principle, one may expect [8] that the Hamilto-
nian (12) provides a good approximation to the (time-
averaged) dynamics for v « cu (or, equivalently, a, q «
1). However, this is not always the case as will be proved
in the next section. There we show that even for a = 0
and q small, the atomic motion can become chaotic, for
a given set of initial conditions. On the contrary, in the
case of regular motion Hamiltonian (12) provides with a
very good description of the dynamics.

B. Lamb-Dicke limit

In the Lamb-Dicke limit, the ion oscillates in a region
which is much smaller than the laser wavelength. In this
case, x —xpl « 1 V7. , where xp is the position around
where the ion oscillates. This limit allows us to expand
the equations of Sec. II in powers of (x —xp), keeping
the lowest orders. The resulting evolution equation for x
becomes [18]

x" = f(~)x+ C—,

where f is the same as f but with the replacement

a -+ a, tf = a —csin(xp+ P),

(13)

(14)

q' 7q4
ap(q) = ——+ +.

2 128 (15a)

+
64 1536

+q q q

8
(15b)

and C = O[cos(xp+P) —xp sin(xp+P)] is a constant. Let
us analyze the simplest case when xp ——0 and P = 3vr/2.
Then, (13) reduces to the familiar Mathieu equation [18].
This fact allows us to predict whether the motion of the
ion will be bounded or not. According to [18], the first
stable region of the Mathieu equations (which is the one
currently used in most experiments dealing with Paul
traps [3]) is bounded by the curves

high laser power, the ion parameter cross one of the bor-
ders (15) and its motion becomes unbounded. This oc-
curs when either ap(q) = a,yt or bi(q) = a, ff Ill suril-
mary, under Lamb-Dicke limit conditions, for high laser
intensities the stable motion can disappear. This state-
ment agrees with the results derived in the next section.
Note that although Eq. (13) does not predict chaos, this
is not necessarily the case. This is due to the fact that
when the parameters q and a,yf lie out of the stable
region, the Lamb-Dicke limit is not longer valid, nor is
Eq. (13).

IV. MELNIKOV ANALY SIS

x = hp(x) + ~hi(x, t),

x = (x, v),

(16a)

(16b)

where the unperturbed equation (e = 0) comes from
an integrable Hamiltonian system with a hyperbolic
fixed point Pp, a separatrix orbit xp(t) [such that
»m~~~~xp(t) = Pp], and hi is a function of time with
period T. Due to this nonautonomous forcing, the irreg-
ular motion will occur for orbits whose initial conditions
are near the separatrix xp(t). Melnikov [9] introduced a
simple function A(tp) that, when it has a simple zero (for
some tp), indicates the presenence of stochastic motion.
The width d of the stochastic layer can be estimated from
the Melnikov function as [20,21]

In the absence of micromotion (a = q = 0) the evolu-
tion equation of the motion is that of a simple pendulum.
The main effect of rnicromotion (q g 0) is to yield, un-
der appropriate conditions, a homoclinic bifurcation in
(9). This leads to the appearance of an unstable layer
meaning the possibility of stochastic motion along the
separatrix of the unperturbed pendulum. If the strength
of micromotion remained constant in time, this exceed-
ingly complicated behavior should occur in a region of
the phase space bounded between Kolmogorov-Arnold-
Moser (KAM) curves. On the contrary, the multiplica-
tive nature of the perturbation may render the overall
perturbation relatively large and, as a consequence, the
orbits can chaotically escape from the initial well, as ob-
served in numerical experiments. In this section we use
the Melnikov method [9,20,21] to determine under what
conditions a homoclinic bifurcation occurs in (9), and for
calculating the width of the stochastic layer. This last
term is used to denote the region in phase space where
the motion becomes irregular.

We now briefly describe this method for the particular
case of a Hamiltonian system, with one degree of freedom,
subjected to a Harniltonian perturbation [21]. Consider
a system described by the following equations:

For p = 0 (i.e. , in the absence of the laser field), stable
motion occurs for values of a and q with ap(q) & a & &r (q)
[].9]. Increasing the laser intensity leads to a modifica-
tion of the effective parameter a ff. Then, for suKciently

In order to apply the method described above to
Eq. (9) we rewrite it in first-order form
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X =V)
7r8' = 2q x + ——P cos(2r) —0 sin(x),
2

(18a)

(18b)

on perturbation theory, is approximate). For the micro-
motion term the perturbative requirement is written as
I2q(x —P+ vr/2)I « 1. Then the upper threshold is ob-
tained for motions that stay close to the separatrix:

where, for the sake of simplicity, we assumed a = 0, 0 &
8 & z (i.e. , 0 ) 0), and we applied the substitution
x ~ x —P —vr/2 to Eq. (9). Also, we take the limit
0 & q &( 1. For q = 0, as mentioned above, one recovers
the integrable pendulum with separatrix,

xp(r) = +2arctan[sinh(v 0 r)],
8p(r) = +2v 0 sech(v 0r),

(19a)

(»b)

where the positive (negative) sign refers to the top (bot-
tom) homoclinic orbit. Under micromotion perturba-
tion, 0 & q && 1, we consider the extended phase space
(x v 7 ) . In particular, we examine the Poincare section
t = const (mod 7r). To compute the width of the stochas-
tic layer, we calculate the Melnikov function:

1
q « qi(4)—

Note that, for fixed values of q and 0, the function d(P)
[see Eq. (23)] presents a minimum at P = 7r/2. This
value corresponds with the physical situation where the
harmonic secular potential is centered at the node of the
standing wave, so that both minima (from the laser-
induced potential and the harmonic one) coincide. It
is not surprising that the "most stable" situation corre-
sponds to these parameters, since the action of the laser
adds up to that of the trapping potential to confine the
ion in a specific region of the space.

On the other hand, from Eqs. (22) and (23) we obtain
the following limits, for fixed values of q and P:

A+(tp) = 2q xp(t)6p(t) cos[2(r + to)]d7 lim d(q, 0, $) = 0.
0—+O, oo

(25)

Gp (t) cps [2 (7 + tp)]dr, (20)
Thus in these limits chaotic motion is not possible. These
limits were discussed at the end of Sec. II.

which measures the distance between the stable and un-
stable orbits in the Poincare section at to. Substituting
(19) into (20), and after some algebraic manipulation, we
obtain

(to) = 4q 4R(0) sin(2to)

+or ——P sech cos(2tp)0 )
(21)

with

B(0) —=
OO 2~

arctan[sinh(r)]sech(r) sin d&. (22)0

d(q, 0, P) = 16q 0
i B(0)

+
4

1/2

sech
0 )

+ o(q').

(23)

It is expected that almost all orbits starting in some
point inside the layer be chaotic. A more delicate ques-
tion is how large we can make q for our above results to
be valid (notice that the Melnikov method, being based

It is straightforward to show that R(0) is positive; it
tends to zero for 0 ~ 0, oo and has a maximum at about
0 1. Thus it is clear that A+(tp) has simple zeros,
indicating the existence of stochastic behavior for orbits
whose initial conditions are suKciently near the unper-
turbed separatrix (19). Using Eq. (17), the width of the
stochastic layer is given by

V. NUMERICAL RESULTS

We have performed some computer simulations on the
system described by Eq. (9). A systematic numerical sur-
vey of its parameter space is beyond our aim. Therefore,
we have chosen some arbitrary sets of parameters in or-
der to illustrate the predictions of the Melnikov method.
In particular, with a fixed set of parameters (q, 0, P), we
study the orbits based on diferent initial conditions with
increasing proximity to the unperturbed separatrix. Reg-
ular and stochastic motions were detected by standard
methods: the Lyapunov exponent and power spectrum.
The Lyapunov exponent [21,22] is given by

Ilw(t) II

Ilw(0) II
'

where W(t) represents the tangent vector associated with
a given reference orbit governed by the system which we
denote dx/dt = F(x(t)). Thus W(t) is governed by the
equation dW(t)/dt = M(x(t))W(t), where M is the
Jacobean matrix associated with F. The computation
of Lyapunov exponents is a standard tool for measur-
ing stochastic properties of Hamiltonian systems [21]. A
Hamiltonian system with n degrees of freedom has 2n
Lyapunov exponents associated with a given reference
orbit. These exponents verify the symmetry property
A,. = —A~;+i for 1 & i & 2n. Moreover, a given orbit
always has one exponent which is zero. Thus for our case
n = 1.5, there is at most one positive exponent for any
given reference orbit.

We compute the Lyapunov exponents by using a ver-
sion of the algorithm introduced in Ref. [22] and used in
Ref. [23]. As integrator we have adopted a Bulirsch-Stoer
routine [24]. In taking the limit required by (26) we typi-
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FIG. 1. LogrII(A) versus x(0) for v(0) = 0, P = vr/2,

q = 0.05, and B = 1.5462.
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cally integrate up to t = 30000 which is sufFicient for our
purposes.

Figure 1 shows a plot of logip(A) as a function of
the displacernent x(0) (A the positive Lyapunov ex-
ponent) for the set of parameters (8(0), P, q, 0)
(0, vr/2, 0.05, 1.5462). The values for A Huctuate, but
with an overall increasing trend as the top of the well
is approached. In Fig. 2 we plot logqp(A) versus logip(t)
for two cases, showing the convergence of A as t ~ oo.
Figure 2(a) corresponds to x(0) = 2.87 while 3(b) cor-
responds to x(0) = 0.25. The final values of A for these
cases are roughly 0.1387 and 0.0005, respectively. From
Eq. (23) the theoretical width of the stochastic layer is
d(0.05, 1.5462, 7r/2) = 0.2704, i.e. , it is smaller than the
one observed numerically. But this result is not surpris-
ing since the Melnikov method, which is based on the
perturbation theory, is approximate. Similar discrepan-
cies between these types of analytical and numerical pre-
dictions were found in other contexts [25].

Generally, small values of the positive Lyapunov ex-
ponent (typically, A & 10 s) correspond to stochastic
motions confined in the well for long periods, whereas
higher values mean that the ion jumps quickly to an-
other well in a chaotic way. Another way of detecting
the same phenomenon is by looking at the spectral prop-
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FIG. 3. Time series of the velocity and corresponding
power spectra for x(0) = 0.1, 8(0) = 0, It! = vr/2, and
& = 1.5462. (a) q = 10, periodic motion. (b) q = 10
beginning of the amplitude Iluctuations. (c) q = 10, the
random amplitude fluctuations are clearly visible.
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FIG. 2. LogIII(A) versus logIII(t) for two different initial
conditions, the remaining parameters being the same as in
Fig. 1. (a) x(O) = 2.67; (b) x(O) = 0.25.

FIG. 4. Same as in Fig. 3 with x(0) = 2.6, v(0) = 0,
P = vr/2, and 0 = 1.5462. (a) q = 0.05.
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erties of the solutions. From numerical integration one
obtains pseudo-orbits of the system in the form of the
time series f(t); then, standard fast-Fourier transform
yields the power spectrum S(w) = ]a(w)] . Usual aver-
aging procedures have been used to improve its quality
[24].

In Fig. 3 we plot three time series of the velocity,
and their corresponding power spectra, for increasing
values of q. Comparison among Figs. 3(a)—3(c) clearly
shows that when q increases, the periodic component (at

~A) of the spectrum is reduced and its random
component is magnified. Observe that the case shown in
Fig. 3(c) indicates chaotic dynamics limited to the orig-
inal well, and therefore this regime could be more eas-
ily detected experimentally. Finally, in Fig. 4, we give
an example of stochastic escape. The time series of the
velocity [Fig. 4(a)] is very irregular and the associated
power spectrum [Fig. 4(b)] contains substantial power at
low &equencies.

semiclassical approximation, whereby the motion of the
ion is treated classically, whereas its internal dynamics
is described quantum mechanically. We have studied the
regimes characterized by secular motion and the Lamb-
Dicke limit. The analysis performed using the Melnikov
method predicts the existence of chaotic behavior for ini-
tial conditions close to the separatrix of the pendulum
case (a = q = 0). We have derived an analytical expres-
sion for the width of the stochastic layer around such
a separatrix. Numerical results confirm the existence of
chaos in this problem. We have characterized the chaos
by using the Lyapunov exponent and the power spec-
trum. The traces of the chaotic motion could be mea-
sured in an ion trap by detecting the internal state of the
ion as a function of time, since the population inversion
also displays chaotic behavior. We expect that a thor-
ough extension of the present work to the case where
the motion of the ion is treated quantum mechanically
will reveal other interesting behavior. In particular, this
could serve as a simple model to study quantum chaos.

VI. SUMMARY

We have studied the motion of a single ion, trapped
in a Paul trap, and interacting with a resonant laser
beam in standing-wave configuration. We have used a
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