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Quantum dynamics and cooling of atoms in one-dimensional standing-wave
laser Acids: Anomalous effects in Doppler cooling
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We report computational results for the time evolution of the velocity distribution P(V, t) for
two-level and multilevel "Doppler" laser cooling. We compare results obtained from the semiclas-
sical (SC) Fokker-Planck equation and from generalized optical Bloch equations applied to density
matrices over a basis of products of internal and quantized translational states (QDM). Computer
memory requirements are optimized to make large-scale QDM calculations feasible. QDM and SC
agree well except for two cases: (a) atoms in the wells of the light-shift potential (with kinetic energy
less than the well depth, Uo), and (b) atoms with recoil energy E" comparable to or greater than
the natural linewidth 5I'. Transient dips occur in P(V, t) at V = 0 in QDM results due to slow
cooling of atoms in the light-shift potential wells. Dips in P(V, t) occur at velocity-tuned-resonance
(Doppleron) velocities but disappear over long interaction times as atoms accumulate near points
where the force is zero. When En 5I', sharp peaks occur in P(V, t) at V = +V@ from velocity-
selective population quasitrapping not previously found in a two-level transition. Sharp features
in P(V, t) occur also for J ~ 2+1 transitions with J & 0, small Uo/E'R, and sufficiently large
detuning, from transitions between individual quantum states in the periodic potential.

PACS number(s): 32.80.Pj, 42.50.Vk

I. INTRODUCTION

Dynamic efFects in the interaction between atoms and
laser fields are now known to produce many interesting
and useful phenomena, most notably atom cooling, atom
trapping, and localization of atoms in standing-wave
nodes or antinodes [1—4]. The conditions for achieving
the lowest steady-state temperatures in Doppler [5—7],
sub-Doppler [8,9], and velocity-selective coherent popula-
tion trapping (VSCPT) methods [10,11]have been exten-
sively discussed. However, when performing experiments
under diverse conditions, it is useful to understand the
broad range of dynamic processes that can occur when
atoms interact with laser light. Laser detuning and in-
tensity may deviate from optimum or the laser-atom in-
teraction time may be too short for the steady state to
be attained, as is easily the case for transverse cooling of
an atomic beam. Transient phenomena and large-recoil
efFects can provide a sensitive probe of the dynamics of
laser-atom interactions and of quantized motion of atoms
in the periodic light-shift potential wells.

Three basic theoretical methods have been developed
to deal with these questions. (a) The semiclassical (SC)
method [12—17] uses spatially averaged force and difFu-
sion functions in a Fokker-Planck equation or Langevin
equation for the velocity distribution. Both of these as-
sume [17,18] that the momentum increments (hk) from
photon recoil are smaH compared with the momentum
width (+2MAI'), hence that the recoil energy E"
6 k /2M «ht', where k = 2vr/A, M is the atomic
mass, and I' is the spontaneous radiative decay rate. The
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SC method is by far the most economical for computer
memory and CPU time, but the efFect of the limiting as-
sumptions (spatial averaging and small momentum incre-
ments) on calculated velocity distributions has not been
spelled out. (b) The quantum density matrix (QDM)
method [9,6,19—23] uses a product of quantized inter-
nal and translational states in a Liouville density matrix
equation. Since laser cooling problems usually require a
large number of momentum states, the major limitation
of this method has been the size of the computer mem-
ory required to handle a density matrix of order 9l for%
basis states, where 91 is the product of the number of in-
ternal and translational states. (c) The quantum Monte
Carlo (QMC) [24—26] method uses statistical realizations
of solutions of the Schrodinger equation, which requires
a calculation over just the % basis states, rather than
over% density matrix elements. Reducing the statis-
tical noise enough to see details in P(V, t), however, re-
quires many realizations and relatively large amounts of
CPU time.

In this study, we report results of calculations with
SC and QDM methods of the temporal evolution of the
velocity distribution P(V, t) in two-level Doppler cool-
ing over a wide range of laser and atomic parameters,
and for Doppler cooling of atoms with multiple sublevels
with weak excitation. The objective of our work is to help
identify and interpret experimental observations and to
indicate under what conditions various phenomena occur.
The experimental context we address is transverse laser
cooling of an atomic beam, as in experiments on lithium
atoms in which velocity-tuned resonances (Dopplerons)
were observed [27], and also in recent experiments on
He atoms [23], in which efFects of quantized motion were
observed in the velocity distribution. Our discussion con-
siders J —+ 1+1 transitions in a o+ —o.+ standing-wave
laser field. (J is the total angular momentum of the
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ground state of the atom. When there is nuclear spin, it
is commonly denoted E.) For J = 0 one has simply two-
level cooling on the m = 0 + 1 transition component,
while the case of J = 1/2 brings in additional phenom-
ena that can occur in atoms with degenerate sublevels.
For simplicity, we assume a flat (rectangular) initial ve-
locity distribution for ~V~ ( V „. A second report will
discuss the quantum effects observable in the velocity dis-
tribution in Sisyphus sub-Doppler cooling such as those
reported in Ref. [23].

We will show (Sec. II, especially Sec. II C, and Sec.
III F) that computational optimization can drastically re-
duce the memory and CPU requirements of . the QDM
approach. At least for two-level problems in one di-
mension, these optimized QDM methods now typically
require less CPU time than QMC methods to obtain
comparable detail in features in the velocity distribution
[28,29]. Detailed comparisons reveal good agreement be-
tween results from SC and QDM methods over a wide
range of parameters, giving credibility to both of these
very di8'erent methods, and justifying use of the much
faster SC methods for many conditions. The major diKer-
ences between SC and QDM results occur when atom ki-
netic energies are less than the well depth of the periodic
light-shift potential (E~ ( Uo), when the recoil energy
is comparable to or larger than the radiative linewidth
(ER + hl'), or when quantum interference efFects are
present (for E~ + AI').

Since the original proposals [30,31], Doppler cool-
ing has been addressed theoretically many times
[5,6,12,26,32,33]. With the computational methods out-
lined in Sec. II, we examine in Sec. III several e0'ects
not emphasized in previous discussions of the velocity
distribution. By way of introduction, we show the ef-
fects of varying E~/hI' when SC force and diffusion func-
tions are kept constant (Sec. III A), and effects of larger
than optimum detuning or intensity (Sec. III 8). We
then focus on a significant and general conclusion from
the QDM calculations: Slower cooling of atoms in the
wells of the periodic light-shift potential produces a de-
ficiency of atoms near zero velocity. This eIIIect was dis-
cussed from the point of view of classical trajectories by
Bigelow and Prentiss [34], but there was no calculation
of the expected effect on P(V, t). Localization efFects
have been discussed theoretically also for lin J lin cool-
ing (two counterpropagating laser beams with orthogonal
linear polarization) [9,35] and in Ref. [16] for a special
one-dimensional (1D) cooling model. For 1D Doppler
cooling, we And that there is often a transient dip in
P(V, t) at V = 0 (as observed experimentally in Ref.
[23]), and that even in the steady state, the SC amph-
«de «P(V, t) at V = 0 tends to be larger than the
QDM amplitude. Our calculations of the spatial distri-
bution P(z, t) show that after a short time for which
there is a small surplus of atoms at the nodes of the laser
field, up to 22~jg more atoms are found at the laser anti-
nodes (potential minima for red detuning) than at the
nodes. This is substantially less than expected for a ther-
mal distribution in the periodic light-shift potential.

To put this eKect in a broader perspective, we point out
other circumstances that can lead to superficially similar

results for P(V, t) .For example, with large detuning,
atoms accumulate temporarily in peaks with ~V~ g 0.
Until these peaks eventually coalesce into a single peak
at V = 0, one has the appearance of a dip at V =—0
between them. Also, at high laser intensity (Sec. III D),
the slope of the force versus velocity function changes
sign at V = 0, and one has the regime of "blue cooling"
or "red heating" [36]. A dip at V = 0 in P(V, t) results
from the latter. These last two eR'ects can be obtained
with the Fokker-Planck equation, but the efFect of slower
cooling in the wells is associated with spatial variations
of velocity, force, and atom density, for which the Fokker-
Planck equation becomes dificult to solve.

Doppleron resonances were discussed some time ago by
Herman and Ziegler [37], Kyrola and Stenholm [38], and
Minogin and Serimaa [39], who showed that peaks in the
force function and in the population difference between
ground and excited states occur when successive incre-
ments of kV combine to produce resonances at approxi-
mately 8 = (2j+1)kV where 8 is the detuning and j is an
integer. Hulet and co-workers [27] and Bigelow and Pren-
tiss [40] have reported experimental observations. Carry-
ing these previous efforts further, our calculations (Sec.
IIID) display the full time evolution of Doppleron reso-
nance dips in P(V, t), and show that these dips eventually
disappear as the atoms accumulate near velocities where
the force is zero.

In Sec. IIIE, we consider recoil energies comparable
to or larger than the natural linewidth, where the as-
sumptions of semiclassical theory are violated. Castin et
aL [6] have discussed this regime of Doppler cooling for
the special case of a o —o polarized standing wave, in
which there are closed three-member families of states.
For o.+—0+ standing-wave laser fields, the families are
not closed, and the results difFer. The most striking fea-
tures in the calculated P(V, t) distributions in this regime
are the quasi-VSCPT peaks due to suppressed decay of
states that involve a linear superposition of V = +V~
ground states. This phenomenon has not been noted pre-
viously for two-level atoms, and is most significant when
E~ = hl'/2.

Having reviewed several anomalous eKects in two-level
Doppler cooling, we are able to identify additional e8'ects
resulting from optical pumping among multiple degener-
ate sublevels (Sec. IV). The most visible efFects occur
when the depth of the light-shift potential wells is not
more than a few times the recoil energy E~. In this case,
there are only a few bands of Bloch states in the si.nu-
soidal periodic light-shift potential, and the very lowest
bands play a significant role. The first band gap, where
the wave functions have the same period as the laser,
is particularly important. The transition elements can
vary within the lowest band, and the rapid depopulation
of the lowest band or bands of the I, ( J manifolds can
produce characteristic transient features in P(V, t).

II. THEGB.ETICAI METH(3I3S

A. Halniltonian terxns and de6nitions

The optical Bloch equation (Liouville equation) for the
density matrix p is
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p = [H& p] + psE + prepop
We take the Rabi frequency to be 0 = dEL, /h F.or cr+

laser light,

%e have separated radiative decay into two terms which
have quite diferent forms. psE expresses the spontaneous
emission loss rates for excited-state elements and ground-
excited coherences, while p, p p gives the gain rates for
ground-state elements from repopulation efFects. The
Hamiltonian H includes terms for the center-of-mass ki-
netic energy, internal atomic electronic energy, and the
laser-atom interaction:

H = HKE + HA + HAI
P2=
2M + ~o). Ie')(e*l E(r t) 'd. (2)

P is the momentum operator, ~0 the atomic excitation
frequency, and the sum is over excited-state sublevels. In
the rotating wave approximation, which removes the time
dependence from H~l. , uo is replaced with —b = —&+4)p,
where h is the detuning, and ur is the laser frequency. In
this discussion, we consider optical fields consisting of
counterpropagating beams with identical circular polar-
ization and J ~ J+ 1 transitions only, where J denotes
the total angular momentum of the ground state (J ~ J
and J ~ J—1 transitions typically involve special effects
associated with dark states).

If each beam is o.+ circularly polarized, then the laser
electric field E = g (E+e ' + E e' )e (—1) may
be written

J
H~I, = MI cos(kz) ) C+(J, m)

m= —J
x[~ e, J+ l, m+ l)(g, J, m ] e

+
~

g, J, m)(e, J+ l, m+ 1
~

e' ']
= grege

' + Wgee'

The on-resonance single-beam laser intensity parame-
ter S, the detuning parameter L, and the nominal optical
pumping rate I'„are

2n2 4S2 2Sr
I'2 " L

I =1+

The recoil momentum is P~ ——hk, the recoil velocity
V~ = hk/M, and the dimensionless recoil parameter is
e = E~/5F. Note that for a single laser beam with time
average (E ) = EI/2, the irradiance I = eocEI/2
rrhl cS/3A, using expressions given above for S, 0, and
I'.

B. Coxnputations with a free-particle basis

In this approach, the basis states for p are products
of internal atomic states and free-particle momentum
states:

1
El, jx [cos (kz + wt) + cos (kz —ut)]

2

+ y [sin (kz + wt) —sin (kz —wt)])
e+ El, cos (kz)—e '"' + c.c., (3)

so that E+ ——Eo ——0 and Eg = ~El, cos (kz) in
this case. The time average for each beam is (E )
EI2/2, as for a linearly polarized beam of the form

xEI, sin (kz —art) We have u.sed ey = p(x + r'y)/y 2.
In evaluating H~l, = E.d= —P (——1) (E+ d+e

+E d e' ), we denote by d+ (d ) a raising (lower-
ing) operator. In computing adjoint elements, one has
the relation (d+)t = (—1) d . Elements of the dipole
moment operator are, for example,

(e, J + 1, mg + rT]d+
~ g, J, mg)

= (J+ l, m +o~J, l, m, o)d, (4)

C~ (J, m) = (J + 1, mg + 1~ J, 1, ms, 61)

where d = er is the reduced dipole moment matrix ele-
ment, such that the radiative decay rate of the excited
state is I' = (4/3)ncr2ks = d2k /3rreoh. Below, we will
frequently use the symbol

where g = 0 or g for ground states and 1 or e for excited
states, and the scaled variable q = P/PIr.

Hamiltonian terms HKF and H~ are diagonal in the
above basis, and are given by Eq. (2) above. For example,

(g, J„,m, q ~
HKF ]

q', J„,m', q')

= q'EIr8(g, il')8(m, m')8(q, q'). (9)

In view of Eq. (2) and the relation e*"'
~ q) =~ q+ 1),

elements of the laser interaction term H~L, for a o+ laser
standing wave and a J —+ J + 1 transition are

(e, J + 1, rn + 1, q~ W,g ~g, J, m, q')

hO= C+(J, m, ) 8(q, q' 6 1). (10)
2

For computational purposes, q assumes discrete values.
Values of q are grouped into momentum "families" of
infinite extent, such that HAL, connects states only within
a family. Each family is labeled by Q~:

q=Q, +2n+q, Q, = —,—1&Q, &1=2j

(J 6m+ l)(J+m+2)
(2J+1)(2J+ 2)

where j, n, and % are integers, N ) 0. Part of one family
is shown in Fig. 1(a), and for this family q = 2n+g, 1V=l,
and Q~ = j = 0. A calculation performed with just this
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family has the coarsest momentum mesh possible. Figure
1(d) shows a set of four families, with N = 4, Q~ = —1/2,
0, 1/2, and 1, to form a finer mesh.

The spontaneous decay term for any element of p is
given by

(12)

Repopulation of the ground-state elements by sponta-
neous decay is expressed by

2nl
(y, J, , q

~
/, ..., ~ q, Z, ', q') =I' 5 ).~.

I

—1+ —
I (J 1» IJ+1 +Tcpap 'I

2n 2n
x e, J+ 1,m+ O., q —1+—p e, J+ 1,m + o, q —1+—
x(J + 1,m'+ 0~ J, 1, m', 0).

~ (r) is a discretized version of the functions for angular
djstrjbutjon of emitted. fluorescence, namely, ~+i(r)
s (1 + rz) and JVg(r) = s(1 —r ), where —1 ( r & 1 .
For a numerical mesh of 2P~/N, we divide the interval
—1 & r & 1 into N + 1 equal segments, and obtain

ments are negligible. For example, since only basis states
within families are connected by H~I. , only oK-diagonal
elements between states within each family need be re-
tained. Spontaneous emission connects diBerent families

( 2n)N.
/

—1+ —
/

=
b(.~) ~ (y)dy, n = 0, 1, . . . , N (14)

where a(n) = —1 + 2n/(N + 1) and &(n) = —1 + 2(n +
])/(N + ].). This discretization is somewhat arbitrary,
but gives the correct distribution as N —+ oo. It is shown
schematically in Fig. 1(b) for N = 1 and in Fig. 1(e) for
N = 4. Figures l(c) and l(f) show the relative intensities
of spontaneous decay for various LP in the two cases.

To compute the time evolution of p, matrix elements
of p are arranged in a vector X. The Hamiltonian and.
decay terms provide the evolution matrix T, such that

X =TX.
After computing p(t) by the above method, it is sorne-

times of interest to obtain the spatial distribution P(z, t)
From Eq. (8),

3/4

3

o
h,P/PR

0
p/pR

(c)

-'t 0
AP/PR

P(z, t) = e iA:~(q —&')

I Ig i g i 'g ) 'g ) 7A )m

x (i1', J„,m', q'
~ p~q, J„,m, q).

0
p/pR

2 3

C. Methods for numerical optimization 3/4

In view of the Hermitian symmetry of p = pt, the num-
ber of stored elements can be reduced. We need only the
elements in the upper triangle of Im(p) and the upper
triangle plus diagonal elements in. Re(p). We use IMSL
computer subroutine DIvpAG or NAG subroutine D02BAF
for the time integration, both of which require real vari-
ables.

When —n & n & n, there are 2n + 1 basis
states for each atomic sublevel. We have used n „as
large as 750, implying 3002 basis states for a two-level cal-
culation. This would mean in principle 9 x 10 elements
in p and 8 x 10 elements in T. The free-particle ap-
proach becomes practical only because most of these ele-

Z

h,P/PR
0

AP/PR

FIG. 1. Families and discretized spontaneous emission in
free-particle basis calculations. (a), (b), and (c) are for a
single family in a two-level transition, showing basis states
connected by the atom-laser interaction. For cr+ emission, the
spontaneous decay is equally split between AP = +Pa (d).
shows a finite part of four families, spaced by P&/2, while (e)
and (f) show the probabilities of various AP values discretized
over the range —1 & AP & 1.
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but does not induce coherences.
Furthermore, since off-diagonal elements with ~q

—q'~ =
~Aq~ arise from laser interactions of order

~
Aq~, for a given

intensity and detuning, values of ~Aq~ & ~Aq~, „q Ir may
be neglected. ~Aq[, „t~s can be determined by trial and
error by comparing the calculated results for P(V, I) as
shown in Sec. III F below. ~Aq~, „toII is often in the range
4—8, and not more than 20 in any calculation performed
in this work. Hence the required number of ofF-diagonal
elements with the free-particle basis is considerably less
than % . In addition, the evolution matrix T is extremely
sparse. The maximum number of elements in each row
in two-level cooling calculations is 6 + 2~Aq~«t;oe, so a
calculation that requires 50000 elements in p will have
only 10—50 elements in each row of T.

With these numerical optimizations and the use of
computers with larger memory, we are able to use a finer
mesh and a larger range of momenta than in previous
work with the free-particle approach. Because of the rel-
atively few off-diagonal elements required, the method
scales as 9l rather than %, hence is competitive with
Monte Carlo methods applied to the Schrodinger equa-
tion.

rewritten using the substitution pg I ——Sg e'~ .
We now assume that the kinetic energy terms in

Eqs. (18) and (19) are negligible. This is equivalent to
neglecting the Doppler shift, i.e. , we assume kv « I' (cf.
[9]). Although Doppler cooling is not present, the effects
discussed in Sec. IV are unaffected since they arise from
the non-Doppler process of Am = 1 excitation and spon-
taneous decay as shown for a J = 1/2 ~ 3/2 transition in
Fig. 2(a). When the Doppler shift is included using the
free-particle method, these transient features are super-
posed on a broad Doppler cooling "background" peak.

In the low excitation regime (S/I « 1), p„may
be neglected relative to pgg . Furthermore, we adiabat-
ically eliminate the excited-state elements and ground-
excited state coherences (cf. [8]) by setting p„= 0 and
s gi

= 0 in Eqs. (18) and (19), and solve these equa-
tions to obtain expressions for p„and Sg, in terms of
pggi. Then we substitute these expressions into Eq. (17),
to obtain the time evolution of the ground-state den-
sity matrix elements alone, pgg . Our notation is made
compact by defining a Clebsch-Gordan matrix, C,
(J + 1,m + 0

~
J, 1,m, o), and a matrix operator A that

expresses the process of laser excitation and spontaneous
decay with polarization o and with recoil:

D. Method of the periodic potential R, (q) = ) Wg, C,g
e'g"'.

When the excitation is weak, S/I « 1, excited-
state elements can be eliminated from the density ma-
trix equations. The efFective Hamiltonian for the ground
state then includes a periodic light-shift potential matrix
[8,20]. This matrix is diagonal for o + —0 + laser polariza-
tion, giving a Mathieu equation for each vn. In all cases
for which we have used the periodic potential basis, only
diagonal elements of p have been required (secular ap-
proximation), hence the dimension of the calculation can
be enormously reduced relative to the &ee-particle basis
approach. The price to be paid is that Doppler cooling
processes are not included (because the excited state is
eliminated) .

To derive equations for the ground state in the presence
of the periodic potential, we write the Liouville equation
for the full density matrix. We take R,g and R"g from
Eq. (6) and use the notation pgg to mean (g, Jg, mg, p ~

p
~
g, Jg, m', p'). We obtain

i hPggI ——
p2 /2

2M
+ )~(Wge" se "g' sge" ~e"g') + ~~prepopq (17)

p2
Zhpee' — gee'2M

+ (~,g sg —s,g Wg, ) —ill'p„, (18)

p2 p/2
ZA8g~I — Sg~I + Msg~I2M

+) (Wg, p, , —
pgg Wg, ) —xh —sg, . (19)

~l I

Coherences between ground and excited states have been

We also use the abbreviation p Wg&W g' = &gg'
nally, the resulting equation for the time evolution of the
ground-state matrix elements alone is

-3/2 -1 /2 1 /2 3/2

LLl

2-
0,'-
Q.Q ~ -0 QO

2 z/X
0.5 1.0

FIG. 2. (a) Excitation scheme for o+ laser light on a
J = 1/2 -+ 3/2 transition. Solid arrows denote transitions
on which Doppler cooling occurs. Spontaneous decay, in-
dicated by the wavy arrow, introduces a non-Doppler pro-
cess. (b) One period of the periodic light-shift potentials for
mg = —1/2 (left) and mg = 1/2 (right). Allowed energy
bands are shaded. The difference in well depth arises from
the Clebsch-Gordan factors shown in (a). Band gaps are large
within the potential wells but become narrow just above the
wells.
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4b 2iI
M[ ''P]+hI Z["'P] hl I, ~ 'P~+2M

.1

+ ) dqN (q)R (q)tpR (q).
L

Iii analogy w'ith Eq. (1), we interpret P2/2M
4bA/hl 2I as the efFective Hamiltonian H, s for the
ground-state density matrix. The third term depletes the
ground-state populations; the fourth term feeds them (cf.
[20])

The operator A is given by (from now on, J = Jg, m =
ms)

the coefficients a~ are found, we may evaluate Eq. (21)
over the periodic potential basis using sums over the a~.

The temporal evolution given by Eq. (21) then assumes

the form p = Tp, and again the elements of p may be
placed in a vector, such that T is the Liouville matrix
for the ground state. Since only ground-state diagonal
density matrix elements are needed, these calculations
require much less memory, are much faster than free-

particle basis calculations, and can often be performed on
a 486 PC. No elaborate numerical optimization schemes
were needed.

E. Semiclassical theory of laser cooling

A = h 0 ) C+(J, m) cos (kz)
~
m)(m ~, (22)

which is diagonal in m, . The operator cos2 (kz) over
the momentum basis can be written f dp( —

~p)(p~ +
4[~p)(p —2hk~ + ~p)(p+ 2hk~]). The Schrodinger equa-
tion H,~4 = E4 involves 2J + 1 independent diKeren-
tial equations, each associated with a single ground-state
magnetic quantum number m:

DO

W p(z, P, t) =— (—'Pu/6)

Following earlier discussions [12,13,15], Berg-Sgrensen
et aL [17] have recently presented a particularly clear and
useful derivation of the force and diffusion parameters
for two-level Doppler cooling for use in a Fokker-Planck
equation (FPE). We will briefly summarize their results
in the notation used in the present work. Their deriva-
tion, like others, is based on the Wigner matrix:

f P' 4M'8
C~ ( 1,m)' cos' jkz)) @ = EQ

(2
(23)

VL D
X z+ —p~p z ——

2 ' 2
(27)

In a position representation, we have a Mathieu equation
[41,42] for each channel:

where n, P = e, g and p p solves the optical Bloch equa-
tions. Moments of the Wigner matrix,

where

d'g u(m)A+ cos (2() vP = 0,d(2 2

dPP W(z, P, t),

in view of the relation (P )(t) = TrW (t), lead to the
force and diffusion functions:

u(m) = C+(J, m)
R

E u(m)
E. ' 2

2Sh80—
L )

(25)

and we have substituted kz = (. Solutions to these Math-
ieu equations have the general form

g(m, vn; j) = ) a, (m, n, v)e*l '+"~~ (26)

This wave function satisfies Floquet's theorem with a pe-
riod n and Bloch-Floquet index v: g( nm, v;(+ a)
e'" @(m, n, v; j). In solid state physics, v is often called
a quasimomentum [43]. As is well known [41], the stable
(nondivergent) solutions of the Mathieu equation occur
in energy bands, denoted n here, alternating with band
gaps of forbidden energies. Below the tops of periodic po-
tential wells, that is, for E ( Uo, the bands are narrow,
while for E ) Uo, the gaps are narrow, as shown for a
few levels in Fig. 2(b). Q(mg, n, v; g) can be interpreted
as a wave function in coordinate space and a~ a vector of
coeKcients over the Inomentum functions. By inserting
this solution into Eq. (24), we obtain recursion relations
that determine the coefficients a~ (for numercal calcula-
tions, a suitable cutoff is made) and eigenvalues. Once

P="( ), D=' —"((P)-(P) ).dt '
2 dt (29)

Also it is useful to define

W' = W —(TrW')W dP(P —(P) )W(P, t) (30)

~=) e'"" ~„ (31)

and solutions obtained by matrix continued fraction tech-
niques (Ref. [17]). For the FPE, one needs spatially av-
eraged force and difFusion coefficients and these are [Eqs.
(A.9) of [17]]

such that Tr(Wi) = 0.
Since Tr(W ) = 1, Bloch equations for W(z, P, t) are

most easily expressed in terms of the components lV
~gg ~ee) ~~ R ~eg) and R'I =ImWeg' In semiclas-
sical theory, d/dt in the Bloch equations for W(z, P, t) is
replaced by Vd/dz, as if the atom were dragged through
the laser field at constant velocity, z = Vt (Conse-.
quences of this assumption will be evident in the follow-
ing section. ) Bloch equations for W, Wg, Wl, W, W~,
and WI are given in Eqs. (2.29) and (2.30) of Ref. [17].
Each of these elements m = W etc. is expanded in a
Fourier series
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u)(P, t = oo) = exp dP'P(P')/D(P')
~

.

Results obtained with the above method are compared
with results from quantum density matrix calculations
for many of the conditions considered in Sec. III.

To place our discussion of anomalous efI'ects into con-
text, we will briefIy summarize and refine semiclassical
theory for near-optimum, low intensity Doppler cooling
for small e, which for several years was a primary con-
cern of laser cooling theory. In this model theory, force
is considered only to first order in velocity, and diBusion
is assumed to be velocity independent. We will repeat
previous expressions for E(z, V) and D(z), then perform
a spatial average of each to obtain a Maxwell (thermal)
distribution in V. The derived temperature as a func-
tion of laser intensity and detuning is valid when the lin-
earized expressions are valid. The F(z, V) function itself
will be of interest in Sec. IIIC because it yields classi-
cal trajectories with dissipation and without spatial av-
eraging over the light-shift potential wells. From optical
Bloch equations, using a saturation parameter we label
s = (4S/L) cos (kz), Gordon and Ashkin [12] obtained

F(z, V) =

and

hks8 tan (kz)
1+8

4(l —s) —2s2L
x 1+, Vktan(kz)LI'1+s2

(hk)2I's tan2 (kz)D z Ls +3s + —4 —L +1
4(1 + s)s 3

+ (37)

[see also Eq. (2.31) of Ref. [17]].
In our notation, with sp ——4S/L, the spatial average

of the linear coefficient of velocity in E(z, V) (damping
coefficient) is [45]

hk22b

I (1 + sp) s~2

' So So 3 3 2 3/2x —1+ ——1 ——sp ——sp+ (1+ sp)I 2 2 8

I = 2hkO Im(W~)i, (32)

D = -(ak)'r I (IT„'), + -[I (w'), ] . (33)

These parameters are then inserted into a FPE of the
form

Dip 0 0 f Bu )
O

= aP(F""OP' aP ~

This particular form of the second term on the right was
found to be most accurate [17] (see also Ref. [44]). Fur-
thermore, by setting Dip/ojt = 0, the steady-state mo-
mentum distribution is obtained:

(hk)2r
32(l + sp) &

x 1+80 3/2 480I, +24 l. —1 +
5

+(24 + 40sp) (1 —L) + sp
~

—+ 11 —15L
~)

16——(1+ so)
5

When the force curve is linear with velocity over the
steady-state velocity distribution, that distribution is
Gaussian, and a temperature may be defined:

kgT = Do

When the distribution is Gaussian, the usual relationship
for one dimension, k~T/2 = MV, ,/2 = EIr, applies. To
order 80 in E1 and in Do,

(4o)

7Zr' I, 5s (I 9) 7,1+—
/

—+ —
/

——sp+
so /h f

7 I,L Iop 16 '

Hence the minimum Doppler cooling temperature found
by this reasoning is

..~o 7AI'
(42)

This result agrees with Aspect et at. [7] and is confirmed
to high precision by quantum calculations. If the interest
is solely in the minimum Doppler cooling temperature,
Eq. (42) concludes the discussion.

From full SC and QDM calculations, Eq. (41) is found
to be a good approximation for S/L « l. At higher in-
tensities, nonlinear terms in E and D become important,
and P(V, t) becomes non-Gaussian. One could plot tem-
perature, or even (EK) for a non-Gaussian distribution,
as a function of intensity and detuning from Eqs. (41) or
(3S)—(40) as compared with full SC or QDM calculations.
In the following discussion, however, the focus will be on
the physical processes that underlie distinctive features
in P(V, t) rather than on (EIc) or k~T.

In connection with the discussion of Doppleron features
in Sec. IIID, it is of interest to have a formula for the
velocities at which Doppleron peaks occur in the force
curve, including efFects of laser intensity. The zeroth-
order expression, given in the Introduction, will be seen
to be quite inaccurate. Kyrola and Stenholm [3S] con-
sidered the jth Doppleron resonances using a continued
fraction expression for the force. The following equations
are obtained from their derivation, using our parameters
defined in Sec. II A. However, we find that our calculated
Doppleron peaks at high laser intensity require additional
terms in the expansion, or alternatively, the square root
factors as given below'.

(as)

while the spatial average of velocity-independent D(z)
(not derived previously to our knowledge) is

kV„, = g

- 1/2

(2q+1)SI'
2j+1 + 4jb2 j &0.

(43)

(44)
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III. TIME EVOLUTION OF THE VELOCITY
DISTRIBUTION IN TVPO-LEVEL DOPPLER.

COOLING

In this section, we present figures showing the time
evolution of the velocity distribution P(V, t) in two-level
Doppler cooling. We find that there is a remarkable de-
gree of structure in P(V, t) from various processes, some
of which have not been recognized previously. Also, it
is notable that there is generally excellent agreement
between results obtained. from the free-particle quan-
tum density matrix approach and from the semiclassical
Fokker-Planck equation. The exceptions to this are the
regime near V = 0, where light-shift potential well efFects
enter in the QDM results but not the SC results, and the
regime of large recoil energies, where the assumptions of
the FPE are violated.

A. Optimum Doppler cooling

We first present results for optimum laser parameters
to compare with other conditions. The minimum tem-
perature for two-level Doppler cooling is obtained with
8 = —I'/2 and low intensity [see Eqs. (41) and (42)]. The
semiclassical force function with this detuning has peaks
at approximately kV = +I'/2, as shown in Fig. 3(a) for
S = 0.2. Figures 3(b) and 3(c) show calculated velocity
distributions as a function of time for 6 = —I'/2, S = 0.2,
and r =0.0025, as for a two-level atom with mass and
resonance wavelength equal to that of sodium atoms
cooled on the Dz line (see Table I). For this calculation,
the initial velocity distribution P(V, O) was flat up to
~V~ = 280VR. For both SC and QDM, the last three
traces in Fig. 3(c) coincide, showing convergence. The
SC results converge to the SC steady-state distribution.

The short-term time evolution obtained from QDM
calculations in Fig. 3(b) exhibits a dip at V = 0 and
clearly departs from Gaussian form. The long-term QDM
results also exhibit a deficiency of atoms near V = 0 rel-
ative to SC results, but less dramatically. As discussed
in more detail below, the range of these efFects is approx-
imately ER = (V/V )RER ( Us. The well depth Uo [Eq.
(25)] of 40ER corresponds to V 6.3VR here.

0.06

~ 000

-0.06

2kV/I
0

AT = 300 I -~

Tmax = 2400
(b)
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g$

O
CL

~~
6$

i2-
CC

24-
AT =2400 I ~

T ., =&4400r-&
(c)

6-

o~
-200 -1 00 0 100

V/VR
200

The semiclassical force function scales as kV/I' and is
independent of ER For optim. um cooling, MV, ,/2 hI'
and thus V, , varies as M / . Thus in units of I'/k
the width of the central peak in the velocity distribution
increases as E~ increases. Figure 4 shows a calculation
similar to that in Fig. 3 but for e = 0.0266, as for a two-
level atom with the mass and wavelength of helium cooled
on the 2 S ~ 2 P transition at 1.08 pm. The difFerences
with semiclassical results in this region are greater, and
the long-term QDM result shows a comparable departure
from SC calculations. For the calculations of Fig. 4, Uo ——

PIG. 3. "Optimum" Doppler cooling with b = —I'/2, & =
0.2, for a two-level atom with ~ = ER/hI' = 0.0025, as for
sodium cooled on the D2 line, hence Uo ——40ER (a) Sem. i-

classical force (solid line) and diffusion (dashed line) func-
tions; (b) P(V, t) for short times; (c) P(V, t) for longer times.
In (b) and (c), solid lines denote QDM results and dashed
lines d.enote SC results for a succession of interaction times
as indicated. The horizontal scales of (a), (b), and (c) are the
same.

TABLE I. Parameters for some atomic transitions of interest in this work, ordered by ER/hI'.

Atom

Cs
Rb
Na
Cr
Ll
He
H
He
Sr
Ca

Transition

6 S m6 P3(2
5 S m 5 P3/2
3 S +3 P3/2
a S3 -+ z P4
2 Sm2 P

2 SI m2 P2
1 S —+2 P

2 S w3 P
5 Sm5 Po
4'S ~ 4'P.

A

(nm)
852
780
589
425
671
1083
122
389
689
657

I'/2z.
(MHz)
5.30
5.96
9.72
5.0

5.87
1.63
99.5
1.6

7.58 x10
3,2 x10 '

ER/h
(kHz)
2.07
3.86
25.01
21.2
63.18
42.46

1.34 x10
330
4.8
11.6

ER/hI'

3.90 x10
6.43 x10
2.57 x10
4.24 x 10
1.08 x10
2.61 x 10

0.13
0.21
0.63
36.4
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3.8E~, and correspondingly, the appreciable deviations
between QDM and SC results are in the range ~V~ & 2VR.

B. Larger than optimum detuning or intensity

We will discuss several processes which give rise to a
transient dip in P(V, t) at V = 0. Perhaps the most ob-
vious is simply larger than optimum detuning. In the ap-
proximation of linear F(P)/D(P), the steady-state dis-
tribution broadens with detuning as seen from Eq. (35)
and as discussed by Lett et al. [5]. However, the tempo-
ral evolution of the velocity distribution is quite di8'erent
with larger detuning than with b = —I /2. The rea-
sons are evident upon considering the semiclassical force
function. Figure 5 shows the situation for b = —3I',
S = 1.0, e = 0.0266, and Up ——6.1E~. The SC force
function [Fig. 5(a)] near V = 0 exhibits smaller slope
than with b = —I'/2, so atoms near V = 0 are cooled
more slowly. Because of the pronounced peaks in F(V)
at V = +(3/2)I'/k, atoms are collected at velocities just
within V = +(3/2)I'/k and migrate slowly toward V = 0.
The broad dip in P(V, t) at V = 0 can persist for a rela-
tively long time, as shown in Figs. 5(b) and 5(c). Even-
tually P(V, t) assumes a near-Gaussian form, although
again QDM results exhibit fewer atoms near V = 0 than
the SC calculation.

At high laser intensity, P(V, t) becomes noticeably
non-Gaussian even in the steady-state limit. Examples
of optimum detuning but high intensity are shown in Fig.
6. For this figure, b = —I'/2, 8 = 10.0, and e = 0.0266

(Uo ——188ER) in Fig. 6(b) and 0.0025 (Uo ——2000E~) in
Fig. 6(c). These results will be discussed in the following
subsection.

C. Effect of slower cooling
in the light-shift potential wells

The deficiency of atoms near V = 0 in the QDM re-
sults relative to SC results in Figs. 3, 4, and 6 is not
from detuning, but due to a deficit of very slow atoms
caused by slower cooling in the wells. This eKect has
been observed in experiments on helium atoms, as re-
ported in Ref. [23]. It is not seen in SC results because
the force function, as shown in Figs. 3(a), 4(a), and 5(a),
is obtained by averaging over a spatial period. Bigelow
and Prentiss [34] used the spatially varying force function
F(z, V) obtained by Gordon and Ashkin [our Eq. (36)] in
classical trajectory calculations to show that the cooling
rate dE~/dt for atoms with E~ ( Uo is slower than for
atoms with E~ & Up. For E~ ) Up, there is some mod-
ulation of velocity as the atom passes periodically over
the potential maxima, while for E~ ( Up, an atom will
oscillate in one of the wells. When averaged over a period
of motion, (V ) decreases more rapidly for EK ) Uo, for
which Doppler cooling operates more efBciently, than for
E~ ( Uo [34].

In quantum calculations, the transient dip in P(V, t)
at V = 0 due to a de6.ciency of atoms in the wells is a
ubiquitous feature. Such a dip appears in Fig. 7(a) in the
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FIG. 4. SC and QDM results for "optimum" Doppler cool-
ing with b and S as in Fig. 2 but for a two-level atom with ~

= 0.0266, as for helium cooled on the 2 9 —+ 2 P (1.08 pm)
transition, and thus Us ——3.8RR. In units of 2kV/I, the hor-
izontal scale and hence the force curve is the same as in Fig.
2, but in units of V~ there is a difFerence of about a factor of
10.

0
-1 00 -80 -60 -40 -20 0 20 40 60 80 1 00

V/VR

FIG. 5. Doppler cooling of a two-level atom with larger
than optimum detuning. Here b = —3I', S = 1, ~ = 0.0266
(He*), and Uo ——6.1E~. A broad dip at V = 0 persists for
many I', but eventually the velocity distribution becomes
Gaussian. Solid and dashed lines have the same meaning as
in Fig. 3.
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region ~V/V~~ & 3, together with a wider dip from the
8 = —2I' detuning as discussed for Fig. 5. Figure 7(b)
shows the populations of the lowest quantum states in the
light-shift potential, projected from the free-particle basis
results. The lowest states are underpopulated for a time,
and then nearly catch up to the populations of states
at the top of the potential (E=O). When the detuning
is suKciently large that the optical pumping rate is less
than the oscillation frequency for atoms in the well, I'„(
cu„= 2/(UoE~)/5, an atom can oscillate in one of the
light-shift potential wells before it is excited, hence the
dip is more sharply defined. This is shown in Figs. 8(a)
and 8(b), for which I'„/cu„= 0.25 and 0.45, respectively.
The vertical dashed lines in Fig. 8 denote the threshold
velocity values Vo for which MVo /2 = Uo. The well
eEects extend to about V = 0.9Vo in these cases.

When the excitation rate I'„ is more rapid than the
oscillation frequency u, well efFects and di8'erences be-
tween SC and QDM results are found only for atoms
relatively deep in the wells (EIc && Uo or V & Vo). This
is seen in Figs. 6(b) and 6(c), for which 1"„/w„= 13.6
and 34.6, respectively. In Fig. 6(b), P(V, t = oo) is quite
Rat up to V = +8VR, as compared with Vo |4VR. In
Fig. 6(c), the dip at V = 0 extends to approximately
V = +25VR, as compared with Vo —45VR. So for Figs.
6(b) and 6(c), well effects extend to about V = 0.5Vo.
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rate for atoms in the potential wells. (b) The population
of quantum states below the tops of the periodic potential

(E = 0) lags behind the populations of states above E = 0.
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FIG. 6. Results for high intensity, low detuning. Here
S=10 and 6 = —I'/2. (a) Force (solid line) and difFusion
(dashed line) functions. (b) Evolution of the velocity distri-
bution for s = 0.0266 (He*), with Us = 188Ea. (c) The
same for c = 0.0025 (Na), with Us ——— 2000Ea. Spatial av-
eraging removes the egects of the light-shift wells in the SC
results (dashed lines) but this is not the case for QDM results
(solid lines). In (c), the initial velocity distribution was flat
to iVi = 320Vn.
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FIG. 8. Closeup views of transient dips at V = 0 due to
slower cooling in the potential wells, for e = 0.0266 and for
relatively short interaction times as indicated. The vertical
dashed lines denote the velocities for which MV /2 = Us, and
show that the width of the dip is correlated with the depth
of the potential.
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These deviations between SC and QDM results near
V = 0 reBect the breakdown of the assumption of con-
stant V (the "dragged atom") discussed below Eq. (30),
and the failure of spatial averaging used to obtain E and
D for the FPE. This leads to the related question of lo-
calization of atoms in the laser standing wave, which has
previously been considered in Ref. [9] for lin J lin cool-
ing, and also in Ref. [16],regarding non-Gaussian velocity
distributions in model 3D and 1D calculations. In Ref.
[9], an integral equation approach was derived to replace
the FPE in this regime, while Ref. [16] used a Langevin
equation with spatially varying force. From QDM re-
sults, P(z, t) can be computed from Eq. (16).

It is interesting to compare QDM localization re-
sults with an estimate based on Eq. (41) and the as-
sumption of a Maxwellian thermal velocity distribution
over the periodic potential. One then has P(V, z)
KM exp( —[MV /2 + U(z)]/k~T}, where NNI is a nor-
malization factor, U(z) = —Uo cos (kz), and k~T is
given by Eq. (41). The spatial distribution is P(z)
%M exp[ —U(z)/ktiT], where KM is a new normalization
factor. We define a "localization ratio" BL, = P(z
0)/P(z = A/4), which equals exp(Uo/k~T) for such a
thermal distribution. Bl, ) 1 corresponds to localization
in the wells (antinodes for red detuning). Rl, increases
as S/I increases. Since Eq. (41) becomes increasingly in-
valid as S/L increases beyond 0.1, here we consider sim-
ply S/L = 1/8, for which the ratio Uo/k~T attains the
value 0.55 at large detuning, giving BL, ——1.73. In con-
trast, the largest value of Rl, we obtain from QDM cal-
culations and Eq. (16) is 1.22, for S = 1, b = I'(S/L =—
0.2). We find that Bl, is essentially independent of e, at
least over the range 0.0025 ( e ( 0.027.

Typical results for P(z, t) are shown in Fig. 9. The con-
ditions are the same as for Fig. 7, and a comparison of
the two figures indicates that the dip at V = 0 in P(V, t)
persists even when there is some degree of localization in
the wells. The value of BI, obtained at the longest inter-
action time here is 1.17, which is slightly less than the
global maximum of 1.22, and much less than the ther-
mal value of 1.66 for this S and b. For short interaction
times, Fig. 9 shows that there is a small degree of local-
ization at the nodes rather than at the antinodes. This
is consistent with evidence presented above that cooling
into the wells is slower than cooling of free atoms, and
with the comment in Ref. [16] that a degree of localiza-
tion at the nodes occurs because (in the weak excitation
limit) atoms move more slowly over the potential max-
ima, hence spend more time there. For longer times, Fig.
9 shows that this effect becomes less important than the
accumulation of atoms in states of localized motion in the
wells. For a model cooling problein in Ref. [16], there was
found to be localization at the nodes in the steady-state
solution. Our results do not indicate such an extreme
departure from a thermal distribution, but clearly the
population in the wells is significantly less than thermal.
This conclusion is another indication that atoms in the
wells are not cooled as efficiently as atoms with E~ ) Uo.

It seems unlikely that the deviations between SC and
QDM results near V = 0 are truly "quantum" effects,
or that the quantum levels themselves play a significant
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FIG. 9. A plot of P(z, t), showing the tendency for atoms
to localize in the antinodes of the laser field (z = 0 here)
after slightly preferential localization at the nodes (z = A/4)
for short times. The conditions here are S = 1, b = —2I', ~
= 0.0266, as for Fig. 7. The time sequence is indicated by
increasing thickness of the traces.

role. It is more probable that the QDM method is simply
a convenient method to take into account spatial varia-
tion in velocity. Other SC approaches that avoid spatial
averaging, such as the integral equation method of Ref.
[9] or the Langevin equation method of Ref. [16], may
be capable of reproducing the well effects obtained with
QDM, but to our knowledge this has not yet been demon-
strated quantitatively for two-level Doppler cooling.

D. Dopplerons at medium and high laser intensity

At high laser intensity, additional structure in the
velocity distribution occurs because of Doppleron reso-
nances, which occur at velocities given approximately by
Eq. (43) [38]. Doppleron peaks in the force vs veloc-
ity function, shown in Fig. 10(a), result in minima in
P(V, t), as shown in Figs. 10(b) and 10(c). In this figure,
P(V, 0) is rectangular, and the laser moderately intense,
with S =25 and b = —5F. Over longer interaction times
[Fig. 10(c)],many atoms are swept into two central peaks
at points where E(V) = 0.

At much higher laser intensities, as in the experiments
of Tollett et al [27], man. y more Doppleron peaks occur
and the reversal of sign of E~ becomes more apparent.
We will not attempt to model the precise experimental
conditions of Tollett et al [27] but wil.l present results
with a rectangular initial velocity distribution and con-
stant laser intensity, with S = 1800 and b = +30I' as in
their experiments. Figure ll(b) shows nearly identical
results from QDM and SC calculations for red detuning
and the experimental interaction time of 132I', with
many Doppleron dips. In this figure and the following,
the first-order Doppler resonance (j = 0 or 2j+ 1 = 1) at

38I'/k is outside the range plotted for short interaction
times, and other peaks in E(V) are labeled by 2j + 1.
The positions of the peaks in I" (V) agree to within at
least 6% of values obtained from Eq. (44). The positive
slope of I" (V) at V = 0 (positive Ei) leads to heating
near V = 0, thereby providing another mechanism for a
dip near V = 0. For very long interaction times [Fig.
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FIG. 12. Results for Li atoms as in Fig. 11, but with
b = 30I, showing "blue cooling" near V = 0. Over long
times in (c), most atoms not in the central peak are boiled
out of the iiutially populated velocity range, ~V~ & 1200VR.
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FIG. 13. Doppler cooling on the H Lyman n transition. S
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Dashed lines are SC results, solid lines QDM results.

to accumulate in it. This viewpoint is corroborated by
considering H, ir = H —i(hl'/2) P )e, )(e;~ [where H is
given in Eq. (2)], over the basis (8). For e = 1, we find
eigenvalues A with relatively small —Im(A) ( 0.01AI' for
Re(A) EIt with eigenvectors that correspond closely to
@~g, with small additional momentum components that
become more important at higher laser intensity. An an-
alytic model would be useful at this point, but we have
not been able to truncate the infinite momentum families
basis in a fruitful way.

The amplitude of these peaks is found to be maximum
for e = 1/2, and 8 = —I'/2 or b = —I'/4, as seen in Fig.
14(c). The quasi-VSCPT peaks at +V~ persist for an
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FIG. 15. QDM calculations of two-level Doppler cooling
with e = 2.0, b as indicated. For each plot, DT = 5I'
T „=50I' . For (a), S = 3.0; (b) S = 2.0; and (c) S

1.0. Here e is greater than the optimum value for the
"quasi-VSCPT" peaks.

extended time. As Table I shows, the atomic transition
that comes closest to meeting the optimum conditions
for these sharp peaks appears to be the intersystem line
in strontium. At higher laser intensity, coherent super-
positions extend over a larger range of momentum, and
multiple peaks are observed. When e becomes as large
as 2, the peaks at +VR are less intense, as shown in Fig.
15.

&. ~&6&Large values of e were considered by Castin et a.
L j
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FIG. 16. Effect of the numerical parameter
~ ~ ~

Qicutoff &

which limits the P P' range -of the off-diagonal elements. (a)
Results for the same conditions as in Fi . 9 th ~~A

ranging from 2 to 8. For ~Aq~, „toff = 4, the innermost
doppleron dip disappears, and for ~Aq~, „t ff =2, the second
innermost dip disappears as well. (c) Results for the same
conditions as Fig. 5. There is very little difference between
results with ~Aq~, „zoff = 2 and 6, showing that relatively few
off-diagonal elements are needed in this case.

tribution. For example, higher-order doppleron features
successively disappear as ~Eq~,„«ff is diminished. In Fig.
16(a), we show computational results for the same laser
parameters as in Fig. 10. Under these conditions and
with ~Aq~, „toff = 6 or 8, all features are present in the
calculation. However, the dips at ~V~

—25VR disappear
with ~Aq~, „t ff = 4, and the dips at ~V) = 50VR disap-
pear with ~Aq~, „toff = 2. By contrast, Fig. 16(b) shows
that the results for P(V, t) for the conditions of Fig. 5(b)
are virtually unchanged if all density matrix coherences
with ~Aq~cu«ff & 2 are eliminated, which permits a great
saving in memory and CPU time.

The calculations for Figs. 3—10 required between 400
and 1120 basis states (%), and between 3560 and 21 610
density matrix elements. For Figs. 11(b) and 12(b),
2402 basis states and 50 311 density matrix elements were
used, and ~Aq~«t~ff was taken to be 20. In view of the
large velocity range in Figs. 11 and 12, the numerical
mesh in velocity was 2hk, or N = 1 (Sec. II 8~ implying
simply one family of basis states (see Fig. 1).

IV. QUANTUM EFFECTS
IN MULTILEVEL "DOPPLER." CO&LINC

We now consider J —+ J + 1 transitions with J ) 0,
with a+ —o+ light. Atoms are initially distributed among
the 2J + 1 ground-state magnetic sublevels, but optical
pumping will eventually move all the atoms to the m = J

for two-level Doppler cooling with o+ —o. laser beams.
They found that (a) the steady state (E~) approaches
a minimum value ER and (b) the optimum detuning in-
creased with e, such that for e = 2, b = —7t" was op-
timum, with (Ek) increasing sharply for smaller detun-
ings. Our results for o+ —o+ Doppler cooling for e = 2

(Fig. 15) are consistent with this conclusion, in that with
—8 ( 6I', atoms with ~V~ ) 2VR are not swept into the
central cooling peak. However, the velocity distribution
shows features, such as a narrow cooling peak for smaller
detunings, that are not revealed by simply steady-state
values of (EIr).

F. Choice of ~Aq~ „t ff
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The foregoing computational results provide more con-
crete grounds for discussing the role of the important

III C o, o — iagonal density matrix elements th A
q~, „t ff are neglected. The number of density ma-

trix elements in a calculation is approximatel
( ~

q~«t~ff+1)-~i, hence they scale linearly with Aq, „t ff
and with . Mi . Memory requirements scale linearly with

p, w'hile CPU times scale approximately quadratically
with

In general, larger values of ~Aq~, „t ff are required for
higher laser intensity and smaller detuning. There is a
close relationship between the required value of ~Aq~, „i ff
and the order of H~I, in a given feature in the velocit d'
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FIG. 17. (a) Velocity distribution and (d) corresponding
energy distribution for S = 0.1, b = —5I', e = 0.027 (He*)

t e rn = — manifold; filled circles mark those in the rn = ——

ifold is artificially Battened in beth energy and velocity, se
only m =

2 anomalies are seen. In (c) and (f), the structure
in t e I, = —manifold is Battened, showing that the I, = —

z
manifold contribution to the devi tevia ions in 'a' is opposite in
sign to that of m = —'.2'
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state, so the system becomes equivalent to a two-level
system. (Unless indicated otherwise, m—:mg in this sec-
tion. ) However, before the system attains this condition,
a transient process occurs due to Am = 1 excitation and
decay, as shown by the additional excitation branches in
Fig. 2(a) for the J = 1/2 ~ 3/2 case. This transient
process involves optical pumping from states in a shal-
low light-shift potential well to states in a deeper well [see
Fig. 2(b) and Eqs. (6) and (25)]. In this section we use
the simplest system, J = 1/2 ~ J = 3/2, to describe the
transient process, and show how it results in transient
subrecoil structures in the velocity distribution.

As stated in Sec. II, the most interesting efFects occur
in the lowest-energy bands when u = Uo/E~ is not much
greater thaw 1. For these efI'ects to be observable, E~
must be relatively large (as for helium or lithium), so
that small u does not imply negligible interaction. Un-
der optimum conditions, the effects in P(V, t) discussed
in this section are about the same order of magnitude
as the efIects of slower cooling of atoms in the light-shift
potential wells, as shown in Figs. 3(b), 6, and 7, and re-
ported experimentally in Ref. [23]. However, these mul-
tilevel efIects have not yet been observed experimentally.

The low intensity regime is of special interest, even
though the efI'ects are extremely small, because the wave
functions are well approximated by trigonometric func-
tions. At low laser intensity (see Fig. 17), we obtain
dispersion shapes at V = +VR [Fig. 17(a)]. Similar fea-
tures are found experimentally and theoretically for lin

lin cooling at higher intensity [23] and also in calcu-
lations for a J = 1 ~ 2 transition with 0.+ —0 laser
polarization [47]. In each case, they can be explained
by anomalous populations at the edges of the erst band
gap, and that is the point of view we take here. For the
a+ —o case, where the light-shift potential has no spa-
tial variation and the momentum families are finite and
closed, Wu and Foot [47] explain these features also (and
more simply) in terms of coherent superposition states.
This viewpoint is closely related to ours. To lowest or-
der, the states (given explicitly below) at the edges of
the first band gap are in fact coherent superpositions of

s)'(0, 0;s) = {I——cos(2j) y ) (45)

and for n ) 0, the lowest-energy states are

states with V = +V~. In the o.+ —0+ case, where the
momentum families extend to infinity, the Bloch-Floquet
band states provide the most convenient basis for discus-
sion and for calculating higher-order e8'ects.

For low intensity, Fig. 17(d) shows the distribution of
population over the eigenstates of the system at T
200I' i. The overall population of the m = 1/2 man-
ifold is greater than that of the m = —1/2 manifold,
as a result of the optical pumping in 0.+ light. In the
m = 1/2 manifold, there is a sharp rise (decrease) in the
population just below (above) the first band gap, i.e. , for
states with quantum numbers (m, n, v) = (1/2, 0, = 1)
[(1/2, 1, 1)]. [States are labeled as in Eq. (26).] On
the other hand, in the m = —1/2 manifold, we observe a
mirror reHection of this behavior: population is depleted
below the erst band gap and elevated above it. The de-
viations in the m = —1/2 manifold partly cancel but do
not reverse the effects in P(V, t) from the m = 1/2 man-
ifold, as is seen from a plot of the separate contributions
of each manifold to P(V, t) [see Figs. 17(b) and 17(c)].

These deviations arise from the transient process of
excitation from (Jg, mg) = (1/2, —1/2) to (J,m, )
(3/2, 1/2) and m polarized decay to (Jg, ms) = (1/2, 1/2).
To show why this is so, we consider a very shallow poten-
tial, u &( 1, for which the wave function solutions to Eq.
(24) may be expanded as a power series in u. (In this sub-
section, to match to conventional forms of the Mathieu
equation [41,42] we will shift the origin of ( = kz by vr/2
and take E = @+El,sin(g)e ' '+c.c. [cf. Eq. (3)]. Also
we will normalize wave functions g to J' dg~@(g)~
to first order in u, thus g(() @(()/~m. ) To first order
in u, the wave functions i/)(n, v; () for the lowest-energy
eigenstates in any band are expansions in cos((). For the
lowest band,

1 —(—1)" u cos[(n + 2)(]
/

n, ;( = cos(n() ——
2 16 n+1

cos)(n —2)()
)n —1

(46)

u sin [(n, + 3)(]
16 n+2
sin)In —1)()

) (48)

On the other hand, the highest-energy eigenstates in a
given band are expansions in sin (n(). The wave function
of the uppermost state of the lowest band is

g(0, 1;() = sin (() ——sin (3()+, (47)

and for n ) 0, the highest-energy states are

g
~

n, ;( ~

= sin[(n+ 1)j]
1+ (—1)"

These low-order approximate wave functions deter-
mine the elements for transitions from m = —1/2 e-
m = +1/2 due to cr+ excitation and vr decay. For a
rough picture, it sufIices to consider transitions between
states at the edges of the lowest two bands, where the
anomalous structure is most pronounced, as in Fig. 17.
With the laser field as defined above, the operator for
laser excitation on the branch mg = —1/2 +m, = 1/2-
is csin(()/v 3. The decay step is adequately repre-
sented by a constant spatial part, since the m polarized
Huorescence has an angular distribution that peaks at
0 = 7r/2 with respect to the z axis. In computing the
matrix elements (g(m = —1/2, n, v; () ~

sin (g) ~
vP(m =
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1/2, n', v', ()) with the zeroth-order wave functions given above, one has integrals I(N, M), where N and M are
integers:

2
I(—N, M) = sin (N() sin (() cos (M()d(

7r 0

+h(M, N p1), N & O, M & 0

2, N =1,M =0.
In this way we obtain the transition rates

' r„'
I" /2

p(-I/2, n, v -+ 1/2, n', v') = ( I'„'
r„"'

I" /2

for (—1/2, 0, 0) m (1/2, 0, 1.)
f» (—1/2, o, 1) ~ (1/2, 2, o)
for (—1/2, 0, 1) m (1/2, 0, 0)
for (—1/2, 0, 1) -+ (1/2, 0, 0)

for all other band edge transitions,

(50)

m=1 /2
Ga~n '

~~5! —'l)t ~%!

8

,2 3 1 2 2 2 2 2

where I „' = 2SI'/3l is the nominal optical pumping rate
for the mg = —1/2 m m, = 1/2 transition. These tran-
sition probabilities are depicted graphically in Fig. 18.
In the m = —1/2 manifold, the top of the n = 0 band is
depleted 50'%%uo more rapidly and the bottom of the n = 1
band 50% less rapidly than band edge states of higher
bands, while in the m = 1/2 manifold, the top of the
n = 0 band is populated 50% more rapidly and the bot-
tom of the n = 1 band 50% less rapidly than in higher
bands. These rates produce the dispersion shapes in the
populations shown in Fig. 18 and Fig. 17(d) in the low-
est two bands in the limit u && 1. The rates from states
at the edges of the lowest band gap are anomalous be-
cause the wave functions have period A as does the laser
ainplitude. In lowest order, these deviations do not occur
at higher band gaps.

In Fig. 19, we show results with increased laser inten-
sity, u = 4. The dispersion structure in the m = —1/2
atomic velocity distribution persists because the poten-
tial for that manifold is still shallow enough that the first
bandwidth is non-negligible. However, in the m = 1/2
manifold, the lowest band is narrow and the wave func-
tions vary little within that band. Optical pumping pop-
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ulates this band with essentially no anomalous structure.
Now it is the n = 1 band in the m = 1/2 manifold that
has appreciable width, and dispersion structure is notice-
able there, producing smaller peaks in the m = 1/2 veloc-
ity distribution at V = +2VR. The resultant atomic ve-
locity distribution has a peculiar sharp dip at

~

V ~( V~.
The "band gap" effect in m = —1/2 persists as inten-

sity increases until the (—1/2, 0) band becomes narrow
and the wave functions do not change character over the
band. Figure 20 shows the resultant structure when this
happens (at u=7.5). At this intensity, the anomalies in
the velocity distribution. are dominated by the transfer
from the lowest band in the shallow m = —1/2 potential
to the lowest band in the deeper m = 1/2 potential. The
double-peaked structure in P(V, t) in Fig. 20(a) occurs

2 3 1 2 2 2 2 2
rn=-1/2 0

Loss

1.00 h
~ %gl

v 0 1 3 0 0 1 1 0
n 0 1 2 3

FIG. 18. Schematic diagram of the process by which pop-
ulation is optically pumped from the m = —

2 manifold into
the m, = — manifold, so as to give dispersion-shaped popu-
lation variations at the edge of the first band gap. (Energy
bandwidths are not to scale, nor is the population. ) The rela-
tive magnitudes of the transition rates at the band edges are
shown by the widths of the arrows, while the relative gain or
loss of population is labeled numerically. The resultant pop-
ulations throughout each band are shown schematically for
the m = —— manifold by 6lled circles, and for the m =

2
manifold by open circles.
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FIG. 19. Same as Fig. 17, but for 8 = 1.G, Uo /Ea = —3.7.
The sum of the deviations in (b) and (c) produces the highly
irregular velocity distribution shown in. (a). (d) and (e) show
that the m = — potential is deeper so the first (n = G) band
has become relatively narrow; the population in this erst band
is elevated, but does not vary much over its width, so there
is simply a peak in the velocity distribution in. (b); On the
other hand, the m = ——potential is stiH rather shallow so
there is population variation as in Fig. 16, and dispersion
shapes in P(V) (c). Since the peaks in (b) and (c) occur at
difFerent velocities, we 6nd three peaks in the total velocity
distribution (a).
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FIG. 20. As in Figs. 17 and 19, but now 8 = 2.0,
Uo/Eii = —7.5. The m = — potential is deeper and the first

(n = 0) band is extremely narrow. The first and second bands
have the largest populations (e) and contribute mostly to the
central peak in (b). On the other hand, the first band in the
m = —— manifold is now sufficiently underpopulated (f) to2
cause a large dip near V = 0 (c), but the second m = ——
band still contributes to the peaks near

~

V ~= VR. The sum
is a velocity distribution with two peaks as seen in (a).

atomic transition are of interest because the properties
of the quantum states in the periodic potential are re-
jected in the velocity distribution. By way of sum-

mary, in Fig. 21, we compare results for a two-level
J = 0 + 1 transition [Figs. 21(a) and 21(c)] with results
for a J = 1/2 —+ 3/2 transition [Figs. 21(b) and 21(d)]
for two values of laser intensity and detuning. In Figs.
21(a) and 21(b), the optical pumping rate I'„/2vr = 0.151
MHz, while the oscillation frequency of atoms in the
wells, w /2' = 2+(ERUc)/h, is 0.226 MHz. Because of
the relatively large ratio I'„/w„= 0.66, the effects of mul-

tiple sublevels discussed in connection with Fig. 20 are
suppressed, and the J = 1/2 ~ 3/2 case resembles the
1 = 0 ~ 1 case. For Figs. 21(c) and 21(d), the well depth
Uo is only slightly greater than for Figs. 21(a) and 21(b),
but since the ratio I „/w„ is only 0.20, the atomic motion
samples the potential more efFectively. For this intensity
and detuning, the quantum efFects discussed with refer-
ence to Fig. 20 make the results for the J = 1/2 ~ 3/2
case quite difFerent from those for J = 0 ~ 1. Also, the
dip associated with slower cooling rates for atoms in the
wells is more sharply defined in Fig. 21(c) than in Figs.
21(a) and 21(b) because of the lower optical pumping
rate. Thus "velocity spectroscopy" reveals some rather
interesting and novel physics.

V. CONCLUSION

J=Om I
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1.3-

1.065

O
CL
Q)

-„-1.10- (C)

CC

S=

-1 2 -6 0
V/VR

Ii&, /I![1. . . 11I)E

6 12 -12 -6 0 6 12
V/VR

FIG. 21. Comparisons of velocity distributions calculated
with the free-particle QDM method for 1 = 0 —+ 1 and
J = 1/2 ~ 3/2 transitions, each with two sets of laser pa-
rameters. The light-shift potential well depths for m, = J are
about equal in each case [Uo/En = 7.1 for (a) and (b), and
=7.4 for (c) and (d)], but I /cu„= 0.66 for (a) and (b) and
0.20 for (c) and (d). Therefore the effects discussed in Sec.
IV from quantum state transitions become more visible in (d)
than in (b).

because a distribution of atoms with a relatively narrow
momentum spread is removed and a distribution with a
broader spread is added. In addition, the variation of
population over the second (n=l) band of m = —1/2
contributes to the height of the two peaks in Fig. 20(a).

These results with "Doppler" cooling on a multilevel

Our calculations on two-level and multilevel Doppler
cooling (that is, without Sisyphus sub-Doppler processes)
have revealed an abundant variety of processes that pro-
duce distinctive features in the velocity distribution, par-
ticularly when one considers the time evolution for laser
parameters that depart from optimum. We have pre-
sented computational results that exhibit efFects from
larger than optimum detuning, slower cooling in the
light-shift potential wells, Doppleron resonances, quasi-
VSCPT effects, and (for transitions involving more than
two levels) the structure of quantum levels in the wells.

A significant conclusion from this work is that excel-
lent agreement can be obtained between quantum den-
sity matrix methods and semiclassical Fokker-Planck cal-
culations except in two regimes: (a) atoms with ki-
netic energy less than the depth of the light-shift po-
tential wells (E~ & Uo) and (b) atoms with recoil en-

ergy comparable to or larger than the radiative linewidth
(e = E~/hl & 1). Discrepancies in the first regime are
associated with the constant velocity parameter used in
deriving the force and difFusion functions from the opti-
cal Bloch equations, and from spatial averaging in I" (V)
and D(V). Methods for solving the FPE without spa-
tially averaged I'(V) and D(V) have not been developed.
However, an integral equation approach has been used
for lin J lin cooling [9], and the Langevin equation has
been used with spatially dependent force and di8'usion
functions [16]. Major deviations between QDM and SC
results are to be expected in the regime of large e, where
the recoil jump in momentum is typically not negligible
compared with the width of the momentum distribution.
However, the most dramatic deviations between SC and
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QDM results for two-level cooling in the large e regime
here are due to velocity-dependent coherent wave func-
tion superpositions. It should be noted also that the
agreement between QDM and SC results in the small e

regime remains excellent at high velocities. Since the ex-
cited state was not eliminated in the derivation of SC
force and diffusion terms, the condition VI" ( A does
not apply.

The frequent good agreement and notable discrepan-
cies between results from these two prominent methods,
SC and QDM, lead to questions about corroboration
with experiment. There have been many one-dimensional
laser cooling experiments involving transverse cooling of
an atomic beam. Some comparisons between experiment
and theory regarding effects discussed here have been pre-
sented in Refs. [27,46,23]. Decisive comparison between
experimental and computational results often requires at-
tention to special experimental conditions, such as the
shape of the initial velocity distribution, possible spatial
variation of the laser intensity, finite width of the longitu-
dinal velocity distribution (producing a spread of interac-
tion and deflection times), instrumental resolution, and
other departures from ideality. We will continue efforts
to model these eKects theoretically so as to reproduce
experimental data, but these questions were outside the
scope of the present study.

The approaches used here have obvious extensions.
We have already reported certain results for sub-Doppler
"Sisyphus" cooling, both with the lin J lin conGgura-
tion and with magnetically induced laser cooling (MILC)
[23,22]. A more systematic survey and comparisons with
semiclassical results is underway in light of recent results
from NIST [48] showing substantially lower temperatures
than predicted for lin 3 lin cooling at high intensity by
extrapolating low intensity theoretical results [9,22]. Also
there are interesting questions about possible new phe-
nomena when the light Geld as well as the atomic motion
must be quantized [49]. And finally, one speculative ques-
tion at present is whether QDM methods can be usefully
extended to more than one dimension.
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