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Resonances in ultracold collisions of Li, Li, and ~ Na
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We investigate the resonance properties of ultracold ground state Li+ Li, Li+ Li, and
Na+ Na collisions. The locations of various resonances and their corresponding error bounds

due to the uncertainty of the interatolnic potentials are presented. Also, the resonance widths are
computed using rigorous coupled-channel calculations, as well as a modi6ed version of Feshbach
theory valid for strong fields.

PACS number(s): 32.80.Pj, 42.50.Vk

I. INTRODUCTION

Laser cooling of neutral atoms continues to be a rapidly
growing field of activity with a remarkable diversity of
new methods and applications. Illustrative of this diver-
sity are recent developments such as gravitational Sisy-
phus cooling [1], rf-induced evaporative cooling [2], and
three-dimensional velocity-selective coherent population
trapping [3]. The past year has also shown a rapid de-
velopment in the determination of the long range inter-
actions between atoms by photoassociation of ultracold
atoms [4] and by measuring the highest bound levels of
the ground state potentials [5]. One of the crucial quan-
tities searched for is the elastic scattering length, which
governs the stability of the condensate in Bose-Einstein
condensation experiments: it must be positive in order
to give a stable condensate. In [6] it mas found that for
specific values of the magnetic Geld, resonances in the
scattering length show up. These resonances offer the
possibility to change the value of the scattering length
and allow one to make it not only positive but also large,
a condition for efficient evaporative cooling [24]. Apart
from this, resonance behavior in ultracold collisions is in-
teresting on its own. Resonances would undoubtedly give
rise to fascinating phenomena; in particular, the struc-
ture of the two-particle correlation function will be to-
tally different locally or over the whole gas sample in the
trap, with associated consequences for the gas properties
(e.g. , equation of state). Furthermore, knowing the ex-
act positions of the resonances allows one to extract the
positions of the highest bound levels of the S=O singlet
and S=l triplet potentials, which by their proximity to
the continuum threshold greatly help to reduce the un-
certainty about the interactions of ultracold atoms.

In a recent search for these 8-wave scattering reso-
nances in Rb [7], unfortunately none were found. The
problem with the heavier alkali atoms such as rubidium
and cesium is that the ground state potentials are not
sufficiently known to theoretically predict the positions
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of the resonances. In the case of Li and Na, however,
we believe the potentials to be accurate enough for this
purpose. In this paper we brieHy review the Feshbach
theory of resonances in the light of ultracold atom col-
lisions and look for the positions of resonances for the
collisions of various diatom combinations. Apart from
the bosonic species Li and Na we also consider the
fermion Li. As is well known, ultracold collisions have
characteristic properties for fermionic atoms. Antisym-
metry requires the system to have odd collisional orbital
angular momentum if we are considering atoms in the
same spin state. As the number of partial waves needed
to describe a scattering process decreases with the ki-
netic energy, for suKciently low energy the interaction
will be almost exclusively p wave. This means that a
centrifugal barrier will keep the atoms apart, reducing
the nonresonant phaseshift (potential scattering) almost
to zero. Any resonances will therefore show up clearly,
approaching the ideal Breit-Wigner shape without inter-
ference from a background phase shift.

II. COLD COLLISIONS IN TB.APS

A common way to trap neutral atoms is to use a static
magnetic Geld. One drawback is that it is impossible to
create a local maximum for a static electromagnetic field
in free space. One is therefore limited to atomic (hyper-
fine) states that are low-field seeking over some range of
the external 6.eld. A more recent technique involves the
use of a microwave field, which avoids the restriction to
low-field seeking states imposed by a static field. The mi-
crowave trap has been demonstrated in the past year for
cesium [8]. Another trapping method where one is not
limited to specific hyperGne states is the far-oR'-resonance
optical dipole trap [9]. An interesting recent proposal is
trapping atoms by means of focused high power infrared
lasers [10], which would make it even possible to trap
different atomic species simultaneously and study their
mutual collision properties.

Cold. collisions are commonly described by the coupled-
channel method [12,13]. The effective total Hamiltonian
of the system is written as the sum of a part Ho with
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eigenstates ~(nP)) (so-called channels) tending asymp-
totically to a single symmetrized separate-atom product
of internal states ~a) and ~P) and an interaction part V
coupling the channels. Expanding the total scattering
state 4 in this basis with r-dependent coeKcients

~' = ).@f Pl(&)l(~&))
(nP j

and substituting this in the Schrodinger equation, one is
led to a coupled-channel problem, a set of coupled dif-
ferential equations for the relative-motion wave function

pl (r). The extremely low collision velocities char-
acteristic of ultracold collisions generally allow one to
restrict the set of coupled channels to electronic ground
states and the relative motion to the lowest partial waves
l only. In addition, symmetry considerations and the as-
sociated conservation laws make it possible to group the
set of channels into uncoupled subsets.

If at the total energy E the available asymptotic rel-
ative kinetic energy in a channel is positive, the channel
is called open. Otherwise it is closed. A value of E such
that a particular channel opens is a so-called threshold
energy. The coupling of the open and closed subspaces
of Hilbert space is crucial for the existence of Feshbach
resonances. In the following we will be interested in the
special features of Feshbach resonances occurring in cold
collisions, i.e. , close to threshold in a particular collision
channel.

III. FESHBACH RESONANCES
NEAR THRESHOLD

Two types of resonances play a role in collisions: shape
or potential resonances and Feshbach resonances. The
first occur when a potential barrier creates quasibound
states in the continuum, which after a while decay into
a free state. A Feshbach resonance, of most concern in
this paper, results when true bound states belonging to a
closed channel subspace match the energy of open chan-
nels and a coupling exists between them so that tempo-
rary transitions are possible during the collision process.
The Feshbach theory of resonant states provides a way
to calculate the S-matrix element Sz,. for the transition
from an open channel i to another open channel j in
the neighborhood of a resonance. We brieOy recapitu-
late the essential steps in order to provide the necessary
background needed (a) to understand the special features
resulting from the proximity to a channel threshold and
(b) to introduce the concepts needed ta discuss a modi-
fied (strong-field) version of Feshbach theory [11] in Sec.
IV C. For a more complete description the reader is re-
ferred to the literature [14]. The total Hilbert space de-

scribing the spatial and spin degrees of freedom is subdi-
vided into a closed-channel subspace Q, comprising (part
of) the closed channels and a complementary open chan-
nel subspace P, containing at least the open channels.
Feshbach resonances occur as a result of transitions from
'P ta Q and back to 'P during a collision. Introducing
operators P and Q, projecting on 7 and Q, the total

Schrodinger equation of the system is split into two cou-
pled equations,

(E —Hpp)C p = Hpq@q,
(E —Hqq)@q = Hqp@p,

with @p = P4, 4'q = Qi1I, Hpp = PHP, Hqq
QHQ and Hpq =—PHQ.

Equation (3) is formally solved by using the Green op-
erator &+ 0, with E+ = E+ i0:++

1+g= E+ QQ

Substituting this result in (2) we get

(E —H.s) iII p ——0,

where H,g ——Hpp + Hpg &+ 0 Hgp. The second

term in this e8'ective Hamiltonian can be interpreted
in terms of a temporary transition from P space to Q
space, propagation in Q space, and then reemission into
g space. The next step is expanding the Green operator
in discrete eigenstates and (energy normalized) contin-
uum eigenstates of Hgg

d, l&(~))(0(~) I

E+ —e

If the total energy E is close enough to a discrete bound
state energy ep we can forget the remaining terms and

(5) reduces to

Hpql&B)(&B IHq plop)
PP) P E-—Cp

with the formal solution

1
I~P) = I+,') + E„E+ —Hpp

Hpql& )(&BIHqpI@p)

l@p) = I@,+) + E+ Hpql&B)E+ IIPP
(&BIHqpl@,+)

E —~o —(4B~Hqp B+ 'H Hpq~WB)

The amplitude S~; for the transition to channel j is de-
terrnined by the asymptotic behavior of 4p

(~, I
Hpq

I &B)(&BIHqp I @,+)
S; =S-, —2~i

&0 (O'B IIHQP @+ B HPQ I
O'B )

We see that apart from the "direct" term S-,. resulting
from coupling within P space alone, the amplitude of an

where ~4,+. ) is an eigenstate of Hpp with an incoming
wave in channel i. We can solve for ~@p) by multiplica-
tion fram the left with (QB~Hqp and find
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outgoing wave in channel j will include a term arising
from coupling of the incoming wave in channel i to the
bound state in Q space followed by coupling of this state
to channel j. If we have only one open channel i we can
write the above expression as

S,;=Ci 1—
E —eo —A+ 2I )

where I = 2m](Q~~H~gi@,+)] represents the width and
A the so-called resonance shift.

In the case of ultracold collisions of ground state alkali
atoms, it is the combination of single-atom hyperfine and
Zeeman interactions that determines the threshold of the
various channels at the specific magnetic field strength
and thus determines the open and closed channel sub-
spaces. The Coulomb interaction force, specifically the
exchange part proportional to the di8'erence of singlet
and triplet interactions, determines the couplings H~g
and Hg~ of the open channels to a quasibound closed
channel state. Figure 1 shows schematically the energy
relationships in 'P and Q space, needed for a Feshbach
resonance to show up. For simplicity we have taken both
spaces to be one dimensional.

In the foregoing we introduced the orthodox version of
Feshbach theory, in which the 'P and Q subspaces are de-
fined in a straightforward way in terms of the sum of the
internal atomic Hamiltonians. As a consequence, H~g
does not contain a Zeeman or hyperfine part, but is pro-
portional to Vg —VT. There is therefore no reason to
expect H~g to be a weak perturbation. In the strong-
field limit an alternative version of Feshbach's theory can
be formulated in which II~g has a diAerent meaning: es-

sentially the (si —s2) (ii —i2) part of the total hyperfine
interaction, to be denoted as V" in the following [see Eq.

/4

5/
E kin

(22) below]. This H~g term represents a weak perturba-
tion in the strong-field limit.

To formulate this version we note that for strong fields
V" plays a negligible role at large interatomic distances,
S, Mg, I, Ml heing the appropriate, good quantum num-
bers. It does, however, play a significant role in the ra-
dial region of the hyperfine avoided crossings. Eff'ectively
therefore we can neglect it beyond a certain distance r~
[ll]. In that situation the channel spin states have defi-
nite 8, Ms, I, MI and the projection operators P and Q
commute with the Coulomb part of the interatomic in-
teraction, so that H~g is electively equal to V" instead
of being proportional to V~ —VT. This has the impor-
tant advantage that HI g is a weak perturbation, which
implies that the resonance shift 4 can be expected to
be small, so that the position of the resonances will be
close to the eigenvalue of ~Po) in the isolated Q space,
i.e. , neglecting V" . Furthermore, the expression for the
resonance width reduces to

in which both ~Po) and ~C',+) are pure singlet or triplet
states.

We now specialize the foregoing equations to that of
ultralow collision energies. The case that will be of most
interest in the following is that of one open channel [Eq.
(11)] with both atoms in the same initial spin state,
threshold energy Eth, and collision energy E; = E —Eth.
At low E, the surviving 8-wave part of 4,+. is propor-
tional to ~k, E, in the limited r range of the ex-
change interaction [15]. As a consequence, expressing the
background amplitude in terms of a scattering length ao,
S,, = e ' * ', Eq. (11) reduces to

2iCk,
LCk eres

where C ) 0 and e = ep + A(E = 0) —Eth(B) is the
actual resonance position relative to threshold. Writing
the right-hand side as e '"', we find for the total scat-
tering length a(B) including the resonance

a(B) = ap—
&res

where ao and C are only weakly dependent on B. In
practice, the resonance contribution to a(B) shows up
only for B values close to the magnetic Geld strength Bo
where the resonance crosses the threshold. There it is
crucial to take the B dependence of e, , into account in
the form

r (arb. units)
"-(B)= [2&'(Bo) —po(Bo)](B —Bo) (i5)

FIG. 1. Coupling between a scattering state and a bound
state in a closed channel. The atoms approach each other
with total energy R on the potential curve V(r) of the open
channel. At a certain kinetic energy the total energy matches
that of a bound state (bold line) in the closed channel poten-
tial (dashed line).

with p, (B) the single-atom magnetic moment of the ini-
tial hyper6ne state and po(B) the magnetic moment of
the two-atom resonance state. We thus have finally

C 1
a(B) = ap-

2u'(Bo) —
I o(Bo) B —Bo
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The central interaction depends only on ~rI and there-
fore conserves orbital angular momentum / and total spin
I" (P = S+ I, where S stands for the total electron spin
and I is the total nuclear spin), as well as their projec-
tions mI and M~. It also conserves S and I separately
and can be decomposed in singlet and triplet terms

V' = Vp(r)Po+ Vi(r)Pi,

FIG. 2. The two figures on top show the energy of the
two-atom resonance state and the channel threshold as a func-
tion of B: upper left, for negative magnetic moment of the
bound state (solid line) and positive single-atom magnetic
moment of the initial hyperfine state (dashed line); upper
right, vice versa. The corresponding behavior of the scatter-
ing length as a function of magnetic field is shown below. The
former situation applies to atoms in the lowest hyperfine state
and to strong magnetic fields () ahi/pn) when atoms are in
the upper state of the lower hyperfine manifold. The latter
situation applies to low magnetic fields for atoms in the upper
state of the lower hyperfine manifold. An arbitrary value of
ao was selected.

Figure 2 illustrates this equation, for both a positive and
a negative difference of magnetic moments.

IV. DETERMINATION OF THE I OCATION
OF RESONANCES

In this section we describe a calculation that indicates
roughly at which magnetic field strengths resonances are
expected to occur at threshold. The idea is to calculate
the position of discrete two-body states with the appro-
priate quantum numbers as a function of B, considering
the hyperfine coupling as a small perturbation. Com-
paring these energies with the (B-dependent) threshold
energy of the collision channel considered, will give us
the desired B values. The effective Harniltonian of the
two-body system is of the form [13,16]

where the Ps operator projects on the singlet S = 0 or
triplet S = 1 subspace. The dipole interaction, on the
other hand, is not invariant under independent rotations
of spatial and spin degrees of freedom as it depends on
relative orientations in space of orbital and spin degrees
of freedom and thus may change E and M~. Since the
dipole interaction is much weaker than the central inter-
action, however, and since we are not interested in dipolar
rates here, we will neglect this term in the following.

The internal Hamiltonian of a single atom is taken to
be

H'" = " s i+ (p, s, —p„i,)B

where ah~ is the hyperfine constant, s is the electronic
spin, and i is the nuclear spin. The first term is the
hyperfine interaction and the second is the Zeeman in-
teraction. The energy levels of atoms with nuclear spin
i =

&
and i = 1 are shown in Fig. 3. We will label the

one-atom hyperfine states with
~ f, my), where f = i+ s,

although f is a good quantum number only for B = O.

Asymptotically the central interaction can be neglected
and the two-body system is described by the eigenstates
of each of the atoms separately. The scattering channels
at infinity are therefore labeled as ](fief 1 f27rif ) )&

with + denoting the symmetrized and —the antisym-
metrized spin states: depending on the orbital angular
quantum number / and the atomic species (71 i and 2sNa

behave as bosons, I i as a fermion) symmetrized or an-
tisymmetrized spin states are needed. For small r values
it is more convenient to use a basis that exploits the
fact that the central interaction is much stronger than
the hyperfine or Zeeman interaction. Depending on the
strength of the magnetic field the set ~(SI)FMp) or the
set ~SMsIMI) off'ers more advantages. In Fig. 4 we give
an example of the adiabatic energy curves together with
their labels in the two different regions of r. In between
these regions neither of the sets is a "good" diagonal ba-
sis set; the adiabatic states will be mixtures of difFerent
basis states.

P +) Hint+Vc+Vd
2p

A. Singlet and triplet potentials

where PH'" represents the internal energy of the two
atoms, i.e. , the sum of the hyperfine and Zeeman inter-
actions, V' is the central (Coulomb) interaction, and V"
the magnetic dipole interaction. Previous studies [12,17]
indicate that an efFective Hamiltonian of this form pro-
vides for a description of observable quantities to the per-
cent or even promille level.

In a previous paper [18] we have shown how we have
improved the I i triplet potential, obtained by Zernke and
Stwalley [19] via a "dense" Rydberg-Klein-Rees (RKR)
analysis of spectroscopic data and the addition of short
and long range analytical parts, by inverse perturba-
tion analysis (IPA). Recent measurements [5] support the
quality of this IPA potential. We have also been able to
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S=1/2, l=1 8=1/2, I =3/2
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FIG. 3. Energies of hyper-

fine states, labeled iFMF), as
a function of magnetic field, for
atoms arith nuclear spin i = 1
and i = — (E and B scales are
in arbitrary units).

-2

find the uncertainty left in the triplet as well as in the
singlet potential [18,20]. In the case of Na we started
from the state of the art potentials from Refs. [21,22].
We further improved the Na singlet interaction with IPA.
Unfortunately, there are insufFicient experimental data to
also improve the Na triplet potential. To get an idea of
the remaining error in the potentials we look at the phase
mismatch P(E, l) at a suitable meeting point of small-r
and large-r parts of the wave function obtained by out-
ward and inward integration of the Schrodinger equation.
P(E, l) is expected to be zero at the energy of a bound
state. In the WKB approximation, with k = k~ ~(r) the
local wave number and ri (E, I) and r2(E, l) the inner and
outer turning points, the error is given by

AP(E, l) = Ak(r)dr . (20)

[(SI)FM f& I (fm, f m, }'&

I f2O, 2-2)+& )2-1,2-1 &

2-2} &
2-1}'&

] (11)2-2&

j (13)3-2&

](13)2-2&

27 30 31

r (units of sp)

FIG. 4. Na+ Na adiabatic energy curves for zero mag-
netic field, For small r values the states are labeled
~(SI)FMJ. ) and for large r values the curves are described
by the eigenstates of the internal Hamiltonian of each of the
atoms separately.

DifFerentiation of this quantity with respect to E and
l(l + 1) emphasizes the dependence on the contribution
from an interval close to the outer turning point where
the "classical" motion is slow and the potential is al-
ready more reliable. It is therefore plausible [18,20] that
the derivatives of P(E, l) with respect to E and l(l + 1)
are already described accurately by the present best sin-
glet and triplet potentials and to allow only for a shift
EP(0, 0) at E = l = 0. By looking at the discrepancies
between the experimental and calculated energy differ-
ences of the highest measured bound states as a function
of this shift for the Li singlet and triplet potential the
following ranges were found [18,20]:

—o.o2 & ny, «0.05, —o.o4 & a$,=, & o.035 .

For Li we adopt the same ranges. This is justified by
the fact that our Li IPA curve divers only slightly from
the Li dense RKR curve, which indicates that adiabatic
corrections are small. It should be noted that the above
uncertainty in the shift is small, only a few percent of the
period vr, confirming the quality of the potentials.

Recently the highest l = 0 bound state of Li triplet
has been measured and was found at a distance of 598

2 mK below the continuum [5]. This measurement
completely pins down the position of the Li triplet res-
onances, as will be shown in the following.

That the above mentioned phase method can also be
used to improve the potentials is illustrated by the Na
singlet interaction. In Fig. 5 the discrepancies between
experimental [23] and calculated energy difFerences for
the highest measured rovibrational levels as a function of
the shift KP for the Na singlet potential, which we ob-
tained by the IPA, are shown. Clearly the shift AP for
E —62 J E —6] J which are the highest measured levels,
is significant. However, according to Ref. [21] the outer-
most RKR turning point is subject to a relatively large
uncertainty. Figure 6 shows the AE —AP diagram that
we obtained after a suitable shift of this point. Appar-
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ently, the shift of this single RKR turning point brings
the intersection points with the abscissa remarkably close
together. We thus Bnd the following ranges for the phase
shift:

6 e (radians)
FIG. 5. Discrepancies between measured and calcu-

lated energy difFerences (left axis, solid lines) for the
Na singlet potential as a function of AP. The
(v + 1, J)-(v, J) combinations for the lines from top to
bottom at AP = 0.3 are (59,15)-(57,15), (59,13)-(57,13),
(57,13)-(56,13), (57,15)-(56,15), (56,15)-(55,15), (60,13)-
(59,13), (60,15)-(59,15), (61,15)-(60,15), (61,13)-(60,13),
(62,13)-(61,13), and (62,15)-(61,15).

we predicted it to be (64 & aq t & 152ao). This points
to the fact that the uncertainty in the triplet potential
given above is rather overestimated.

Apart from the errors in the "inner" parts of the po-
tentials the dispersion coefficients C6, C8, Cio too have
certain error bounds. These errors may move the ana-
lytical part of the potential curve up or down relative to
the bottom and thus a8ect the positions of the energy
levels. To determine the eKect of this uncertainty in the
potential on the bound state energy levels, the experi-
rnental data points were shifted to match the maximum
and minimum analytical tails, respectively. Calculating
the positions of the presently unknown (except the I.i
triplet) highest two-body energy levels in the following,
we will take into account the combined efI'ect of the un-
certainties in the long range part and in the inner part
of the potentials.

B. Bound state energy levels

The method we now follow to find the bound levels
will consist of calculating the energy of the highest bound
levels of the singlet S = 0 and triplet S = 1 ground states
and include the hyperfine and Zeeman interaction

) H' ' =, (lil ll + lil 22) + (i.S. —i I, ) B, .

—0.04 & A/22 —P & 0.00, —0.3 & Ay/ —y & 0.3

Compared to the other potentials mentioned above, the
uncertainty in the Na triplet interaction is rather large
due to the fact that only a relatively small number of
bound levels for this state has been measured, with a
rather low resolution. However, recent measurements of
the elastic cross section of Na atoms in the I" = 1,m~ ——

—1 state [2] give an elastic scattering length [+(92 6
25)ao] that is close to the middle of the interval where

Neglecting the mixing of difFerent (SI) combinations by
the (sq —s2).(it —i2) part of the total hyperfine interaction

+hf -. -. &hf

62 2h~
21 ' ll + 22 ' 'll =

2 (21 + 22) ' (ll + 12)

+ (s, —s2) it —i2
2h2

~hf + ~hf+

I

E

LLi

cl
0

LLi

0.50
0.40
0.30
0.20
0.1 0
0.00

-0.1 0
-0.20
-0.30
-0.40
-0.50

-0.30 -0.20 -0.10 0.00 0.10 0 ~ 20 0.30

6 4 (radians)

FIG. 6. Discrepancies between measured and calculated
energy differences (left axis, solid lines) for the Na singlet
as a function of AP after shifting the outermost RKR point.
The (v + 1, J)-(v2 J) combinations for the lines from top
to bottom at A@ = 0.3 are (59,15)-(57,15), (59,13)-(57,13),
(57,13)-(56,13), (56,13)-(55,13), (57,15)-(56,15), (56,15)
-(55,15), (60,15)-(59,15), (60,13)-(59,13), (61,15)-(60,15),
(61,13)-(60,13), (62,13)-(61,13), and (62,15)-(61,15).

these states are characterized in the zero-Beld limit by the
total spin and the total spin-projection quantum numbers
I and M~ and are written as ~v, l(SI)FM~).

This approximation is justified except for very close-
lying singlet and triplet levels (within a distance of about
ahr). Note that sq —s2, being antisymmetric in 1 and
2, couples symmetric (i.e. , triplet) electronic spin states
and antisymmetric (i.e. , singlet) states. Due to the dif-
ferences in electronic and nuclear gyromagnetic ratios, as
an external magnetic Beld is applied, bound states will be
mixtures of various ~(SI)I' Mp) states with different I'".
For very strong fields each of the eigenstates approaches
a state with definite total electronic spin (S and Ms) and
total nuclear spin (I and MI), so that in this limit these
are the good quantum numbers. These basis states are
denoted as iSMsIMI) and the bound states are likewise
characterized by ~v, ISMgIMI).

We illustrate the above by considering two Na atoms
in the

t f = 1,mf ———1) state. In this case we have two
atoms in the same spin state, requiring that l be even
to form a symmetric total wave function. ln all cases,
symmetry considerations require that the sum l + I + 8
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be even. Note that this rule applies to both bosonic and
fermionic alkali atoms: the permutation symmetry of the
electronic spin states is determined by (—1),and that
of the nuclear spin states by (—1) ' . From the above
requirement of even l, we thus have S+I even for Na.
Taking into account that the (conserved) total M~ = —2,
so that E & 2, we have the possibilities

I =1-+ I' =2
I =3m I" = 2, 3, 4,

S=o~ I =2 ~ K=2.

[(SI) FMF)

0 00 II(02)2-2)

-0.10

-0.20

-0.30

-0.40

-0.50

) SMsl M

~i &3-3)

Weak B field

i(SI)I"Ms )
f(02) 2 —2&

f(11)2-2&

(
l(»)2 —»
[(13)3—

2&

[(13)4—
2&

Strong B field

~SMsIMz&
~002 —2)

[1—13—1&

/103 —2)
/113 —3&

for extreme Belds and easily calculable superpositions for
intermediate Beld strengths. For each orbital state, a
multiplet of spin levels is thus obtained by calculating
the matrix elements of the internal Hamiltonian in the
~(SI)EMz-) basis and diagonalizing this matrix. Figure
7 shows the energies of the v = 14, l = 0 triplet and
v = 65, l = 0 singlet bound states. Also shown is the
open channel threshold energy of the ~l —1, 1 —1) col-
lision channel. It is seen that there is reason to expect
resonant behavior at magnetic field values of B = 0.105
T and B = 0.185 T.

A rigorous way to Gnd the exact location of the reso-
nances is to solve the coupled-channel equation numeri-
cally. The result is obtained in the form of the S-matrix
elements. Rapid change in an S-matrix element indicates
a resonance. With a single channel open, elastic S-matrix
elements can be written as e ' ~ ~, where b is known as the
phase shift and k stands for the wave number. A quan-
tity of crucial importance for the achievement of Bose-
Einstein Condensation (BEC) is the so-called scattering
length a, defined as a = —limg~o 8(k). Figure 8 shows
the value of the scattering length for the collision of two
atoms in the

~ f = 1,mI = —1) state following from a rig-
orous coupled-channel calculation. Clearly, we find per-
fect agreement of the resonance positions obtained from

The structure of these four triplet and one singlet states
is easily derived, both in the weak-Geld and strong-field
limits, provided we write the hyperGne interaction in
the approximation explained above as V+ ——z&,

'S . I.
Clearly, this term conserves S, I, F, M~. Since the same
is true for the Coulomb part of the interatomic interac-
tion, this determines the set of good quantum numbers
in the zero-field (and weak-field) limit. As pointed out
above, the external field does not conserve F. It does con-
serve S, Mg, I, My however. This defines the set of good
quantum numbers in the strong-Beld limit. We conclude
that in the S ~ I approximation the problem of Bnding the
two-body bound states can be solved in terms of uncou-
pled orbital and spin states. The orbital problem leads to
a set of eigenstates in a pure singlet or triplet potential,
the spin problem to the states

-0.60 ~

0.00 0.10 0.20 0.30

the simple bound state model and the positions from the
coupled-channel calculations.

It is of importance to point to a basic difference of the
present calculations with those of Ref. [61: for Na and
for the Li isotopes we now have detailed knowledge of the
relevant properties of singlet and triplet potentials avail-
able, so that our theoretical results do not represent order
of magnitude estimates but rather accurate predictions
with narrow error limits. As stated before, uncertainties
in the potentials will shift the bound state levels up or
down, resulting in a shift of the position of the resonance.
Taking account of the uncertainties left over for the Na
potentials we Bnd the resonance position at 0.084 & B (
0.134 T. In Table I we summarize the calculations along
similar lines for Li, "Li, and Na. We only consider
states that are stable against exchange relaxation. Note
that all resonances are predicted at Beld values large rel-
ative to aha/y~, where the strong-field limit is valid.

400

200
cd

O

G$
-200

-400
0.00 0.10 0.20

FIG. 8. Value of scattering length for the f=1, mz = —1
state as a function of magnetic Beld following from the cou-
pled-channel calculation.

FIG. 7. Energies of the singlet (S=O) v = 65, l = 0 and
triplet (S=l) v = 14, l = 0 bound states as a function of
magnetic field. At B=O the degeneracy of the triplet state
is lifted by the hyperfine interaction. Also shown (dashed
line) is the threshold energy of the ~l —1, 1 —1& collision
channel. Resonances occur when this line intersects a bound
state curve.
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Atom
I fmy)
state

6L ~

I

1 i)

Li

"Na I1 —1)

Bres

11.7mT & B(
0.337T & B &
6.4mT (B(
0332T &B&
0332T &B(
0.078 T & B(
0233T &B&
0.052T &B&
0.205T &B&
0205T&B&
0.084T &B &
0.148T & B(
0 016 T & B &
003T&B&
0.09T &B&

26.5 mT
0.384 T
21.0 mT
0.382 T
0.382 T
0.137 T
0.237 T
0.082 T
0.209 T
0.209 T
0.134 T
0.172 T
0.068 T
0.075 T
0.185 T

Bound state

138, 1, (01)1—1)
I9, 1, (12)3 —1)
I38, 1, (01)11)
I9, 1, (12)31)
I9, 1, (10)11)

l41, 0, (02)2 —2)
I10, 0, (13)4—2)
I41, 0, (02)22)
I10, 0, (13)42)
l10, 0, (11)22)

I14, 0, (13)4—2)
I14, 0, (13)3—2)
I14, 0, (13)42)
I14 0 (11)22)
I14, 0, (10)32)

TABLE I. Location of resonances for di6'erent atoms, dif-
ferent entrance channels, and various bound states (indicated
by quantum numbers at zero magnetic field) from which the
resonances result.

o. = cosO

p = sinO,

0 = —arctan 1+ 2(p, + p„) "B)—

From these expressions it is seen that the singlet contri-
bution vanishes for large values of the field. At large fields
the state is a mixture of the triplet states Il —120) and
Il —100). This confirms the assumption of pure singlet
or triplet channel spin states in the modified Feshbach
theory. Since V" couples the above triplet channels to
S = 0 only, we can expect resonances with only very nar-
row widths for triplet bound states, which will probably
be very difBcult to observe. This again is confirmed by
the rigorous results for the resonances obtained with our
coupled-channel calculations. The resonance width for a
singlet bound state, on the other hand, is determined by
Eq. (12) taking the form

(24)

where pg o is the singlet bound state and
triplet scattering state, i.e. , a p-wave continuum wave
function. Working out spin matrix elements we Anally
get

C. H,esonance widths Qr= 2~ "'
I2

dr4~=o(r)@s'=i (r) (25)

In the preceding subsection we found the locations of
the resonances corresponding to the singlet and triplet
closed channel bound states. We will now concern our-
selves with their widths. We want to predict these in the
strong-field limit, which, as we have seen, turns out to
apply for all predicted I i, I i, and Na resonances. In
that limit it is profitable to adopt the modified version of
Feshbach's theory considered above, leading to Eq. (12)
for the width. Since we know the closed channel bound
state Igo) to be a pure singlet or pure triplet state, its
wave function can be determined by numerical integra-
tion of the Schrodinger equation. In order to evaluate
(12), we will need to look more closely at the scattering
state I4,. ) in the case of a low-energy collision between
ground state atoms. In the following we will take the
specific singlet resonance of Li in the

I f = z, my = —z)
state as an example. The two-atom combinations that
give a total magnetic quantum number M~ ———1 form a
five-dimensional spin subspace. These states can be ex-
pressed in the convenient ISMsIMI) basis. The mixture
of ISMsIMI) states in the entrance channel spin state

I f = —,', my ———
—,', f = —,', my = —-,') is

1 (kr)'+'
v kryo((kr) m (26)

Thus the width goes with E'+ )' . Figure 9 shows the
dependence of the width on E and Fig. 10 shows the B
dependence for different energies. Note the ideal Breit-
Wigner shape of the resonances due to the fact that the

with Ps o(r ) and @g i(r) the spatial parts of the bound
and scattering wave functions. We conclude that the
bound state has to be a p-wave state too. Numerical
integration of (25) yields the resonance widths as a func-
tion of collision energy. In Table II these are compared to
the values resulting from a rigorous numerical solution of
the coupled-channel equations. The agreement between
the two is good, justifying our strong-field approximation
and modified Feshbach theory.

The energy dependence seen in the table is of the form
E ) and is due to the scattering wave function 4. This
can be seen from the low-energy behavior of the free part
of the radial wave function

TABLE II. Resonance widths of the Li singlet resonance
for collision energies, calculated with the modified Feshbach
theory (1 "")and with the coupled-channel calculation (I"').

where

n I1—1OO) + npIOO1 —1),1 2 (23)

= p I112—2) + —n Il —120) —npI102 —1)3
E (mK)

0.25
0.50
1.00
2.00

1"""(mK)
0.0094
0.026
0.074
0.20

F" (mK)
0.010
0.030
0.081
0.22
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FIG. 9. Energy dependence of real part of the S-matrix
element at the magnetic field giving a resonance at 0.25 mK
(dashed curve) and at 1 mK.

B (mT)

FIG. 10. B dependence of real part of the S-matrix element
with a kinetic energy of 0.5 mK (dashed), 1 mK (dotted), and
2 mK in the incoming channel.

nonresonant phase shift is zero.
We now turn to a calculation of the widths of the com-

plete set of resonances obtained by the rigorous coupled-
channel calculation. Table III summarizes the widths of
the resonances from Table I along the B scale for kinetic
energies of 1 p,K and 10 pK in the corresponding scatter-
ing channel. The table shows a large variation in width
for different resonances. Small widths can be explained
by the fact that the interaction is not e%cient in coupling
the entrance channel with a quasibound state. An exam-
ple is the resonance corresponding to the bound state

(&3)4—2) for Li. In the B-field region where the
resonance is found the entrance channel is almost a pure
triplet. The bound state is also an S = 1 state. The V"
part of V", however, couples only triplet with singlet
states.

V. CQNCI. USION

We conclude that the hope of predicting resonance phe-
nomena in the low-field seeking region for the highest
states of the lower hyperfine manifold for Li, "Li, and

EB (G) for Eg;i~= 10 pK
0.0008

Bound state
l38, l(01)1—1)
IO, 1(12)3—1)
I38, 1(01)11)
Io, 1(12)31)

a Io, 1(lo)11)

I41, 0(02)2 —2)
I
10, 0(13)4—2)

I
41, 0(02)22)
Ilo, o(13)42)

8c Ilo, o(11)22)

I14, 0(13)4—2)
I14, 0(13)3—2)
I14, 0(13)42)
I14, 0(11)22)
I14, 0(lo)32)

0.000025 0.0008

Li 1.22
0.001
0.85
0.002

3.84
0.004

2.7
0.006

0.63
0.30

0.0026
1.48

0.123

0.20
0.094

0.0008
0.45
0.038

TABLE III. The widths of the resonances from Table I. The widths of the Li triplet resonances
were too small for these low energies to be calculated. We found a width of 16 x 10 for a kinetic
energy of 10 mK. The ampersand denotes that this bound state overlaps the previous one so that
no separate widths could be determined.

Atom
I fmy) state KB (G) for Ek; = 1 pK

Li 0.000025
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Na is apparently not fulfilled. It should be noted, how-
ever, that the predicted resonances might be observable
with recently proposed and developed trapping schemes
[8—10]. We have found the positions of these resonances
and calculated their widths. Exciting phenomena may
be expected to take place in a trap at locations where
the field value corresponds to a resonance. In addition,
the observation of these resonances in such an experi-
ment would provide a measure of the quality of the in-

teratomic potentials derived in our group and reduce the
uncertainty associated with them.
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