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Angular momentum in harmonic generation and above-threshold ionization
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ln this paper, we present a discussion of the role that angular momentum plays in the interaction
of an intense laser field with a single-electron atom. To do this, we have made a detailed analysis
of how diferent partial waves, i.e., di8'erent angular-momentum states, participate in producing the
photoelectron energy, angular distributions, and harmonic generation spectra. We show that the
two regimes —tunneling and multiphoton excitation —correspond to quite distinct evolution patterns
across the partial wave decomposition. The natures of these patterns are particularly significant
in the harmonic generation spectra and emphasize how harmonic generation is mainly produced in
transitions back to the initial state. We also find that at high intensities, the photoelectron energy
spectrum is composed of two di8'erent but well defined sets of above-threshold ionization peaks.
These two sets are separated by a structureless region and the second set deviates substantially
from the initial exponential decrease of the peak intensities versus energy. Similar features have
been very recently reported experimentally.

PACS number(s): 32.80.Rm, 42.50.Hz

I. INTR, ODU CTION

There has been a great deal of progress in recent years
on the theoretical description of ionization of atoms in
intense laser fields [1]. Depending on the laser field pa-
rameters, the dynamics of the atom-laser interaction ad-
mits quite distinct interpretations. There are, however,
two limiting ways to describe the escape of an electron
from an atom by the action of a laser Geld: multiphoton
ionization (MPI) and tunneling ionization (TI) [2—5]. In
the MPI limit, the ionization is thought of as occurring
via the absorption of several photons of the field (MPI).
In the case of tunneling, we think of the field acting as a
quasistatic (high-intensity, low-frequency) field diminish-
ing the atomic potential barrier and allowing the electron
to escape through or over the barrier (TI). Convention-
ally the adiabaticity or Keldysh parameter p is used as
an indication of w'hich of these two regimes ionization
occurs in. p is defined thus

intensities, corresponding to a range of p from p = 0.55
top=3.

The paper is organized as follows. In Sec. II a gen-
eral description of the theory and the method used in
our calculations is presented. Section III is devoted to
the angular momentum analysis of harmonic generation.
In Sec. IV we deal with photoelectron spectra, explain-
ing the different methods we use to calculate the ATI
spectra; the angular distributions we obtain for the dif-
ferent regimes are shown in Sec. V. Finally, in Sec. VI we

present the conclusions of our study.

II. THEORY AND NUMER, ICAL NQTES

We shall brieBy outline the theory we use in our cal-
culation before describing the role of orbital angular mo-
mentum in the production of harmonics and high-energy
electrons in a multiphoton ionization process. Our ap-
proach is based on the numerical solution on a grid of
the time-dependent Schrodinger equation (atomic units
are used throughout)

where U, is the ionization potential and U„= E /4wz the
ponderomotive potential, both expressed in atomic units.
In the limiting case p « 1 (U„)) U, ), we say that we are
in the tunneling regime, whereas for p &) 1 (U„« U, )
we say that multiphoton absorption dominates. In this
paper we want to explain how angular properties can be
used to extract dynamical information of the ionization
process. To do that we study the angular momentum de-
pendence of harmonic generation and the photoelectron
spectrum (with an emphasis on the angular distributions)
in different regimes. We shall limit our study to hydro-
gen [6—8], starting from the ground state and interacting
with a linearly polarized field at different frequencies and

For the hydrogen atom, in the dipole approximation, this
can be written in the form

. 0 ( 1-, 1
i g(r, t) =

~

——9' ———+ rE(t) cos0 sin&et
~

g(r, t),
rBt ( 2 r

where E(t) is the electric field envelope. The total elec-
tronic wave function can then be expanded in an angular-
momentum basis
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L=p m= —l

(4)

Here Yi (0, P) are the standard spherical harmonics. If
the field is linearly polarized along the z axis and the
initial state is an 8 state, only the spherical harmonics
with m = 0 will contribute and we can eliminate the
m index in the above expression. This expansion of the
wave function, in which the whole time dependence is
included only in the radial part, leads to a set of coupled
partial differential equations.

Explicitly, for each / component of the expansion, the
coupled equations are [9—11]

. t9 1 8
i—yi(r, t) =
Bt '

2 Br2
l(l + 1)——+ &i(r t)r 2r2

+c) c)
(I+1)'

(2l + 3)(2l + 1)

Each angular-momentum / state is therefore coupled by
the laser field to I 6 1 states (except I = 0, which is
coupled only to l = 1). The evolution of the electronic
wave function in our calculation is performed using an
eKcient split-operator technique. The advantages of this
technique are unitary evolution and numerical stability.
Using a split-operator method we can write the evolution
due to Eq. (5) in the approximate form [12]

( t + ~t) —iHO&t/2 iH;„, At —iHO&t/2
(
—

t)

+o(~t'),

where Ho stands for the bare Hamiltonian, and H;„q for
the interaction part as written in Eq. (5). The wave
function yi(r, t) can then be obtained numerically over
successive time steps by using this operation repeatedly
on the initial electronic wave function. There are several
techniques in handling the split form of the evolution op-
erator [see Eq. (7)], especially the exponential coupling
operator [9—12]. We choose to diagonalize the interchan-
nel coupling in a basis in which cos0 is diagonal. The
treatment of the interaction term is then straightforward
since the exponential of a diagonal matrix is simply a
matrix of the exponentials.

The box in which the simulation is done depends now
on two discrete variables: the radial coordinate r and the
angular momentum I. The size of the box used in the
simulations is determined by physical requirements. The
radial boundary has to be far enough from the nucleus
in order to avoid significant reflections from the bound-
aries that could distort the dynamics of the process. This
problem is partially solved by using an absorbing mask
function of coss~ (r „—50.0) /100. 0 varying from 1 to 0
in the last 50 a.u. [14]. Even then, the size of the box

+rE(t) sin&et [c& pi+i(r, t) + c& yi i(r, t)
(5)

Here c&+ are coupling constants related to Clebsch-
Gordan coeKcients, having the form

has to be large enough to avoid the genuine ingoing parts
of the wave function (produced by the laser field) being
absorbed by the mask function. As a consequence of the
absorbing boundary we can use the decrease of the nor-
malization of the total wave function as a measure of
ionization.

It is, of course, not possible to use an infinite num-
ber of angular momentum l states in the time evolution
of the electronic wave function, so a cutoff in the ex-
pansion of I [see Eq. (4)] has to be introduced. For low
intensities, when perturbation theory to the lowest or-
der (LOPT) can be used to describe a process, dipole
selection rules will effectively restrict the wave function
expansion in angular momentum states. This means that
if an s state requires n photons to ionize, the final state
will be a mixture of all angular momentum components
with 0 & l & n. For higher intensities, however, LOPT
is no longer valid and states with higher angular mo-
mentum become a priori as important as the states with
l & n. The critical question is, of course, how many angu-
lar states are necessary to describe accurately a process
for a given frequency, intensity, and pulse length. Since
the different partial waves are coupled through the inter-
action term, it seems logical that the number of partial
waves has to increase with the laser intensity. We shall
see in fact that the number of angular states (I ) nec-
essary to get reasonable convergence depends strongly on
the observable we are calculating.

Spurious reflections from the edge of the "angular" box,
i.e. , the / partial wave, can be avoided by using an
absorber. In some cases, the use of' an angular absorber
has allowed us to reduce the number of partial waves by a
factor of 2. The angular absorber, when used, is included
over the last six to ten partial waves. This is especially
important in analyzing the photoelectron spectra for high
intensities, as we shall see in the following sections.

To summarize, the size of the box ranges between 300
and 900 a.u. with a radial absorber mask function in
the last 50 a.u. The spatial step is 0.10 & Lr & 0.25
a.u. [small spatial steps are required if the number of
above-threshold ionization (ATI) peaks in the spectrum
extends to high orders] and the temporal step varies be-
tween 512 and 2048 steps per optical cycle. (The smaller
spatial and temporal steps are usually needed to see any
improvement of the spectrum. ) The cutoff in the angular
expansion in most of the cases varies as 12 & l & 96,
with / increasing until convergence is achieved.

III. HAH. MONIC C ENEB.ATION

A. Acceleration and angular decomposition

The radiation emitted by a single charge (harmonic
emission) in an external field is determined by its acceler-
ation [15]. Many calculations of the harmonic generation,
however, are based on finding the Fourier transformation
of the dipole moment. However, for high intensities and
hence rapid ionization, the dipole moment and its veloc-
ity do not vanish at the end of the pulse and can give
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an unphysical contribution to the spectrum. The accel-
eration form therefore seems the most reliable method to
compute harmonic emission and this is the expression we
use:

P(~) oc d(t)e ' 'dt

Here T is the duration of the laser pulse and d(t) is the
acceleration. With the help of Ehrenfest's theorem, the
dipole acceleration can be expressed in the form

(9)

Introducing the angular decomposition of the wave func-
tion in Eq. (9), we find

d(t) = ) d~(t) + E(t) sincut

meLx

) ~+
1=0

y~ (r, t) —yI+i (r, t)

1
y&+, (r, t) —, yt (r, t)

+E(t) sinai. (10)

The first pair of terms in (10) corresponds to all the possi-
ble dipole transitions (Al = +1) between difFerent angu-
lar states. The last term is simply the quiver acceleration
of the external field at the incident frequency. It is clear
from (8), that it is meaningless to calculate the transi-
tion between / and l + 1 separately since the spectrum
is proportional to the square of the absolute value of the
Fourier transformation of Eq. (10). These separate con-
tributions, however, do give us some important insight
into the role of angular momentum in the harmonic gen-
eration process [16]. For this reason we shall discuss the
spectra produced by each contribution

Pi(~) oc [d~ (t) + E(t) sin wt] e ' dt

The E(t) sinai term is included in each dipole transi-
tion merely to generate the fundamental peak. We call
these difFerent components P~(~) partial dipole contribu-
tions.

B. Convergence in terms of partial vraves

To ensure a good contrast in ionization mechanisms,
we shall consider two very different cases. For the first
the laser frequency is uri ——0.2 a.u. (5.4 eV) and the
intensity is Ii ——1.7 x 10i4 W/cm2, which corresponds to
a high-frequency ionization regime (nominally a three-
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FIG. 1. Angular convergence in the harmonic generation
spectrum for high frequency (only the relevant part of the
spectrum is shown). The calculations are done for a 96-cycle
pulse with peak laser intensity Ii = 1.7 x 10 W/cm and
w = 0.2 a.u. (5.4 eV) with (a) l „=12 and (h) l „=24.

photon process) with the Keldysh parameter pi ——2.8.
We shall refer to it as the high-frequency —MPI case. The
second case corresponds to a low-frequency regime with
a frequency u2 ——0.042 a.u. (1.14 eV) and intensity I2 =
8.8 x 10is W/cm (now p = 0.84). We shall refer to
this as the low-frequency —TI case. The two labels "MPI"
and "TI" should be regarded only as an indication of the
dominant ionization mechanism for these frequencies and
intensities. For both cases the pulses used have a sine
profile and are 96 optical cycles long.

First we analyze the convergence of the harmonic spec-
tra in terms of the t „cutofF. We observe that the
number of partial waves necessary to get convergence is
relatively low for both the high and the low-frequency
regimes [17]. Figures 1 and 2 show the harmonic emission
convergence for the high- and. the low-frequency cases, re-
spectively. In Fig. 1 we show the harmonic spectrum (the
relevant part of it) obtained with / „=12 [Fig. 1(a)]
and with I „=24 [Fig. 1(b)]. For the low-frequency
case we find that the convergence of the harmonic spec-
trum requires more partial waves than that of the high-
frequency case. This can be seen in Fig. 2, where the
total harmonic spectra with l „=24 [Fig. 2(a)], and

„=48 [Fig. 2(b)] are shown. For this case at least
24 partial waves are needed. to obtain convergence. The
relatively small changes between Figs. 1(a) and 1(b) and
between Figs. 2(a) and 2(b) indicate the degree of con-
vergence achieved.

Insight into the role of different partial waves can be
obtained through analysis of the partial dipole contribu-
tions as defined in Eq. (11). Figure 3 shows the partial
wave contributions, in the MPI case, for the transitions
between l = 0, 1, l = 1, 2, and / = 4, 5 states as la-
beled in the figure, together with the total spectrum.
We see in Fig. 3 that the l = 0, 1 partial contribution
describes accurately the total harmonic spectrum inside
the U;+3 U„plateau region, i.e. , up to the third harmonic
(in fact, up to the seventh harmonics is well produced by
the I = 0, 1 transition). This reinforces the notion that
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harmonic emission is dominated by transitions en ing sn
the ground state (I = 0). This notion is further backed up
by the observation of a large number of very weak com-
ponents outside the plateau region (see Fig. 4). These
high-order low-intensity harmonic components, in spite
of being very small indeed, are well above the total har-
monic spectrum background and eventually die away for
transitions between higher l states. This is presumably
because they do not come from transitions back to the

FIG. 2. Angular convergence in the harmonic generation
spectrum for low frequency with (a) l

l = 48 at peak laser intensity I2 ——8.8 x 10 Vv'~'cm

and ur = 0.042 a.u. (1.14 eV).
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FIG. 4. Same as Fig. 3, but now showing the complete
harmonic spectrum and some dipole contributions. We can
observe a large number of weak harmonic components outsi e
the plateau region that appear in the different dipole partial
contributions. This high-l-order components do not appear in
the total spectrum due to the interferences between different
partial contributions.
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FIG. 3. Harmonic partial dipole contributions for the rel-
evant part of the harmonic spectrum at u = 0.2 a.u. The
first plot (total) is simply Fig. 1(a), which has been included
for the sake of comparison with the partial contributions.
The other plots correspond to the dipole transitions l = 0, 1;
l = 1, 2; and l = 4, 5, respectively. The laser field parameters
are the same as in Fig. 1.

ground state. These high-order low-intensity harmonics
make no discernible contribution to the total spectrum
due to interferences between difFerent partial contribu-
tions. They are, in any case, of no practical importance
since they occur well outside the plateau region where
efBcient generation occurs. Figure 5 shows the partial
contributions in the low-frequency case. eel = 01
par zartial contribution for this case contains virtually all of
the total harmonic spectrum, the plateau, and the cut-
ofF and, furthermore, the other higher l contributions are
well below the total harmonic background.

Thus we have found that for both the high- and. the
low-frequency cases, the harmonic spectrum inside the
plateau is reproduced by the l = 0 ~ l = 1 transition.
In fact, the "alternate" dipole form [13,14] shows that
the sources of the high-order harmonics are transitions
that are dipole connected to the ground. state. Our re-
sult con6rms the idea that harmonic emission is dom-
inated by transitions ending in the ground state (I =
state). For the MPI case, there are clear but rather small
(insignificant experimentally) contributions from iugh /

transitions that do not contribute to the total spectrum.
These high l contributions do show, however, that a small
part of the wave packet reaches quite high l states. In
the low-frequency case, in contrast, the partial contribu-
tions for l ) 1 never extend to higher orders than the
l = 1 contribution and are always below the total har-
monic background. We now want to discuss why the total
convergence —in terms of the number of angular states
is slower for the low-frequency case (TI) than for the
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cleus and therefore the time evolution of higher (l )) 1)
states, which do not return to the nucleus, does not acct
the harmonic emission.

IV. PHOTOELECTRON SPECTRUM

In this section we present our results concerning
the photoelectron spectrum in the low- and the high-
frequency domains. At moderate or relatively high in-
tensities we expect to find the spectra composed of a
set of peaks separated by the energy of one laser photon
with an overall exponential decrease with energy. This
well known structure is commonly referred to as an ATI
spectrum. We observe that the peak structure holds even
for very high intensities, but certainly not with an expo-
nential decrease in energy. As in Sec. III, we shall first
address in detail the number of partial waves needed to
obtain convergence for various cases. The technical is-
sues related to the methods we use to compute the ATI
spectra are addressed mainly in the Appendix, although
we brieQy review our method in the following subsection.

FIG. 5. Same as Fig. 4, but now for the low-frequency
~ = 0.042 case. The l = 0, 1 partial contribution reproduces
well the total harmonic spectrum also outside the plateau
region. All the other partial contributions are well below the
total harmonic background.

higher-frequency case (MPI). The differences between the
two regimes in the l convergence arise from the very
distinct dynamical evolution of the respective wave pack-
ets. We can see why such a distinction is to be expected
in the following way. In the low-frequency case where
tunneling ionization dominates, we expect the harmonic
generation to be produced by a part of the wave packet
that has tunneled through the barrier and then returned
back to the core. To describe this piece of wave packet,
displaced from the core (and orientated in the direction
of the laser field), oscillating in a nearly classical fash-
ion, will require a large number of I states. One should
think of a wave packet with a quite small initial extent
( 1 a.u. ) and an oscillation amplitude n F/w, i.e. ,
the classical excursion parameter. This wave packet has,
at the extreme of the oscillation, i.e. , r o., an angular
spread of the order of 1jn and therefore must contain
a number l o. of partial waves. Truncating the l
expansion with a low l number would therefore cause the
loss of angular resolution of the wave packet when it is
displaced from the core. Subsequent evolution of this
excited wave packet then would not be accurately repre-
sented, especially the recollision that produces harmonics
at the core. In the MPI regime, in contrast, many high
l angular states are excited during the ionization pro-
cess that do not contribute appreciably to the harmonic
spectrum. The MPI does have, as we have seen, small
components in the partial contributions at high /. These
small components, however, do not inhuence the total
harmonic spectrum. The harmonic emission is mainly
produced by the 8 and the p components of the excited
(continuum) wave packet that remains close to the nu-

A. Method

The method we use to calculate the photoelectron
spectra is based on the projection of the final wave func-
tion»j'I(r, t = T) onto wave functions for the continuum,
i.e. , scattering states. We have checked this method
against two other methods, namely, the window opera-
tor method [18] and finally an asymptotic transformation
to momentum space. All of those methods rely on the
complete knowledge of the electronic wave function at the
end of the pulse. For all the calculations we present here,
the normalization at the end of the pulse 4(r, t = T) is
always very close to one. This is accomplished by using
very short pulses (8 or 14 cycles long), which allows us to
obtain the ATI spectra for very high-intensity lasers but
using reasonable numerical grids. To ensure the accuracy
of our results we also calculate the radial distribution of
the final wave function through a wavelet analysis or B
profile [19]. We discard the peaks in which there is a
significant contribution from the wave packet that has
already been absorbed by the mask function at the end
of the box. As an example, in Fig. 6 we present a com-
parison between the three difFerent methods: (a) projec-
tion, (b) the window operator, and (c) a Fourier trans-
formation to momentum space. The projection method
is apparently able to solve the spectrum up to higher or-
ders. However, after the B profile, we observe that high-
order peaks after the ninth have important missing parts
that have propagated to the boundary and therefore they
must not be considered.

B. Convergence in terms of partial waves

In contrast to harmonic generation, the number of par-
tial waves needed to converge the photoelectron spectrum
varies greatly with the laser intensity. This is especially
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FEG. 9. Total photoelectron spectrum for w = 0.042 a.u. ,
I = 7.7x 10' W/cm, and Keldysh parameter p = 0.90 using

(a) l „=48 and (b) I = 96.

plateau in the ATI structure has been found at high in-
tensities [21]. Although we do not see any clear plateau
in the ATI spectrum for the cases we have studied, we do
find features that agree reasonably with the results from
recent experiments.

To study the transition from multiphoton to tunneling,
we calculate the photoelectron spectra for a wide range
of intensities in both the high- and the low-frequency
regimes. By doing that we scan over a large range of
Keldysh parameter values, so we are really using the
Keldysh parameter as an indicator of the dominant ion-
ization description. For the high-frequency case (wq
0.2 a.u. ), the intensities we use range between 1.7 x 10
and 1.7x 10~ W/cm (2.8 & p & 1), whereas for the low-

frequency case (w2 ——0.042 a.u. ), the intensities range be-
tween 2 x 10~a and 7.7 x 10~s W/cm2 (1.75 & p & 0.90).

We observe that for the high-frequency case, the ATI
spectrum behaves as expected until intensities I 6 x
10 W/cm (p 1.5). The ATI peaks in this region
are well defined and show a clear exponential decrease in
intensity with energy. At intensities around 3.5 x 10
W/cm peak suppression appears and the second ATI
peak becomes the largest peak in the spectrum. Higher
intensities result in very rapid. ionization: the electron
then has a great probability of emerging after absorbing
n+ 8 photons and eventually going over a channel clos-
ing (peak suppression). The total number of ATI peaks
increases and the slope of the envelope of the heights
of the ATI peaks decreases when the laser intensity in-
creases. At laser intensities around 9 x 10 W/cm,

1.2, the "typical" behavior breaks down and the
background of the ATI spectrum increases notably. A
different feature then appears: the ATI spectrum is now
composed of two distinct set of peaks. In the first set,
corresponding to the low-energy part of the spectrum,
the peaks are not as well defined as they are for lower
intensities. Stark shifted resonances appear to produce
extra structures and eventually to greatly increase the
background. The ATI structure is then almost smeared
out after some peaks; however, a different set of very well
defined ATI peaks emerges in the higher-energy range of
the spectrum. Increasing further the laser intensity (e.g. ,

1.4 x 10 W/cm ), the ATI structure splits completely
into two sets separated by an almost structureless region.
The latter set does not follow the former exponential de-
crease in energy and deviates substantially from it. This
can be seen as a change in the slope of the background
compared to the previous part of the spectrum. These
results are presented in Fig. 10 for intensities 6 x 10
9 x 10~4, and 1.4 x 10~s W/cm2 (p = 1.5, 1.2, and 1),
respectively.

Surprisingly enough, in the low-frequency case, the
photoelectron spectrum presents a well defined struc-
ture even for values of the Keldysh parameter well be-
low unity. This is not what we would have a priori
guessed, because we expect the low-frequency dynam-
ics to be closer to the tunneling picture than the high-
frequency dynamics. Although the ionization at the end
of these short pulses is, in both low- and high-frequency
cases, extremely low, the ground state depletion behaves
very differently in each regime. For instance, in the high-
frequency case, the intensity is high enough to deplete
the ground stated considerably during the turn-on of the
pulse, i.e. , ionization occurs at different intensities. The
background increases greatly because ionization then oc-
curs from different stages. In the low-frequency case,
however, the ground state does not deplete considerably
during the turn-on. Therefore the spectrum for the low-
frequency case is composed of well defined ATI peaks
corresponding to ionization from the ground state dur-
ing the Rat part of the pulse, i.e. , the constant intensity.
The departure from the standard ATI spectrum in the
low-frequency case emerges in a different way. Again, for
low intensities (a few times 10 W/cm ) the spectrum
shows an exponential decrease of the peaks intensity ver-
sus energy. Increasing the intensity (see Fig. 9, where
I = 7.7 x 10 W/cm and p = 0.90), the photoelectron
spectrum still shows very well defined peaks separated
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FIG. 10. Total photoelectron spectrum
for the high-frequency case (u = 0.2 a.u. ) and short pulse
(eight cycles) at three difFerent laser intensities. The lower
curve corresponds to I = 6 x 10 W/cm (p = 1.5). The
middle curve corresponds to I = 9 x 10 W/cm (p = 1.2)
and we have multiplied the corresponding data by a factor of
10 for visual convenience. The upper curve corresponds to
I = 1.4 x 10 W/cm (p = 1). (The corresponding data have
also been multiplied by a factor of 10 for a clear comparison. )
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by the energy of a laser photon, although the shape of
the ATI spectrum can no longer be considered standard.
A further analysis of these eKects will be presented else-
where [23].

V. ANGULAR DISTRIBUTIONS

1,=0

where the subscript f stands for the final continuum wave
function. Here y& (E, r) is the radial part after partial
wave decomposition and g~ is the phase shift of each par-
tial wave

A. Technical aspects

For a linearly polarized laser Geld, the angular distribu-
tion depends only on 0, the angle between the laser po-
larization and the direction of the ejected photoelectron.
The calculation of angular distributions in the projec-
tion approach requires the knowledge of the asymptotic
behavior of the continuum wave function. For hydrogen,
the Gnal wave function in the continuum can be written
as [24]

where k is the final electron momentum.
To obtain the angular distribution of the ejected pho-

toelectron at some fixed energy, we simply project our
final wave function y(r, t = T) onto all the possible con-
tinuum ~nt ) final states. After integrating over the radial
coordinate and summing over all the angular-momentum
states, the final expression for angular distribution of the
ionized photoelectron can be written as

P(O) = ) i' exp i ) arctan( ——I/kt') Yi(O) y& (E, r)yi(r, t = T) dr
E=O

(14)

Here a recursion relation has been used to calculate the
phase shift of the different angular-momentum L states.
The angular distribution for a given energy range (cor-
responding to an ATI peak) can then be obtained by
summing over a few adjacent energy bins.

B. Results

In analyzing the convergence of the angular distribu-
tions, we find that we need roughly the same (or some-
times slightly higher) number of partial waves as we
need to obtain the corresponding convergent photoelec-
tron spectrum. The angular distributions related to each
of the ATI peaks in the MPI regime (see Fig. 7) are pre-
sented in Fig. 11 using L „=12, 24, and 48 angular
states. The differences between L = 12 and L = 48
are larger for the lower-order ATI peaks. This is mainly
due to poorer resolution in the ATI peak positions for
L = 12, as shown in Fig. 7. The number of partial

I

waves required in this regime is closely related to the
number of photons absorbed (e.g. , the angular distribu-
tion for the 8=1 ATI peak, corresponding to the four-
photon process, is dominated by I = 0, 2, 4 states). All
the contributions from other L states contain almost no
contributions, as observed by Schafer and Kulander [18].

In the low-frequency regime, we observe, as expected,
that the angular distributions for higher 8 ATI peaks
become increasingly peaked along the laser polarization
direction since the propensity rule, bL = +1 in the dipole
transition, favors high L+ 1 angular states after the elec-
tron absorbs an additional photon. The contribution
from higher angular momentum becomes increasingly im-
portant and contributions for lower L states gradually
cancel each other so that the side lobes eventually vanish.
In Fig. 12 we present the angular distributions related
to each of the ATI peaks shown in Fig. 9 (from s = 0
to s = 15). The overall angular distributions for the
ATI peaks have two dominant lobes along the laser po-
larization direction and they are much narrower than the

s = 0 s =- 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8

L „=48

L,„=24

L,„='I 2

FIC. 11. Angular distributions for the ATI
peaks in the MPI regime (see Fig. 7) using
l „=48, 24, and 12.

Angul a r distribution of ATI pea ks
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S = 1 S = 2 s = 4 s = 5 s = 6 s = 7

L,„=96

L „=48

L „=96

S = 8 S = 9 S 'IO S = 11 S = 12 S = 13 S = 14 S = 15
FIG. 12. Angular distributions for the ATI

peaks in the low-frequency case (see F'ig. 9)
from 8 = 0 to s = 15, using / „=48 and
96.

L „=48

Angular distribution of ATI peaks

peaks encountered in the high-frequency case. However,
we observe that the angular distribution of some peaks
presents a structure. In particular, the peaks correspond-
ing to 8 = 5 —6 and s = 9 —13 have visible, tiny side
lobes. It is for those peaks that a change in the ATI's
slope becomes clear, as can be seen in Fig. 9. This agrees
with the experiments performed recently by Paulus et al.
J22], where strong narrow rings appeared in the region
where the plateau in the ATI begins.

VI. CON CLU SION S

In this paper we have examined the role of angular
momentum in the high-intensity laser-atom interaction,
through numerical simulations in hydrogen, emphasizing
the differences between high- and low-frequency ioniza-
tion regimes. We have shown that in both multiphoton
and tunneling regimes, the number of partial waves that
play a significant role in the harmonic emission is rela-
tively low. This is because the eKcient harmonic genera-
tion (plateau) comes from transitions ending in the initial
state (ground state). Therefore, a proper description of
harmonic generation requires a complete knowledge of
the I, = 0 and the / = 1 states along the whole pulse. For
a dominant multiphoton regime this is indeed achieved
with very few partial waves. Yet when tunneling domi-
nates, a further description of the dynamic evolution of
the wave packet that tunnels out and then recollides is
needed and thus a larger number of partial waves has to
be considered.

In contrast to harmonic generation, the electron en-
ergy spectrum has equally important contributions from
a large number of partial waves and this is more evident
for low-frequencies and/or high intensities, as one should
expect. At high intensities we have obtained ATI spectra
that substantially deviate from the typical ATI spectrum
either using low or high frequencies. The different fea-
tures appear as the Keldysh parameter approaches unity
and are clearer for the higher-frequency case. Thus, at
high frequencies and high intensities we have observed

that the ATI spectrum has two distinct sets of ATI peaks
that are separated by a structureless region. We have also
noticed that there is a significant change in the relative
slope (the intensity of the peaks versus energy) of these
two sets of ATI peaks and this change becomes more evi-
dent as the intensity of the laser increases. These feature
have been reported recently in experiments. At moderate
intensities (I = 7.7x10 W/cm ) but low-frequencies we
have found that the photoelectron spectra present very
well defined ATI peaks even for values of the Keldysh pa-
rameter well below unity, but the intensity of the peaks
no longer shows an exponential decrease with intensity,
as shown for low intensities.

Finally, we have presented the ATI angular distribu-
tions found at high intensities and both high and low-
frequencies. We have shown that the overall angular
distribution for the low-frequency case is more strongly
peaked along the polarization axis than in the high-
frequency case. Although we have not found strong pro-
nounced side lobes showing the emission of high-energy
electrons off the polarization axis, we have seen tiny side
lobes around 8 vr/4. These side lobes appear for those
ATI peaks in which the spectrum deviates from the initial
exponential decrease of the peaks' intensity with energy.
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APPENDIX

1. Projection method

The energy spectrum can be obtained at the end of
the pulse by projecting the evolved final wave function
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4(r, t = T) onto t,he continuum field-free wave functions.
The radial eigenfunctions for a specific given energy E
and orbital angular momentum I are obtained &om the
time-independent Shrodinger equation

1 0' 1 /(1+1)——+ —E yi Er =0,
2 t9p p 2p

(Al)

with the initial boundary condition y&
——0 at the r = 0.

The continuum wave functions y& (r) are box normal-
ized. The direct integration of the time-independent
Schrodinger equation is straightforward. The probability
to find an electron in a continuum state with an angular
momentum t and energy between E and E + dE is found
from the projection

Pi(E, t = T) =
&max

~i(E r)~t(r t = T)«p(E)

(A2)

where y~(r, t = T) is the final time evolved electronic
wave function and p(E) is the density of continuum
states. P~(E) is then the partial angular ATI contri-
bution. (Notice that, strictly speaking, the projection
of the wave function onto the continuum wave functions
could be done at any time at which the electric field is
zero. However, if we do the projection at the early stages
of the laser-atom interaction, the spectrum has not had
enough time to develop and therefore well defined struc-
tures will not be found. ) The projection is done for any
given positive energy E and orbital momentum t above
the ionization threshold of interest. The total ATI spec-
trum is obtained by adding all the partial angular con-
tributions PI (E, t)

&max

P(E, T) = ) Pi(E, T) .
L=O

(A3)

2. Fourier transformation method

An alternative method that we have used to calcu-
late the ATI spectrum consists of a transformation from
position to momentum space of the final evolved wave
function. The simplest way to do it is to multiply the
wave function ~g(r, t = T)) by a window function (sine )
at the end of the laser pulse before taking a spatial
Fourier transform. An advantage of the Fourier trans-
form method is that one can see the electron ATI spec-
trum in the momentum space and then extract informa-
tion about the incoming and outgoing parts of the wave
function. For the higher ATI peaks, corresponding to
the most energetic photoelectrons, only outgoing parts
of the wave function should contribute, but for lowest
peaks, just above threshold, the ingoing part of the wave
functions can be significant and that contribution should
then be extracted from the ATI spectrum. From the re-
sults we have obtained for the photoelectron spectrum
in momentum space, we have found that the ATI spec-
tra are almost exclusively composed of the contributions
from the outgoing ionizing wave function. The contribu-
tion from the ingoing parts of wave function is more than
seven order of magnitudes lower and. is indistinguishable
from that from the background.

Notice that in this method we do not need to store
any continuum wave function because the projection is
done immediately after each continuum wave function
has been generated. %"e calculate up to 2000 continuum
wave functions for each angular momentum l to cover the
range of positive energies of interest, i.e. , a few atomic
units of energy.
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