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The electron-atom scattering in the presence of an intense radiation field is investigated by solving the
Schrodinger equation in momentum space, which facilitates the extraction of the rapidly varying part of
the wave function. It can be shown that the first-order Born approximation is only a limiting situation of
the general approach. The angular distributions of the scattering probability are calculated for different
field strengths and some interesting points regarding the multiphoton process are also discussed.

PACS number(s): 34.80.Qb

I. INTRODUCTION

Charged-particle—atom scattering in the presence of a
radiation field is a fundamental process in many physical
systems such as plasma heating by electromagnetic radia-
tion, gas breakdown, etc. During recent years, the availa-
bility of increasingly more powerful lasers in a wide range
of frequencies has stimulated considerable interest in the
study of the multiphoton phenomena in such a process.
Many of the theoretical investigations of the laser-
assisted electron-atom scattering are based on the
lowest-order perturbative method [1-4]. It is obvious,
however, that this method is not adequate and should be
replaced either by a high-order perturbative calculation
[5,6] or by some nonperturbative methods when the in-
tensity of the laser field is strong. Starting with the well-
know Kroll-Watson work [7,8] on the soft-photon ap-
proximation, there exists only a few nonperturbative
treatments for this problem. Gavrila and Kaminski [9]
proposed a method based on the Kramers-Henneberger
transformation and suggested that this transformation
might be particularly useful in the case of intense high-
frequency fields. Several calculations and applications
[10,11] were then performed following this theory.
Shakeshaft [12] formulated a method of coupled integral
equations to calculate the differential cross sections for
stimulated photon absorption and a successful applica-
tion for the case of a separable potential was obtained.
Recently, an efficient method of solving the time-
dependent Schrodinger equation for a system undergoing
multiphoton processes has been introduced [13-15]. An
important feature of this method is that the Schrédinger
equation is solved in momentum space, which facilitates
the extraction of the rapidly varying part of the wave
function. Another advantage of this method is that,
whereas in configuration space artificial boundaries must
be introduced to absorb the electron as it moves far away,
no absorbing boundaries need be introduced in momen-
tum space. A preliminary calculation [14] using this
method for the case of one-dimensional scattering of elec-
tron from a potential in the laser field was performed.
The result is interesting in that the multiphoton absorp-
tion process is manifested with many peaks in the transi-
tion probability function. In this paper, we shall extend
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this method to the three-dimensional system and show
that the dynamics of the mulitphoton process of
electron-atom scattering in an intense field can be well
understood in this formulation. A detailed calculation of
the scattering probability from a hydrogen atom for
different laser intensities will be performed and the
dependence on the laser frequencies will also be dis-
cussed.

II. THEORY

Consider an electron moving in the radiation field of a
vector potential A(z) and scattering by the atomic poten-
tial ¥; the time-dependent Schrédinger equation is

. d _
zﬁdt|\l’(t)) () , (1)

2
-L+V+H1(t)
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where H;(t)=—(e/mc) A-p is the interaction with the
radiation field. The A%(¢) term is removed by a trivial
contact transformation [7].

Initially, at time ¢ — — o, the electron is far from the
atom, i.e., free of the potential ¥ =0, which is just the
problem for the free electron moving in the radiation
field. The solution to the time-dependent Schrddinger
equation was originally derived by Volkov [16] and can
be written in the form
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where E; is the initial energy, |k ) is the eigenvector of p
with momentum eigenvalue #ik normalized as

<r‘k):(277.)—3/2eik-r , (5)
and the real phase 6,(¢) is given by
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For a monochromatic, linearly

A= A coswt, we have

polarized field

lxi(8)) =(27) 73 2exp[ —i(k-r—k-asinwt — E;t /#)] ,
(7)
Gk(t)=%(Ek —E;)t—(k-a)sinwt , (8)

where E; =#°k%/2m and a=(e /mcw) A,

We shall use the wave function of the “unperturbed”
system H, as our basis. Initially, the incident electron
with incoming momentum #k; is in the state | )(k‘,(t) ); the

solution of Eq. (1) can be expressed as

(W) =x () +g(2)) . ©)
Expand |¢(¢)) in terms of the bases states

lp())= [ dka,(1)x, (1) (10)

with the boundary condition |W¥(2))—|x,(¢)) as

t—— o, ie., |¢(—o))=0. Substituting Egs. (9) and
(10) into Eq. (1), an inhomogeneous integro-differential
equation can be obtained for the coefficient a, (2):

; —ig, (1)

m%ak(t)=e W K UUKIVIK,) b (0], (1D
where

by(t)= [ak'e a1 (k|VIK') (12)

with the boundary condition @y (— 0 )=b, (— 0 )=0. It
has been shown [13,15] that, because of the phase factor
exp[i6,(¢)] on the right-hand side of Eq. (11), the func-
tion ay (¢) varies rapidly with both k and ¢. On the other
hand, b,(¢) varies relatively slowly with k and ¢. Conse-
quently, we can interpolate b, (). Let us discuss several
interesting points.

(i) Since b, (?) is a slowly varying function of k and ¢,
we first temporarily ignore its effect; Eq. (11) becomes

d
dt
Substituting Eq. (8) into Eq. (13) we have

i —if, (1)
inta(n=e' % N (k|Vk,) . (13)

59 —exp | L(E, —
if tak(t)—exp ﬁ(Ek E)t

d

Xexp[ —i(k—k;)-asinwt [{k|V|k;) . (14)
J

(i /BN E), —E;— nfiw)t’

ak(t)=—%f_'wdt' [an(gwe
+ [dk' 3 30, E0e

Equation (21) gives the general expression for the scatter-
ing amplitude a,(z) of the electron scattered from the
atom at time ¢. The first term on the right-hand side of
Eq. (21) is just the result described in point (i). The im-
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Using the Fourier-Bessel expansion

exp(—i&sinwt)= 3J, (&, Jexp( —inwt) (15)
and integrating Eq. (14) from ¢t = — o to t =+ o, we ob-
tain

ay ()= J, (& ){k|VIk;)imd[E, (k)] , (16)
where

Ex=(k—k;)a, (17)

E, (k)=E,—E,—nfiw . (18)

Clearly the delta function 8[E,(k)] on the right-hand
side of Eq. (16) expresses the conservation of energy such
that the outgoing electron with momentum #k would
have energy

#k?
T 2m

E, =E;+n#w . (19)

It is interesting to note that by substituting Eq. (4) into
Eq. (13), we find

d
dt

This result reduces to that of the first Born approxima-
tion (FBA) used in previous works [1,6]. Therefore, FBA
is only the limiting case of ours by setting the function
b, (¢)=0. This is, of course, an oversimplification. The
correct treatment must also take into account the effect
of b, (¢), which we discuss in the following.

(ii) Equation (11) can be rewritten as

ifi—a, (D= a0V (1) . (20)

i6, (1)
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Using Eq. (12) for b, (2), we have
i0,()—i6y (1)
ih%ak(t)=e N k| VK,)

16, (£)—i6,.(¢

+ [dk'e 'y (K| VIK')

Substituting Eqgs. (7) and (15) into the preceding equation
and integrating over ¢, we obtain

(k|Vk;»

I (Exap (DCk|VIK') ¢ . 1)

[

portant effect on the scattering process comes from the
second term on the right-hand side of Eq. (21). One sees
that a,.(¢') represents the scattering amplitude of the
electron with momentum #k’, at time ¢’, having absorbed
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m photons for which J,,(&;) is the amplitude for this
process and, by conservation of energy, the electron ener-
gy is given by E.=E;+m#w. Then it reabsorbs (n —m)
photons (due to the propagator exp{(i/#)E;—E,.
—(n —m)fw]}t) with amplitude J, (£, ). The net result
is that the electron has absorbed n photons at time ¢ and
is represented by the scattering amplitude a,(¢). There-
fore, Eq. (21) gives a general formulation to describe the
electron-atom scattering in an intense radiation field.
The dynamics of the multiphoton process during the
scattering is clearly manifested in this theory.

(iii) We have pointed out that b,(#) is a slowly varying
function of k and ¢. Explicit and implicit methods [13,15]
have been proposed for treating this problem. In the ex-
plicit method, we extrapolate b,(¢) using the Taylor-
series expansion

by (1)=b (0)+ by (0)t+ - - . (22)

The time derivative of b,(¢) can be obtained from Eq.
(12),

. , i . i
bk(t)zfdk [-—;;Fk:(t)exp —ZFk'(t) ak'(t)
+exp ——;;Fkr(t) ay (1) (k| VIK')
(23)
where
27,2
F (t)= Lk —E,; |t —#k-asinwt . (24)
2m
Using Eq. (11) for a,(2), we have
. i e i
bk(t)=——f;fdk Fy(texp | = —Fie(0) |ax()
+exp | — 2 Fy, (1) [ (k| VIk,)
+by () ({k|VIK') . (25)

Substituting Eq. (25) into Eq. (22) and to a first-order ap-
proximation, we find

b, (t)=b,(0)exp(—iQt /#) , (26)
where

— 1 7 ”
0=7-y [ dx'[F(0)ay (0)+ (kI V1K, ) +by(0)]

xX{k|V|k') . 27

The convergence of the expansion series in Eq. (22) has
been checked in a preliminary calculation in a previous
work [14], where the one-dimensional electron-potential
scattering was studied by also including the t? term in the
expansion series and it was found that the convergence is
reasonably good. Therefore, we use the first-order ap-
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proximation in Eq. (26) so that the computational
difficulty involved in the three-dimensional case studied
here can be avoided. Substituting Eq. (26) into (11) and
using Eq. (15), we obtain the scattering amplitude

a ()=al(t)+Aa (1), (28)

where a£(t) is the amplitude for the first Born approxi-
mation

af(t)=—é'f_tw<)(k(t)|V|in(t)) (29)

and Aa,(t) is the correction due to the effect of the func-
tion b, (t),

Aak(t)=—%bk(0)2J,,(§k)
Xft di'e /P ETEm Q- nw)
(30)

III. RESULTS AND DISCUSSION

In this section we present the numerical calculation for
the scattering of an electron with a hydrogen atom in the
presence of a laser field. We have calculated the scatter-
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FIG. 1. Scattering probability density Py =|a,(t— = )|? as a
function of the scattering angle 6 for the incident electron ener-
gy E;=3.67 a.u. with the absorption of (a) one photon and (b)
two photons. The field strength is E,=0.003 a.u. and the laser
frequency is w =0.07 a.u. Dashed curve, results for the FBA;
full curve, full calculation using Eq. (28).
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ing probability density |a,()|? as a function of the
scattering angle 6 for different field strengths. We take
the geometry such that the electric field E, is parallel to
the incident electron wave vector k;. Atomic units are
used in the calculation [the atomic units of the electric
field, frequency, and energy (hartree) have the following
standard equivalents: 5.14X10° V/cm, 4.13X10'¢ sec™1,
and 27.21 eV]. We first calculate the angular distribution
for the case that neglects the function b, which is just
the result of the FBA, as pointed out in the preceding
section. Then the effect of the function b, is included in
the calculation according to Eq. (28). In order to calcu-
late Aay in Eq. (28), we have to know the values of a,.(0),
which appear in the expression of Q in Eq. (27). The ex-
act values of a,.(¢) at t =0 are not known; however, a
reasonable approximation for a,.(0) is obtained in the fol-
lowing. Please note that the results in Egs. (26) and (27)
are obtained by taking the first-order approximation and
it can be seen from Eq. (26) that the term involving Q is
already in first order; therefore the quantities in Q can be
taken as a zeroth-order approximation. Thus we may use
the first Born result af (0) for a,.(0) in the expression of
Q, that is, ak,(O)zakB.(O). Following the standard adia-
batic approach in scattering theory, we replace the poten-
tial ¥V by Ve —eld where € is positive but very small, and
a,(0) can then be easily obtained from Eq. (29) by in-
tegrating from — oo to 0. Figure 1 shows the result for
the field strength E;=0.003 and frequency w =0.07 at
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FIG. 2. Same as Fig. 1, but for an incident electron energy
E;=20a.u.
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FIG. 3. Same as Fig. 1, but for a field strength E;=0.02 a.u.

the incident electron energy E; =3.67 with different num-
bers of photons absorbed. The results for a higher in-
cident electron energy E; =20 is shown in Fig. 2. It can
be seen that, in general, the effect of the function b, gives
an enhancement relative to the FBA. Thus the function
b, gives an important contribution to the scattering pro-
cess that should not be neglected, as assumed in previous
calculations. One observes that the minima appearing in
the FBA occur at angles such that the scalar product
A-e=0, where the momentum transfer A=k; —k rand €
is the polarization vector. We see that the minimum
shifts to a different angle as the effect of b, is included.
This is because there are two terms in the scattering am-
plitude, as given in Eq. (28). The minimum occurs when
these two terms cancel each other. Therefore, it will
occur at a value of scattering angle different from that of
the FBA. Trombetta and Ferrante [6] performed a calcu-
lation with the second-order Born approximation for the
charged-particle scattering in the presence of a strong
field. They obtained a similar enhancement relative to
the FBA and the minima are also shifted to larger angles.
Therefore, our results are consistent with theirs. Figures
3 and 4 show the results for a higher field strength
E;=0.02. Now the oscillations are enhanced due to the
larger argument of the Bessel functions. We see that the
effect of the function by is also quite important for all
cases of photons absorbed. The minima are again shifted
to different angles. It is worth mentioning that Trombet-
ta and Ferrante [6] provided a criterion of validity of the
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first Born approximation for the electron-atom scattering
in the presence of a radiation field. In their calculations
they found that the FBA holds better for stronger fields.
Comparing our strong-field results in Figs. 3 and 4 with
the weak-field results in Figs. 1 and 2, it can be seen that
the agreement between the FBA and the more accurate
calculation is much better for the case of the strong field,
especially in small scattering angles. Therefore, our re-
sults seem to be very reasonable. It is also interesting to
note from Eq. (28) that the effect of b, gives not only a
correction to the angular distribution of the scattering
amplitude but also a different distribution to the outgoing
electron energy. It can be seen in Eq. (30) that the energy
of the scattered electron is shifted by an amount Q, which
comes from the A-p interaction, which will have
different values for different energy states. Further inves-
tigation about this interesting point for the energy spec-
tra will be performed in a future study.

We have also studied the frequency dependence of the
scattering probability function. Figure 5 gives the varia-
tion of the scattering probability in terms of the laser fre-
quency at a fixed scattering angle 6=10° and the incident
electron energy E;=3.67 for the field strength
E;=0.003. It can be seen that as the frequency in-
creases, so does the momentum transfer and one observes
that the FBA decreases steadily, goes to zero when the
condition A-g=0 is fulfilled, and then increases again to-
ward an almost constant value. The situation becomes
more complicated as the effect of b, is included in the
calculation. In general, several oscillations presented in
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FIG. 4. Same as Fig. 2, but for a field strength £,=0.02 a.u.
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FIG. 5. Scattering probability density P, as a function of
laser frequency w at a fixed scattering angle 6= 10" with the ab-
sorption of (a) one photon and (b) two photons. The incident
electron energy E;=3.67 a.u. and the field strength E,=0.003
a.u. Dashed curve, results for the FBA; full curve, full calcula-
tion using Eq. (28).
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the scattering probability appear because of the interfer-
ence effect of the correction term Ag; with the FBA, as
shown in the expression of the amplitude a;. This

behavior is more prominent for the case of a higher in- -

cident electron energy, as shown in Fig. 6 for E;=20. In
this case, the condition A-e=0 cannot be met in the fre-
quency range displayed here (the minimum would occur
at w =0. 63); therefore the curve for the FBA is monoton-
ic decreasing. However, as the effect of b, is included,
the curve is again modified with some oscillations.

IV. CONCLUSION

Based on the method of solving the Schrodinger equa-
tion in momentum space, we have shown that the dynam-
ics of the multiphoton process during the electron-atom
scattering in an intense radiation field can be clearly man-
ifested in this formulation. It was found that the first-

order Born approximation is only a limiting situation of
the general approach. We have calculated the angular
distribution of the scattering probability for electron-
hydrogen scattering with different field strenghts. We
found that the correction due to the function b, is quite
important and, in general, gives an enhancement relative
to the FBA. The minima occurring in the distribution are
shifted to different angles. We also studied the frequency
dependence of the scattering probability. It was found
that the effect of the function b, also gives an important
modification due to the interference effect of the correc-
tion term with the FBA.
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