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Effect of random-telegraph laser phase on two-photon absorption
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Measurements of two-photon absorption spectra have been made for the case where the exciting laser
has a random-telegraph phase. The resulting spectral shapes are compared to theoretical predictions
and to previous data taken with a phase-diffusing laser field [Elliott et ol. , Phys. Rev. A 32, 887 (1985)].
A striking dependence of the absorption spectrum on the second-order coherence of the field was ob-
served. Using the theory for the propagation of second-order spatial coherence, we draw an analogy be-
tween diffraction and two-photon absorption which we use to interpret the two-photon absorption spec-
tra.

PACS number(s): 42.50.Hz, 32.80.Wr, 42.50.Ne

I. INTRQDUCTIQN

Nonlinear optical processes can show some interesting
and sometimes counterintuitive effects because of their
dependence on the second and higher orders of
electromagnetic-field coherence, such as 0' '( t„t 2, t 3 t4 )

=(E'(t, )E'(t2)E(t3)E(t4)) [I]. In this paper we de-
scribe an experiment that demonstrates this dependence
using two-photon absorption (TPA), which is a simple ex-
ample of a nonlinear optical process as well as a useful
spectroscopic tool. We spectrally broadened a laser
artificially to create a field with random-telegraph (RT)
phase noise and then measured absorption spectra for
TPA from this field. There has been a considerable
amount of interest in the effect of noise on nonlinear pro-
cesses because the noise represents a relaxation that does
not always manifest itself as a simple change in the time
constant of an exponential decay. This is especially true
of colored noise in the strong-field regime, where the
energy-level population densities become coupled to the
polarization. A number of experiments that test these
ideas have been performed; these include the formation
and destruction of atomic coherence in the Hanle effect
with a strong noisy laser [2], examination of atomic popu-
lation fiuctuations induced by laser noise [3], and mea-
surements of gain of a probe-laser beam interacting with
strongly driven two-level atoms where both the saturat-
ing and probe lasers had a fl.uctuating phase and frequen-
cy [4]. The last experiment had the added interest of a
time delay between the otherwise identical noise process-
es on each beam, thus introducing a non-Markovian
character to the situation. In such experiments where
saturation is studied, all orders of the field coherence are
relevant.

The experiment that we describe here is a little
different from those mentioned above, in that the non-
linear effect depends on just one of the higher-order
coherences. This greatly simplifies the theory and facili-
tates a close comparison with the experimental results. A

simplifying feature of multiphoton absorption arises
when the absorbed photons come from field modes that
have identical fIuctuations. In this case the appropriate
higher-order coherence function for the calculation of the
absorption spectrum can be obtained by noting that the
higher-order function has exactly the same form as the
lowest-order one, (E*(r)E(0)), except that the phase or
frequency fluctuation is amplified by a factor equal to the
order of the process [5]. This prediction was confirmed
in a microwave second-harmonic-generation experiment
[6], where RT and Gaussian phase noise were separately
applied to the exciting microwave field. Second-
harmonic generation and TPA are similar processes in
this context in that both depend on the same fourth-order
field correlation function. The difference between them is
whether the symmetry properties of the medium allow
the polarization thus created to act as a source of radia-
tion for that frequency. In our experiment with TPA in
an atomic vapor this second-harmonic emission would
violate conservation of angular momentum, at least in-
sofar as the electric dipole approximation is valid. A
more important difference between the second-
harmonic-generation experiment and ours is that they
were performed in quite different regimes of atomic or
material relaxation rates, relative to the bandwidth of the
exciting field. Another distinction rests with our ability to
effect a decorrelation between the two field modes from
which the atoms absorb. This was done in the same way
as in Ref. [7], where an earlier TPA experiment with a
phase-diffusing laser field was reported. Similar experi-
ments have recently been completed that look at the
effect on the TPA of amplitude noise, with and without
accompanying phase fiuctuations [8]. In the case of am-
plitude noise the interest lies not only in the resulting
spectral shape, but in the total probability of absorption,
which can be considerably enhanced over that for the
noise-free or monochromatic case.

If the spectral broadening is the result of a frequency
chirp, as occurs in many pulsed lasers, the two-photon
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absorption spectrum can be shifted as well as broadened
and otherwise changed in shape. Such considerations
have been aired lately because of the importance of TPA
as a tool in Lamb-shift measurements [9]. The concept of
spectral focusing in two-photon absorption was intro-
duced recently [10]where the temporal variation of phase
in a mode-locked laser pulse (i.e., a chirp) was likened to
the variation of phase across a slit in Fresnel diffraction.
An analogy between diffraction and TPA was used to
predict the spectral concentration of energy, initially in a
fairly broad laser spectrum, to a rather narrower range
around the two-photon resonance energy. In this picture
the basic idea is that the observed TPA spectrum is a re-
sult of the interference of many different paths to the final
state, each path consisting of a different combination of
photon energies that add up to the transition energy. Ac-
tually, such a view was explored many years ago in an ex-
periment by Bjorkholm and Liao [11],who investigated
the two-photon absorption probability for the sodium 3S
to 4D transition with two independently tunable dye
lasers. In that experiment the phase of the paths was
affected by intermediate 3P&&2 and 383/p levels. For cer-
tain combinations of laser frequencies the inhuence of
these states resulted in constructive interference, and for
others, destructive interference. This interference of
different paths is easier to visualize for diffraction, where
the propagation is spatial, than for absorption of light,
where the propagation can be thought of as occurring in
an energy dimension. In this paper we will use an exten-
sion of these ideas involving expressions for the propaga-
tion of coherence that are analogous to the Fresnel-
Kirchoff integral to interpret our results.

In the next section we will summarize the theoretical
calculation of the TPA spectrum for a laser with RT
phase noise. Then in Sec. III we will summarize the ran-
dom modulation techniques and describe the two-photon
absorption setup. The results of the experiment will be
presented and discussed in Sec. IV, and this will be fol-
lowed by a discussion of the results in light of the analogy
with diffraction.

II. THEORY

The theory of TPA in fluctuating laser fields has been
very well described in the literature [1],but it is helpful to
extract here the main results that pertain to RT phase
fluctuations. A laser with RT phase fluctuations is
characterized by an electric field of the form

i ( coa t +p( t ) ]—

where cup is the mean angular frequency, Ep is the con-
stant field amplitude, and P(t) is the fluctuating phase.
The phase jumps between two fixed values at random
times, such that the probability of n transitions in a time
Tp is given by the Poisson distribution

(n )"e
nt

The mean number of jumps in time Tp is n and we define
the dwell time (i.e., the mean time between transitions) as

T = TD/n.
The power spectral density of the laser (which we

loosely refer to as the power spectrum) is calculated ac-
cording to the Wiener-Khintchine theorem from the
first-order coherence function (E'(r)E (0) ). In the case
of RT phase noise this is given by

(E"(7)E(0))=E cos

(3)

where 4 is the total size of the phase jump. The correla-
tion time of the noise is seen to be 2/T. The power spec-
trum is then

S(co)=2vr[EQ] 5(co—coa) cos

2

HATT

-2 sin

(co —co ) +2 2
0

2

In communication engineering terms this power spec-
trum is comprised of two parts: a 5-function carrier and
Lorentzian-shaped noise sidebands. The relative power
in each part is determined by the strength of the noise;
i.e., the size of the phase jump 4. The correlation time of
the noise, 2/T, determines the width of the continuum
part of the spectrum. This contrasts with the case of a
laser broadened by Gaussian phase noise (i.e., an
Ornstein-Uhlenbeck process), where the noise amplitude
and correlation time together determine the width and
spectral shape of the laser field [12]. Note that the spec-
trum (4) reduces to a Lorentzian if C&=ir.

Nonlinear optical processes depend on the higher-
order coherences of the laser field; i.e., we must be able to
specify field correlation functions of an order higher than
(E"(r)E(0) ).Two-photon absorption in the low-field re-
gime depends on the next-highest-order nonzero correla-
tion function 0' '(ti, ti, t3, t4). It is important to consider
this dependence in the context of the usual Doppler-free
setup for two-photon spectroscopy [13], which we used
for these measurements; see Fig. 1. The Doppler shift
due to the atomic motion in the laser propagation
direction(s) is cancelled because two counterpropagating
laser beams are used; one photon is absorbed from each
beam, their Doppler shifts being equal but opposite in
sign. The forward and backwards propagating beams in
our experiment were produced by placing a
retroreAecting mirror in the laser beam after it had
passed once through the cell. This allows for the possibili-
ty that the fluctuations in the retroreAected beam, at the
atoms, may be partially decorrelated from those of the in-
coming beam. This degree of decorrelation is specified by
~„, the time taken by the light to travel from the atoms to
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broadening as well as spontaneous decay, we take K to be
the residual width (without laser noise) of the TPA spec-
trum. If the atomic response is Lorentzian, which is very
nearly the case if the only sources of broadening are natu-
ral broadening and collisions, and the collisional rate is
similar to the spontaneous emission rate, then the result-
ing spectrum is composed of two superposed Lorentzians,
one with full width K and the other with full width
K+4T

FIG. 1. Simplified schematic of the two-photon absorption
experiment with a randomly modulated laser. The photomulti-
plier that detects fluorescence is the PMT. Beam splitters that
pick off the beam at various points for laser spectral diagnostics
are not shown.

W2(coo) ~ Eo .
2 . 2

, 2 cos (N)

(co —2' ) +f 0

the mirror and back again.
We first consider the case where the mirror is close

enough to the atoms that ~„ is negligible. Then the two-
photon absorption rate as a function of laser center-
frequency, i.e., the absorption spectrum, is

W2(coo)= ~g(coo)~ f 0' '(r, r;0, 0)e dr, (5)

where g (coo) is a factor containing the dipole matrix ele-
ments connecting the lower (or upper) level with the in-
termediate level, Acof is the Anal-state —initial-state energy
difference, and K is the natural full width at half max-
imum (FWHM) of the transition [1]. This equation is
valid if 2cuo=~f and the spectral width of the laser
Aco +4 Qpf, conditions that are easily fulfilled in the optical
regime where Ace —10 s ' and ~o-10' s

If there are no real energy levels close to the intermedi-
ate levels, then g(coo) is essentially a constant. For the
sodium 3S to 5S two-photon transition that we use, the
3P level is sufticiently close to the intermediate levels to
enhance the rate of absorption without making g(coo)
vary significantly over the ranges of laser scan frequen-
cies (-100 MHz) or Fourier components (-500 MHz) of
interest. In Eq. (5) the decay rate ~ is that of the polar-
ization [14]. Since in fact we have some collisional

K 2+
2 T

, 2 sin (@) . .

(co —2' ) + —+-K 2
2

Comparing (6) with (4) we see that if 4=m and 1~~0,
S(co) is a pure Lorentzian but Wz(coo) tends to a 5 func-
tion. Even with the residual width of the transition taken
into account the result is that the width of W2(coo) is in-
dependent of that of S(co). The relative power within the
two components is still determined by the size of the
phase jump. Extending the above discussion to the case
where the round trip time ~„ is important, we find
through a simple extension of the theory [1,7] that

W, (~.)=lg(~.)l'I &"'(r,r+r„;0,r, )

—~~ ~—~I~I/'2
Xe f d~.

In calculating the correlation function, we need to identi-
fy the two cases ~)~, and ~(w„. For the random-
telegraph phase we have, if z) z„,

0' '(r, r+r„;O, r„)=Eoe ' {cos (8)+e " sin (8)—sin (8)cos (8)[2e " —e ' (e'" +e "
) ]], (Sa)

and if z& z„,
4 2J 60070' '( r r+„r; 0 r)= Eoe ' {cos (8)+e ' sin (8)

(gb)

where 8=@/2. Letting b. =2coo cof, y&=a/2, y2=~/2+4/T, y3=—~/2+2/T, y4=~/2 2/T, p=exp[ 2r„/T],— —
X(b„,y ) =y/(y +b, ), and P (5,y ) =cos(br„) —(b ly ) sin(hr„), we get the TPA spectrum

W2(~o) Eo(X(h, y, ) {cos (8)—[—,'p sin (@)+p sin (8)e ' 'p(&, y, )]]+&(Q, y2){sin4(8)[1 —e "p(g y )]]

++(~ y3) {-.' »n'(@)[2+p+p 'e ""p(&,y3)]] +X(&,y4){—,
' sin (N)p[1 —e 'p(&, y 0] [ )
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The delay ~„has two main efFects on the two-photon ab-
sorption spectrum. First, it introduces two new com-
ponents, which, in the limit of long delay time (w&)) y2
y4 '), tend towards Lorentzian-shaped peaks of widths yz
and y4. The amplitude of the latter, however, vanishes in
this limit of long delay time due to the factor p included
there. This term is rather unusual in that its width is the
difference between the laser linewidth and the atomic
linewidth. Thus as the laser width and atomic width ap-
proach one another, the width of this peak tends towards
zero (i.e., a 5 function), but at the same time the ampli-

tude of this peak, 1 —e ' "P(6,y4), approaches zero. In
the event of y4 being negative, the factor p again ensures
that the contribution of the X(b, , y&) term remains small.
Thus, overall, this term is not expected to contribute
much to the line shape, and was not observed in our mea-
surements at all since we used 4=m.

The second inhuence of a nonzero delay time ~„ is that
each of the four components of the absorption line shape
becomes non-Lorentzian, as expressed by the function
P(b„y; ), i =1, . . . , 4. This term can be significant.
Note that this function is always symmetric in 5, and
that in the limit rI ~0, P(h, y) reduces to unity for all
A, y. In this limit, the amplitudes of the Lorentzian
peaks I.(E,y2) and I. (b., y~) reduce to zero, and the ab-
sorption line shape of Eq. (9) is equivalent to that of Eq.
(6). It is only in this limit that the two-photon absorption
width is independent of laser width with 4=+. Finally,
we remark on the line shape in the limit y;~„&&1. In this
case three Lorentzian peaks of half-widths ~/2,
~/2+2/T, and x/2+4/T survive. The two counterpro-
pagating beams are decorrelated, since the round trip de-
lay is longer than the correlation time of the optical field.
The absorption line shape is then expected to contain
terms of width as large v/2+4/T, since this is the result
of a convolution of three Lorentzians (one of width v/2
and two of width 2/T) with each other. Thus for
y]~, &&0, the absorption linewidth varies linearly with
laser linewidth. For smaller y, ~„ the relation between ab-
sorption linewidth and laser linewidth is more complex,
and we have used numerical analysis for comparison with
our experimental results.

By comparison, we note that with phase and frequency
Auctuations that correspond to an Ornstein-Uhlenbeck
process (the phase-diffusing laser) and Lorentzian-shaped
laser spectrum is also possible in the limit where the
correlation time of the noise is very short. The TPA
spectrum that results is a Lorentzian with a width two
times that of the laser, where the former is measured in
terms of the laser frequency scan [7]. By forcing the field
amplitude to fluctuate in such a way that the phase
remains constant, the real Gaussian field [8], one can also
realize a Lorentzian-shaped laser power spectrum. In
this case the resulting two-photon absorption spectrum is
a composite of two Lorentzians, one with the natural
width of the transition, and the other with the width of
the laser spectrum plus the natural width. This is similar
behavior to that predicted above in Eq. (7), except that
with the real Gaussian field the ratio of powers within
each Lorentzian is fixed.

HI. EXPERIMENT

The principle of the experiment is to observe TPA,
having imposed electronic noise on the laser phase. By
maintaining laser noise due to environmental perturba-
tions at a low level, the fiuctuations of our generated field
can easily be characterized statistically by performing ap-
propriate measurements on the electronic noise. There is
a variety of ways of making laser fields with Lorentzian-
shaped power spectra. As noted above, one such route to
a Lorentzian spectrum is to have RT phase noise where
the size of the phase jump 4=m. TPA data obtained
with the field having RT phase fiuctuations (with 4=+)
can be compared to the data from the experiment in Ref.
[7], where the phase-difFusing laser spectrum was also ap-
proximately Lorentzian. Since each method will give a
different form of 9' '(ti, ti;t3, t4), different two-photon
absorption spectra are to be expected.

The layout of the TPA experiment is shown schemati-
cally in Fig. 1. It was the usual Doppler-free
configuration with counterpropagating beams [13].When
the laser was scanned through the sodium 3S to 5S reso-
nance, at about a 602 nm wavelength, atoms were excited
to the 5S level (lifetime 80 ns). The laser power was typi-
cally about 80 mW, focused to a waist of order 100@m
diameter in the sodium cell, which was operated at
157'C. The intensity thus produced was well below that
required to saturate the transition, and thus the theoreti-
cal approach based on perturbation theory [1] is ap-
propriate. One decay channel from the 5S level involved
emission from the 4P level at a 330-nm wavelength. A
photomultiplier detected the 330-nm wavelength radia-
tion, and the strength of this fiuorescence was used as a
measure of the TPA rate. The slit and the filter shown in
front of the photomultiplier in Fig. 1 were used to ex-
clude stray laser light. The interaction region in the cell
was imaged onto the slit so that stray laser radiation scat-
tered from the cell windows was not incident on the filter.
This was a piece of colored glass intended for blocking
visible light and transmitting ultraviolet light, but was
insufhcient on its own to block all stray laser light. The
cell itself was a fused silica cube, 1 cm on a side, contain-
ing a minimal quantity of sodium so that coating and
browning of the windows by the metal was not a prob-
lem. At the distillation of sodium into the cell a very
small quantity of sodium metal was visible in the cell,
which disappeared after the first heating to the operating
temperature. Thus on subsequent reheating of the cell we
can place an upper limit, based on published vapor pres-
sure data, of about 10' cm for the number density of
sodium atoms. Residual gas from the filling was present
and broadened the transition from a natural width of 1
MHz to about 7 MHz [i.e., half width at half maximum
(HWHM) measured in terms of the laser frequency scan,
rather than the total energy absorbed].

The absorption spectrum consisted of two well-
resolved hyperfine components, F = 1 to F = 1 and F =2
to F =2, which were 808 MHz apart [13] and each of
width —10 MHz with no laser noise present. These fre-
quencies are also in terms of the laser frequency scan. In
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our comparisons of the observed and theoretical spectra
we concentrated on the F=2 to F=2 peak, which was
the stronger one. The Doppler broadened background,
which was expected because we used linearly polarized
light, was not observable because of the detection noise.
Most of the detection noise was due to the low number of
atoms in the interaction region.

The details of the techniques for random modulation of
the laser are the subject of a separate report [15],but for
completeness a brief summary of the pertinent points is
given here. The arrival of photons at a photomultiplier
tube (PMT) was exploited to generate the phase jumps.
Note that this was not the same PMT that viewed
fluorescence from the sodium, but a second one that
detected photons from an incandescent bulb. The photo-
current pulse statistics were governed by Eq. (2) when the
detection eSciency was low, even for light sources that
had non-Poissonian emission statistics. Dead-time effects
in the PMT can, however, cause non-Poissonian counting
statistics if the counting rate is too high, which imposed a
practical lower limit on the dwell time of about 40 ns.
The photocurrent pulses from the PMT anode were
amplified and directed to the clock input of a divide-by-
two counter whose output was the raw RT signal. This
voltage was analyzed in order to confirm that Eq. (2)
holds. For dwell times greater than 40 ns the distribution
is acceptably close to Poissonian. The criterion used for
acceptability was that the variance be within 10% of the
mean. The RT voltage probability distribution was also
checked to be sure that the high and low states were
equally likely.

The next stage was to map the voltage Auctuations into
phase fluctuations by using an optical modulation tech-
nique. Two techniques were developed; the first made
use of an acousto-optic modulator (AOM) to produce
phase jumps of m radians. This is illustrated in Fig. 2(a).
The AOM was a Crystal Technology model 3200 that
had a nominal rf drive frequency of 200 MHz. A biphase
modulator switched the phase of the rf drive signal by w

radians at times determined by the transitions of the RT
voltage described above. The first-order diffracted beam
from the AOM has this phase shift of ~ imposed on it. In
Fig. 2(b) we show an example of the laser power spectrum
obtained with this type of modulation. As expected from
Eq. (4) the carrier part of the spectrum is completely
suppressed, leaving only the Lorentzian-shaped noise

sidebands. The solid curve is a Lorentzian fitted to the
measured spectrum. Note that this spectrum is plotted
with a linear vertical scale. The laser power spectra were
measured by observing on an rf spectrum analyzer the
beat signal between portions of the modulated and unmo-
dulated beams. As part of the random modulation pro-
cess a frequency shift was imposed on the modulated
first-order beam so that the beat signal was centered on
the AOM drive signal frequency of 200 MHz. The power
spectrum of this beat signal was a downshifted version of
the optical power spectrum. A limitation of this modula-
tion technique was that the phase jump had a finite rise
time of some 20 ns, which resulted in a small directional
shift of the beam during the transition so that the spec-
trum of the beam was not completely uniform across the
beam. The reason for this limitation and prospects for
overcoming it are discussed in the next section. Figure
2(b) was obtained near the center of the modulated beam
and shows a slight asymmetry because of this rise-time
effect; spectra obtained closer to the edges of the beam
show rather more asymmetry. Because of this we pre-
ferred to use an electro-optic modulator (EOM) for small-
er phase jumps, although AOM's can be used for creating
arbitrary phase shifts [16].

The second technique used a traveling-wave electro-
optic phase modulator to impose phase jumps of up to 2
rad. With this method, laser power spectra agreeing with
Eq. (4) could be obtained. We will not discuss this
method further, except to mention the fact that although
the phase-transition time was shorter (-4 ns), rf heating
effects that caused spurious amplitude modulation limited
the size of the phase jump to about 2 rad. We did take
TPA data with the EOM but the data are inconclusive
because a and I/T are of similar size. In this regime of
N (m the data are of limited interest, unless the shape of
the spectrum can be unambiguously determined. Al-
though the sum of two Lorentzians can be fitted to the re-
sulting TPA spectra, as indicated by Eq. (6), a single
Lorentzian function can be fitted equally well for the
value of ~ and the range of 1/T that we had available. It
is easily verified that the sum of two Lorentzians with
widths of similar size is very similar in shape to that of a
single Lorentzian.

With the above apparatus (AOM) we measured TPA
spectra for a variety of dwell times, using ~ radian phase
jumps, by scanning the laser through the TPA resonance.

laser beam

AOM modulated
beam

Biphase
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FIG. 2. (a) Schematic of the
technique for imposing m radian
random-telegraph phase noise.
The RT voltage source is denot-
ed by the box labeled V„. A
more detailed picture can be
found in Ref. [16]. (b) An exam-
ple of a laser spectrum obtained
with the setup in (a). The
crosses are data and the solid
line is a Lorentzian fit. The
dwell time T is 67 ns, giving the
FWHM of 9.5 MHz. Note that
the vertical scale is linear.
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Dye laser scans over these relatively short frequency
ranges (-100 MHz) are usually fairly nonlinear, and our
experiment was no exception. To overcome this we sepa-
rately calibrated each scan with a spherical mirror
Fabry-Perot interferometer, which was built so that the
non-TEM00 modes could also be used as frequency mark-
ers. This kept the overall length of the interferometer
manageable. A number of scans (typically ten) with the
same values of N and T could then be added, to improve
the signal-to-noise ratio, after having their frequency
scans separately calibrated.

IV. RESULTS AND DISCUSSION

For the experiments with N=~ and ~„=0, we expect
the TPA spectra to be just the same as if there were no
laser noise at all; i.e., the widths of the spectra should be
independent of the strength of the noise. One set of TPA
data is shown in Fig. 3 with a Lorentzian fitted to it.
This spectrum is the average of ten individual spectra
that have had their frequency axes separately calibrated
to remove scan nonlinearities before being added. In Fig.
4(a) we show the widths extracted from such fits plotted
against the width of the laser power spectrum. The
widths of the laser spectra were similarly obtained by
fitting Lorentzians to the data. Also shown for compar-
ison are data from Ref. [7], where the exciting laser had a
phase that was an Ornstein-Uhlenbeck process (phase
diffusion). The laser spectra resulting from this and from
the RT phase are very similar, both being approximately
Lorentzian but falling off somewhat more rapidly in the
wings than would a Lorentzian. The difference in the
trend of each set of data with increasing laser width
clearly rejects the fact that TPA depends on the second-
order coherence of the field. For RT noise in the limit of
small ~„ there is agreement with the prediction that the
TPA width will be independent of the laser spectral
width [17]. This can be understood by noting that the ab-
sorption probability amplitude depends on E(r)2, and in
the random-telegraph case the phase jump of 2m that we
then find in E(t) leaves QI '(r, r;0, 0) essentially un-
changed from the noise-free case. This is not the case for
the phase-difFusing field, where the phase difference be-
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tween the two photons is not so restricted. A more com-
plete intuitive picture based on this observation, which
takes into account the possibility 4Atr, is not so easy,
however, and we take up this point in the next section.

Shown in Fig. 4(b) are data where r„was increased
from 2.6 to 10.8 and 22.8 ns. The data for ~, =2.6 ns are
the same as those shown in Fig. 4(a). It is clear that for
larger values of ~„, the data agree qualitatively with the
general prediction of Eq. (9) that the TPA spectral width
should increase with increasing laser spectral width.
Quantitatively, the agreement is good for r„=10.8 ns but
not for ~„=22.8 ns. In this figure we have extracted the
widths of the TPA spectra by fitting simple Lorentzians.
When the various parameter values pertinent to the ex-
periment are inserted into Eq. (9), the resulting spectrum
has a shape that is little different from a Lorentzian, and
the signal-to-noise ratio in the wings of the observed

I

10
I

20 30
I

40 50

V)

CD

CD
CJ

CD

(D
CD

C7

100 200
I aser Center Frequency (10 s )

FIG. 3. Example of TPA spectrum obtained with the RT
phase on the laser (@=+). The value of T is 237 ns (laser
FTHM=2. 7 MHz) and w„=2.6 ns. The data are indicated by
crosses.
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FIG. 4. (a) Summary of TPA spectral data for case of negligi-
ble ~, (2.6 ns); +, widths of Lorentzians fitted for data for the
RT phase (4=~); +, widths of spectra for the phase-diffusing
laser case (from Ref. [7]}.The solid line is from Ref. [7] and in-
dicates the linear dependence of the TPA spectral width on the
phase-difFusing laser width. In both cases the laser has a
Lorentzian-shaped power spectrum. (b) TPA spectral widths
(from fitted Lorentzians) for the RT phase (N=~) for varying
~„, 4, ~„=2.6 ns; A, ~, =10.8 ns; 0, &„=22.8 ns. The solid
lines are the spectral widths as determined by analysis of Eq. (9)
and ~re numbered (i) 7.„=2.6 ns, (ii) 7., =10.8 ns, (iii) ~„=22.8
ns. The data for ~, =2.6 ns are the same as those shown in (a).
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spectrum is not good enough to distinguish the
differences between a single Lorentzian and the more
correct form of Eq. (9). The theoretical widths plotted in
Fig. 4(b) are from Eq. (9), however. The discrepancy for
~„=22.8 ns is unresolved. There are a number of possi-
ble reasons for the discrepancy that are worth future in-
vestigation. The phase jumps have a finite duration, but
the theoretical treatment outlined in this paper implicitly
assumes that the transitions are instantaneous. Extension
of the theory to cover this situation seems to be warrant-
ed. Also, improvement of the experimental technique to
shorten the transition time while still allowing m radian
phase jumps would be useful. There is a number of possi-
ble ways to do this, though it is not clear which will be
best in the end. The main limitation of an AOM is the
speed of sound in the AOM crystal, and more than an or-
der . of magnitude increase would be needed to
significantly improve our rise time. A smaller improve-
ment may also be made by increasing the rf drive fre-
quency, which allows the laser waist to be made smaller
without sacrificing the diffraction efficiency. It seems
that the most significant technical improvements could
come from advances in EDM technology. Guided wave
devices can easily give ~ radian phase shifts for just a few
volts of input. These have been, until recently, available
commercially only for the communications wavelength
band 1.3 to 1.5 pm but are now available for use at 800
nm. IWaveguide modulators for the visible, based on po-
tassium titanyl phosphate (KTP), have been developed
but are not commercially available. ]

V. THE TPA-DIFFRACTION ANALOGY

In a recent report, Broers, Noordam, and van Linden
van den Heuvell I10] explored an analogy between the
diffraction of light by a narrow slit and two-photon ab-
sorption of a coherent short-duration pulse. Based on
this analogy, they were able to construct a "spectral
Fresnel zone plate, " allowing them to concentrate the
spectral energy at the two-photon level into a bandwidth
narrower than the bandwidth of the laser. In this section,
we consider the case of two-photon excitation by partially
coherent light and show that a similar analogy with
diffraction processes can be established. Such an analogy
allows one to gain some intuitive insight into the TPA
process when partially coherent light is involved.

For frequency chirped pulses, Broers et ah. observe
that, when the spectrum of the field is symmetric about a
frequency coo, the two-photon process is in principle the
same as a linear process driven by an effective Geld of the
form

Wz(coo)= f (P*( )Pr(0))e dt .

Since the laser bandwidth is much narrower than the
center optical frequency coo, we can write

E(r) =E(r)e (13)

where E(t) is a complex amplitude consisting of constant
and stochastic components. Equation (12) then becomes

W2(coo)= f (P(r)P(0))e ' ' ' dt

where A=cof —2coo is the detuning of the laser frequency
from resonance with the two-photon transition and
P(t)=E (t). Thus the two-photon absorption spectrum
is expressed as the Fourier transform of the product of

sour

where P(x') is the phase lag or lead caused by the ray
traveling from source to detector (at x =0 in the plane A)
via a point x' on the plane 3' that holds the slit, as
shown in Fig. 5. As presented, this analogy is not appli-
cable to the measurements reported here because it can
only deal with coherent broadening of the laser spectrum,
as in a chirped pulse. At least if the laser is ideal, the
pulse with a frequency chirp is coherent in the sense that
there is a well-defined phase relationship between
different frequency components of the pulse.

In order to describe the situation where the variation
of the field is stochastic we refer to Wolf I18], who
showed that spatial coherence functions obey the same
kinds of propagation laws through space (albeit some-
what more complicated) as do waves. The propagation of
the spatial coherence

0' '(xi, x2, x3 x4)=(E'(x, )E*(x2)E(x3)E(x4))

can be written in integral form in a straightforward way.
This spatial coherence is analogous to the temporal
coherence function that appears in the TPA range IEq.
(5)], if we let x, =xz and x3 =x~. We will limit our analo-

gy to the case ~„=0 in order to simplify the algebra and
to make the problem easier to visualize. We define a com-
plex field P (x, t ) =E (x, t ), since 9' '( t„t„t 3, t 3 ) is just
the first-order coherence of a different complex field,
namely P(t). Then the expression for the TPA spectrum
becomes

E"'(2~0)= f d~'IE(~') I'e "~"' (10)

Here E (co) is the Fourier transform of the field E(t) and
P(co) is the frequency-dependent phase. This is analogous
to the expression for the intensity of light (on axis) after it
passes through a single slit,

IE (x =0)
I

= f dx'IE(x')
I

e'~' (1 1)

A'

FIG. 5. Geometry of situation considered in the diffraction-
TPA analogy. The detector plane is 3 and the aperture plane is
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r2
X exp in A)A2 . (15)

The geometry for this spatial diffraction problem is again
the same as shown in Fig. 5. This expression is valid in
the limit of r& 2)&X and when the fields are stationary.
We now reinterpret 9' ' as the first-order correlation
function of P(x'). If we take x, =x2, then 0' '(x „x,) is
the square of the intensity at the observation screen 3 in
Fig. 5. We denote this integral as I(x, ) (to be dis-

tinguished from ordinary intensity, which in fact it would
be, to within a factor of —,

' Eoc, if 9' ' had its more usual in-

terpretation). The obliquity factors A, and Az are the
squares of the usual factors for the electric field. In the
limit of L much greater than any transverse dimension of
interest x&,x &

or x2, for instance, r&
—r2 reduces to

r) —r2——- [(x', —x2)(x', +x2 —2x, )],
and A, =1. In the TPA experiment the electric field, and
thus also P(t), is a stationary process, so in the analog
9' '(x ', ,x 2 ) depends only on x', —x 2. Thus we can trans-
form the variables in the slit plane so that x'=x', —x2
and x'=x', +x~, and we write 9' )(x', ,x2)=Q' '(x').
This transformation allows us to write

g(2)(x ~

)I(x, ) = ,' Jdx '—dx
r&r2

~ &x
exp i (x' —2x, )

LA,

where we have also used co/c =2~/A, . Finally, we impose
a restriction on the aperture width, w «VLA, . This im-
plies that our diffracting aperture is entirely within the
first Fresnel zone, so we can set r, and r2 equal to L when
these distances appear in the denominator. We can also
set A=A, =42, and we can ignore the phase variation
term mx'x '/L A, since . the maximum value anywhere
within the aperture is —u) /LA, «1. We are then led to
the following expression for the I(x, ) in the observation
plane 3,

I(x )= dx'0'2)(x')e
1

the first-order coherence function of P(t) and the ex-
ponential term representing the finite lifetime of the ex-
cited state.

The analogy with spatial diffraction is a result of the
similar relation for the propagation of the first-order
coherence of the complex electric field 9' '(x '„x2 ) [18],

0' '(xix2)
0' '(x, x, )=J dx', dx',—oo r ir2

~. An amplitude or phase mask can be introduced at the
aperture plane to produce the variations of the transmit-
ted field, analogous to the stochastic variations of the
field driving the two-photon absorption process. The
correlation time of the latter is transformed to the corre-
lation distance in the aperture plane of the former. As
defined thus far, nothing related to the natural linewidth
of the transition has been introduced. This can be im-

posed by positioning a second phase mask in the aperture
plane. This phase mask induces an additional phase shift
in the transmitted beam, statistically independent of the
Auctuations imposed by the first mask. By using phase
fluctuations, which are correlated as

the exponential lifetime factor can be reproduced. The
natural decay lifetime of the atom is then related to the
correlation length l, of this second aperture plane
diffraction mask. The aperture width w must be large
compared with the correlation length of either of the
diffraction masks. If we take ~, into account, the same
principles hold, except that we cannot make the simplify-
ing (from a point of view of visualization) reduction of
the order of the coherence function.

In the case of RT phase noise, we place a phase grating
in the aperture plane. The phase grating introduces a
phase delay of either N& or +2 or the transmitted light,
where 4&, —@2=24. (@ is the total size of the phase
jump for the temporally fluctuating fields inducing the
two-photon transition. ) The times of the phase steps
must be random and governed by the Poisson distribu-
tion. The phase grating analogous to the 4=~ phase
jumps has a step size of 4,—42=2+. Clearly a 2m phase
shift has no observable effect on the spatially diffracted
pattern, and the diffraction results only from the second
aperture plane mask that simulates the lifetime of the ex-
cited state. This result is similar to the two-photon ab-
sorption spectrum, in which the absorption width is
determined only by the homogeneous width of the atoms,
and not by the laser linewidth.

For the case analogous to @=m/2 temporal phase
jumps, the spatial phase grating must have +,—+2=m.

This grating clearly has a large effect on the transmitted
field, as the fields transmitted by adjacent steps of the
grating are of opposite sign. Using arguments similar to
those leading to Eq. (3), we can show that

where k =2~x&/LA, represents the x component of the
propagation vector of a plane wave directed toward the
position x& in the observation screen. This equation is
just a specialization of the Fresnel-Kirchoff integral in
diff'raction, and can be compared to Eq. (14), which gives
the two-photon absorption rate. From the comparison we
see that the detuning from resonance 6 is analogous to k,
which is linearly related to the position in the screen 2,
while the position within the aperture plane x' relates to

0' '(x') =Eo exp ——ix'i2
(2O)

where g is the mean distance between transitions in the
grating. It is clear that such a grating will produce
spreading of the forward transmitted light, the spread
having two contributions, one proportional to 1/g, the
other proportional to I, '. The point spread function
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that it produces is Lorentzian.
Using this prescription then, we can formulate aper-

ture phase and amplitude masks that are capable of
reproducing far-field patterns analogous to the effective
two-photon absorption probability. %e see from this dis-
cussion that this analogy is not limited to the case of
coherent fields, but includes stochastic 6elds as well, and
it helps us to gain some intuitive insight into TPA pro-
cesses, at least for the case ~, =0, where second-order
coherences are involved.
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