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InAuence of barrier suppression in high-order harmonic generation
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High-order harmonic generation accompanying photoionization presents a clear plateau structure in
situations where tunneling is the fundamental process for the ejection of the electron from the core. We
describe here what is expected to happen when the laser intensity is so high that barrier suppression be-
gins to be the dominant mechanism. We show that this is an ionization regime where harmonic genera-
tion decreases with intensity, obtaining therefore an upper practical limit for high harmonic generation.
Thus we are able to predict situations where the harmonic cuto6' appears at a lower energy than that ex-
pected by the standard I~+3.17U& law where Ip and Up correspondingly are the ionization threshold
for an electron in the ground state and ponderomotive energy.

PACS number(s): 32.80.Rm

I. INTRODUCTIQN

High-order harmonic generation accompanying ioniza-
tion of atoms with very intense laser fields is, now, one of
the most promising techniques to obtain coherent radia-
tion at short wavelengths [I]. The availability of ultrain-
tense laser sources at infrared and visible frequencies
makes this region especially attractive for further study.

There are several physical mechanisms leading to har-
monic generation depending on the range of frequencies
and intensities of the incident laser beam. For low inten-
sities, and for frequencies not allowing one-photon ion-
ization, harmonic generation is essentially due to bound-
bound transitions. In this regime, ionization is reached
by the absorption of several photons. As the intensity in-
creases, multiphoton ionization dominates the generation
of harmonics. %'ith a further increase of the intensity,
the Keldysh parameter becomes smaller than unity, and
the region of tunneling ionization is reached [2]. In this
regime, the electrons ionized by tunneling and then
driven by the field back to the vicinity of the core are the
relevant ones to high-order harmonic generation [3—6].

The aim of this paper is to contribute to the under-
standing of the physical mechanisms relevant to the
cutoff of the harmonic spectrum in the regime of tunnel-
ing ionization. The harmonic spectrum is usually de-
scribed in terms of a plateau, or a region where the har-
monic intensity is approximately independent of the har-
rnonic order. The end of this plateau is typically very
abrupt, and it is referred to as the harmonic cutoff. It is
widely accepted that in this regime, a very simple expres-
sion works very well: the cutoff occurs at a frequency
co „=—Ip+3.2UP, where U&=EO/4cuL is the pondero-
motive energy, Iz is the ionization threshold for an elec-
tron in the ground state, coL is the laser frequency, and

Eo is the electric-field amplitude. Only atomic units
(A'=m =e = I) will be used in this paper. DifFerent kinds

of analytical approaches lead to this expression with
slightly different coefficients, and it is confirmed by many
different numerical computations. Therefore, it is con-
sidered a very good description of the end of the harmon-
ic plateau in the tunneling regime.

Since tunneling ionization is the dominant process as
the field intensity increases, it seems natural to consider
whether this kind of simple expression works for arbi-
trary high intensities. In this paper, we want to show
that this expression is valid up to the intensity where bar-
rier suppression occurs. To show this, we compute the
electron dynamics in two completely different ways. The
paper includes some numerical computations of the
time-dependent Schrodinger equation describing the in-
teraction of a model atom with a linearly polarized laser
field. These solutions are exact (nonperturbative), and
they are compared with a simple classical model.

The results show two clear ideas. First, when the field
is high enough to get into the barrier suppression regime,
the cutoff energy decrease in terms of the ponderomotive
energy. Second, the classical model works surprisingly
well to explain the cutoff features of the quantum compu-
tation.

In the last part of the paper, we will show the compar-
ison between the classical and quantum cutoff energies
versus the amplitude of the electric field, studying the
inhuence of the barrier suppression. The agreement be-
tween classical and quantum calculations is also remark-
able for the prediction of the cutoff energy of the high-
order harmonic spectrum. From the numerical results,
we get the same qualitative behavior: a significant de-
crease in the cutoff energies from a certain value of the
field. This clarifies the widely accepted feeling that very
high intensities are not useful for the generation of high-
order harmonics, as indicated by the numerical studies of
harmonic generation just before the intensity is strong
enough to enter the adiabatic stabilization regime.

II. TIME-DEPENDENT SCHRODINGER EQUATION

*Permanent address: Research Center, Vavilov State Optical
Institute, 199034 St. Petersburg, Russia.

We consider a typical one-dimensional quantum model
that only studies the dynamics along the polarization axis
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of the laser field. The time-dependent Schrodinger equa-
tion, in the 3 .p gauge, is

1 8 1i y(z, t) = —— y(z, t)— y(z, t)
t)t 2 tlz Qz

l a
A o cos(coL t ) Ip(z& t )

C Bz

Ao is the vector potential, polarized along the z direction.
The electric field is, therefore, Eo sin(cot t ), where
Eo =coL Ao/c.

This model is widely accepted to include most of the
essential features of the ionization dynamics, specially in
the strong-field regime, because in this case the electron
moves mostly along the polarization axis. The Coulomb
atomic potential is given by the standard expression with
the square root in the denominator. Of course, this sim-
ple one-dimensional model does not include angular
momentum. It is well known that it allows eigenstates
with parity as a good quantum number. Therefore, the
laser field induces transitions between even and odd
states. The ground state of this model atom has an ener-
gy I& =0.67 a.u. , and the excited states form an infinite
series of even and odd bound states completely similar to
the Rydberg series in three-dimensional hydrogen [7j.

We calculate the harmonic spectrum by Fourier
transforming the time-dependent acceleration, d(t)
=(y(z, t)~ —dV/dz~qr(z, t)) [8], where V is the one-
dimensional Coulomb atomic potential used in Eq. (1)
and the dots indicate the time derivatives. In this expres-
sion, for simplicity, the contribution of the incident field
to the fundamental component has been omitted. We
will refer to harmonic spectrum to indicate the square
modulus of this transform, ~d(co)
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tunneling ionization. We have chosen for the computa-
tions the following laser frequency, coL =0.06 a.u. , which
corresponds to a 12-photon ionization process from the
unperturbed ground state. This is a typical multiphoton
order suitable for comparison with the experiments in no-
ble gases. For the computations shown here, a linear
turn on of two cycles has been chosen.

A typical harmonic spectrum, computed for coL =0.06
a.u. , and an electric-field amplitude Eo =0. 1 a.u. is shown
in Fig. 1. This harmonic spectrum presents the well-
known plateau structure with a cutoff according to the
3. 17U& law. For these parameters, this law predicts the

III. NUMERICAL RESULTS

We have performed the numerical solution of the
time-dependent Schrodinger equation (1) for the case of
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FIG. 1. A typical high-order harmonic spectrum, calculated
from the numerical solution of the one-dimensional Schrodinger
equation for an electric-field amplitude ED=0. 1 a.u. and a laser
frequency coL =0.06 a.u. This harmonic spectrum presents the
well-known plateau structure with a cutoff according to the
3.17' law (indicated by the vertical arrow). The pulse has a
duration of five optical cycles, two cycles of turn on (as a linear
ramp) and three cycles of constant amplitude.
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FIG. 2. Spatial distribution of the electron density ~p(z, t}~

as a function of the space coordinate z for different values of the
time: t = 1, 2, 3, 4, and 5 cycles. These snapshots show a typi-
cal electron cloud under ionization, where some part undergoes
tunneling ionization and some other part remains close to the
nucleus. The drawings represent the numerical solution of the
one-dimensional Schrodinger equation for an electric-field am-
plitude ED=0. 1 a.u. and a laser frequency coL =0.06 a.u. The
pulse has a duration of five optical cycles, two cycles of turn on
(as a linear ramp) and three cycles of constant amplitude. Some
population remains not ionized.
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cutoff at co,„=2.2 a.u. , which approximately corre-
sponds to the 49th harmonic of the incident frequency coL

(indicated by the vertical arrow in the figure).
It is well known that, at low frequencies, multiphoton

ionization and tunneling ionization are two competing
processes [2]. Their relative importance is given by the
Keldysh parameter y defined as

1/2

where, as indicated before, Uz is the ponderomotive ener-
gy and I&=0.67 a.u. is the ionization threshold for an
electron in the ground state. For these parameters,
y=0. 7. The fact that the Keldysh parameter is small
(y & 1) indicates that tunneling is the dominant mecha-
nism of ionization, and it will also be dominant for higher
fields.
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The time evolution of the electron wave function for
the same parameters as in Fig. 1 is shown in Figs. 2 and
3. Figure 2 represents some snapshots of the wave func-
tion for each cycle of the Geld. These computations show
a typical electron cloud under ionization. Part of the
wave packet remains bound —with a sharp peak at
z =0—and the rest spreads over a wide region of the
space. Figure 3 represents the time evolution of the
ground state and the first few excited bound states. The
evolution of the wave packet evidences that the electron
goes through the nucleus in its oscillation. These dynam-
ics suggest that some features of the motion of the elec-
tron can be understood with a classical model, although
this comparison is not direct, therefore, it is worth ex-
ploring deeply the classical ideas.

IV. CLASSICAL EXPLANATION

Tunneling ionization is essentially a quantum process.
However, just after ionization, it is reasonable to consider
the free electron as a classical particle. In this case, the
motion of the electron is given by the well-known equa-
tions,

z'(t)= —Eo sin(col t+g),
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where g is the phase of the electric field just at the tunnel-
ing ionization moment. This phase can take any value
because it refers to our lack of knowledge about the exact
moment in which this electron is released from the nu-
cleus. From these equations, it is clear that the phase g is
responsible for the drift velocity of the electron in the
laser field,
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FIG. 3. Time distribution of the population of the lowest
bound states, computed from the numerical solution of the one-
dimensional Schrodinger equation for an electric field amplitude
E =0. 1 a.u. and a laser frequency coL =0.06 a.u. The pulse has
a duration of five optical cycles, two cycles of turn on (as a
linear ramp) and three cycles of constant amplitude.

We will set zo equal to zero, provided the probability of
tunneling ionization depends on the momentum of the
ejected electron and this probability is maximum for zero
momentum [2]. The initial position zo is the distance at
which the electron is released. As the tunneling probabil-
ity depends also on the width of the effective potential
barrier, the most likely mechanism is that the electron is
released close to the nucleus. For the situation in which
we are interested, of large classical excursions of the freed
electron, this is practically equivalent to consider zo =0.

It has been shown in earlier works [3,5] that the max-
imum kinetic energy of an electron ionized by the tunnel
effect and coming back to the nucleus is 3.17U~. This
energy is released as the electron is captured again by the
nucleus giving rise to harmonic spectrum extended until
the order corresponding to an energy of I&+3.17U&.
Therefore, this recombination of the electron is only pos-
sible in the vicinity of the nucleus, and it is reasonable to
consider that it happens at z =0, provided the large ex-
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FIG. 4. Classical kinetic energies of an electron ionized by
tunneling that comes back to the nucleus, plotted versus the
phase of the field at tunneling. This figure corresponds to an
e ectric-field amplitude EO=0. 1 a.u. and a laser frequency
cuL =0.06 a.u. There is a region of initial phases where the elec-
trons never come back to the nucleus. The density of the small
dots that constitute these curves is an indication of the density
of classical trajectories. The horizontal solid line corresponds
to 3.17 times the ponderomotive energy and is the absolute max-
imum of the kinetic energy for the classical trajectories that
start from the origin, with zero velocity, and come back to the
nucleus. The pulse has a duration of five optical cycles, two cy-
cles of turn on (as a linear ramp) and three cycles of constant
amplitude.

cursion of the electron in these intense fields.
However, a very small range of values for the phase g

contributes to this maximum value of th ke inetic energy.
The rest of the phases contribute to other values of the
kinetic energy for the electron that comes back to the nu-
c eus. In Fig. 4, we have plotted the kinetic energy of the
electron when it comes back to the nucleus, following a
classical trajectory, as a function of the initial phase, i.e.,
as a function of the moment when the electron was
released. This figure corresponds to an electric-field am-
plitude Eo =0. 1 a.u. , and a laser frequency co =0.06

ere is a region of initial phases where the electrons
never come back to the nucleus. The density of the small
dots that constitute this curve is an indication of the den-
sity of classical trajectories. The horizontal solid line
corresponds to 3. 17U&, which is the maximum value of
the kinetic energy of a classical electron that starts mov-
ing from the origin, with zero velocity, and returns to the
nucleus.
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FIG. 5. DDistribution of kinetic energies of the classical elec-
tron trajectories coming back to the nucleus. For different
va ues of the tunneling phase, we have plotted the density of tra-
jectories that return to the nucleus Th' fiu . is gure corresponds to
an electric-field amplitude E =0. 1 da.u. an a laser frequency
coL =0.06 a.u. , although this profile is quite general for a broad
range of parameters. The peak at 3.17 times the ponderomotive
energy is the absolute maximum value of th k'

ac to the nucleus. There are other peaks in the classical den-
sity of trajectories, for example at tw' th dice e pon eromotive en-

cross many times overergy, that correspond to trajectories that cross t'
t e nuc eus.
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This is the quasistatic potential that the electron
feels. The laser field amplitude is E =0.2 a Da.u. rawing (a) cor-
responds to the instantaneous electric field at time equal to 0.08
cycles. For this hasep, the electron needs to tunnel across the
potential barrier to be ionized. Draw (b)awing corresponds to an
instantaneous electric field at time equal to 0.16 cycles. For this
last value of the hap ase, the potential barrier is suppressed for an
electron initially at the ground stat Th t' de. e time- ependent wave
function is also plotted, showing how the electrons begin to
leave the atom after the barrier suppression.
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FIG. 8. A typical high-order harmonic spectrum calculated
from the numerical solution of the one-dimensional Schrodinger
equation for an electric-field amplitude Ep =0.2 a.u. and a laser
frequency coL =0.06 a.u. In contrast to Fig. 1, now barrier
suppression begins to play a role. The arrow indicates that
3.17U& law. The pulse has a duration of five optical cycles, two
cycles of turn on (as a linear ramp) and three cycles of constant
amplitude.
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FIG. 7. Classical kinetic energies of an electron ionized by
tunneling that comes back to the nucleus, plotted versus the
phase of the field at the tunneling instant. This figure is analo-
gous to Fig. 4, with the same laser frequency, coL =0.06 a.u.
However, the electric-field amplitude now is (a) Ep=0. 14 a.u.
and (b) Ep =0.2 a.u. The first value has been chosen because it
is very close to the critical value EC=0. 1337 a.u. This figure
still shows the maximum kinetic energy of 3.17 times the pon-
deromotive energy. The second value is high enough to satisfy
the barrier suppression condition. Just after the barrier
suppression most of the electron population is directly ionized,
therefore, these phases are absent in the drawing and the max-
imum kinetic energy is reduced.

We can get more information about the classical trajec-
tories by studying the distribution of the kinetic energies
at the moment the electron comes back to the nucleus, as
depicted in Fig. 5. In contrast to the previous figure, we
have followed now the classical trajectory of the electron
for many cycles, rather than limiting to the first trajecto-
ry coming back to the nucleus. Therefore, in this picture,
the relative importance of the trajectories with very slow
drift velocity is accentuated because they pass many
times over the nucleus. This figure corresponds to an
electric-field amplitude E0 =0. 1 a.u. , and a laser frequen-
cy co~ =0.06 a.u. , although this profile is quite general for
a broad range of parameters. The peak at 3.17 times the
ponderomotive energy is the absolute maximum value of
the kinetic energy of an electron returning to the nucleus.
This trajectory corresponds to (-,„=1.88+n~, for any
positive integer n. This means that it is completely
impossible —regardless of the initial phase —to have a
classical trajectory starting from the nucleus (z =0)0
without initial velocity (zo=0) and coming back to the
nucleus with a kinetic energy higher than 3. 17U& when it
passes again over z =0. This maximum corresponds to a
one-pass trajectory. Other peaks in the density of classi-
cal trajectories correspond to those trajectories with
many passages through the nucleus. In particular, from
Eq. (4) a periodic trajectory is obtained from zo=0,
~0=0, which passes over the nucleus with energy 2U~.
This periodic trajectory corresponds to g=vr/2, i.e., to
electrons emitted when the electric field is just at its max-
imum. For initial phases very close (but not exactly
equal) to this value, the drift motion is very small com-
pared to the quiver motion and the electron is able to
pass over the nucleus many times with kinetic energies
close to 2U~.

V. BARRIER SUPPRESSION

We have shown so far a qualitative agreement between
the quantum computations and the classical model, in the
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FIG. 9. A typical high-order harmonic spectrum calculated
from the numerical solution of the one-dimensional Schrodinger
equation for a stronger electric field Ep =0.3 a.u. than in Fig. 8,
and a laser frequency col =0.06 a.u. The pulse has a duration of
five optical cycles, two cycles of turn on (as a linear ramp) and
three cycles of constant amplitude. Now barrier suppression is
more important, and the 3.17' law (indicated by the vertical
arrow) gives only the end of a very weak plateau, being the end
of the most important plateaus at 2U~ and 1.45Up.
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tunneling regime. At higher field intensities, as the am-
plitude of the electric field increases, an unexpected
feature appears in the spectra: the cutoff energy becomes
lower than II, +3.17U+. If the field is high enough, the
efFective potential (i.e., Coulomb plus field) can be distort-
ed in such a way that no bound state is present (Fig. 6).
We know that the electrons that recombine with the nu-
cleus producing the highest harmonic orders are precisely
those that have tunneled to the continuum when the field
was close to its maximum. For higher fields, these elec-
trons have already been released before the field reaches
this maximum value, and consequently, their maximum
kinetic energy coming back to the nucleus is smaller.

In the classical picture, this means a restriction in the
initial phase to satisfy the condition Ec ~ Eo sing, where
E& is the critical field corresponding to the complete po-

tential barrier suppression (i.e., no minimum is present).
In this last part of this paper, we want to show the com-
parison between the classical and quantum cutoff energies
versus the amplitude of the electric field. Of course, the
classical simulation does not allow one to explain more
than some qualitative features of the harmonic cutoff
behavior.

Figure 7 shows the classical kinetic energies of an elec-
tron ionized by tunnehng that comes back to the nucleus,
plotted versus the phase of the field at the moment of tun-
neling. This figure is analogous to Fig. 4, with the same
laser frequency, col =0.06 a.u. However, the electric-
field amplitude now is (a) Ec=0.14 a.u. and (b) Eo =0.17
a.u. The first value has been chosen because it is very
close to the critical value Ec=0.1337 a.u. This figure
still shows electron trajectories reaching the maximum
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F&G. 10. Spatial distribution of the electron density lyiz, t) I as a function of the space coordinate z for different values of tile tiiiie
t =0, 1, 2, 3, 4, and S optical cycles. These snapshots show a typical electron cloud under ionization in a situation where barrier
suppression gives rise to a clear wave packet. The drawings represent the numerical solution of the one-dimensional Schrodinger
equation for an electric-field amplitude E0=0.2 a.u. and a laser frequency coL =0.06 a.u. Figure 10(a) corresponds to two cycles of
turn on (as a linear ramp) and three cycles of constant amplitude. In this case there is not drift motion of the center of the wave
packet. In comparison to the classical calculations, Fig. 10(b) corresponds to a square pulse. Now the center of the wave packet has
a drift velocity.
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kinetic energy of 3.17 times the ponderomotive energy.
The second value is high enough to satisfy the barrier
suppression condition, and there are no trajectories com-
ing back to the nucleus with kinetic energies higher than
twice the ponderomotive energy. Just after the barrier
suppression, most of the electron population is directly
ionized, therefore, these phases are absent in the drawing.

This prediction of the semiclassical model is confirmed
by the numerical computations of the time-dependent
Schrodinger equation. Figure 8 shows the high-order
harmonic spectrum calculated for an electric-field ampli-
tude Eo=0.2 a.u. , and a laser frequency ~I =0.06 a.u.
Now barrier suppression begins to play an important
role, and the 3. 17U& law (indicated by the vertical arrow)
gives only the end of a secondary plateau. However, this
is more evident as the laser amplitude is increased, as
shown in Fig. 9, corresponding to a stronger electric field,
Eo=0.3 a.u. , than in Fig. 8, and the same laser frequency

cuL =0.06 a.u. Now barrier suppression is even more im-
portant, being the end of one plateau at 2U~ associated
with some classical periodic trajectories of electrons ion-
ized during the turn on, when the maximum amplitude of
the field is smaller than the final value Eo. Since they
have a small drift velocity, they interact with the nucleus
for longer times. Another plateau arriving until 1.45U&
rejects the elimination, due to the suppression of the bar-
rier, of those initial phases that contribute to the most en-
ergetic returning trajectories of the electron.

The time evolution of the electron wave function for
the same parameters as in Fig. 8 is shown in Figs. 10 and
11. Figure 10 represents some snapshots of the wave
function for each cycle of the field. Figure 11 represents
the time evolution of the ground state, showing a very
clear electron wave packet that goes through the nucleus
in its oscillations. These dynamics explain why some
qualitative features of the electron motion can be under-
stood with the classical model.

It is clear from these numerical computations that
several plateaus are present in the high-order harmonic
spectra at di6'erent intensities. We can study them in a
continuous way as a function of the laser field amplitude
Eo Figu. re 12 shows the cutoff frequency (in Up units) as
a function of the laser field amplitude (for a laser frequen-
cy col =0.06 a.u. ). As the electric field increases, barrier
suppression begins to play a fundamental role and
diA'erent plateaus disappear because they correspond to
classical trajectories with no allowed initial phases, as-
suming that just after barrier suppression, all electrons
are ionized. From these numerical results, we get a
significant decrease in the cutoff energies (measured in U~
units) starting from values of the field where barrier
suppression is possible, according to the classical model
prediction. The exact details of these secondary plateaus
cannot be explained with the classical model, because
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FIG. 11. Time distribution of the population of the ground
state, computed from the numerical solution of the one-
dimensional Schrodinger equation for an electric-field ampli-
tude Eo=0.2 a.u. and a laser frequency cu =0.06 a.u. The
pulse has a duration of five optical cycles, two cycles of turn on
(as a linear ramp) and three cycles of constant amplitude.
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FIG. 12. Several plateaus are present in the high-order har-
monic spectra at different intensities. The figure shows the
cutoff frequency (in Uz units) as a function of the laser field am-
plitude for a laser frequency coL =0.06 a.u. As the electric field
increases, barrier suppression begins to play a fundamental role
and different plateaus disappear because they correspond to
classical trajectories with initial phases not allowed assuming
that just after barrier suppression all electrons are ionized.
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they probably include effects of electron wave-function
interference. However, we consider that the physical ori-
gin of the disappearance of the most energetic harmonics
is due to the elimination of the initial phases responsible
for some returning trajectories of the electron.

VI. CONCLUSION

We have shown that a lot of physical insight can be ob-
tained with a preliminary use of classical electron trajec-
tories. Of course, the fine details should be calculated
with the use of the time-dependent Schrodinger equation.

Applying this idea to a situation involving barrier
suppression, we have clearly identified the mechanism
that prevents the expansion of the harmonic plateau ac-
cording to the I&+3.17U~ law. In fact, the classical
model predicts a shrinking of the plateau in the barrier
suppression regime that is more and more pronounced as
the field increases. This plateau shrinking effect has been

also seen in the quantum simulations.
These conclusions can be applied to different situations

because barrier suppression is independent of the laser
frequency. One of these situations is the adiabatic stabili-
zation, where numerical simulations also show very nar-
row plateaus, for intensities well beyond the critical field,
and frequencies corresponding to one-photon ionization.
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