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We discuss a method for probing a system of cold bosonic atoms in a trap using intense short laser
pulses. Above the critical temperature for Bose-Einstein condensation, such a system scatters very
weakly. Coherent scattering occurs primarily in the forward direction within a solid angle determined
by phase matching conditions for the thermal atomic distribution. Below the critical temperature,
the number of scattered photons increases dramatically and the scattered light is emitted into a
solid angle determined by the size of the condensate. Quantum statistics of the atoms explicitly
effect the spectrum as well as the squeezing properties of the scattered light. The theory accounts

for the atom-atom interactions.

PACS number(s): 03.75.Fi, 42.50.Fx, 32.80.—t

I. INTRODUCTION

The experimental realization of a Bose-Einstein con-
densate (BEC) [1] in a system of trapped and cooled
atoms [2] has recently become one of the major objec-
tives of atomic physics [3]. Significant progress has been
achieved in the last year toward this goal. Three groups
[4] have now reported the observation of evaporative cool-
ing [5] in laser precooled alkali-metal-atom systems. New
techniques have been developed to cool spin polarized hy-
drogen [6]. In this context it becomes urgent to consider
in detail problems concerning the detection and observa-
tion of the condensate.

One of the most obvious methods for observing the
condensate consists of light scattering, as is used in stan-
dard spectroscopic studies. Until now, most of the theo-
retical studies on the quantum optics of BEC consider the
problem of weak field scattering. Svistunov and Shlyap-
nikov [7] and Politzer [8] discuss the problem of scattering
of weak light from the condensate at low temperatures
T ~ 0. In a homogeneous system, the atomic and pho-
tonic degrees of freedom mix, giving rise to a band gap in
the excitation spectrum. Of course, in practice the gap
appears only in the narrow line limit, i.e., when the gap
width significantly exceeds the spontaneous emission rate
v. Because of this gap, resonant light will be strongly re-
flected back from the sharp boundary of the condensate.
Javanainen considered another limiting case, that of an
optically thin condensate [9], with a size a of the order
of the resonant wavelength A. In such a case the scat-
tering takes place mainly in the forward direction, and
the scattering cross section has a Lorentzian line shape
with a width proportional to the collective (supefradi-
ant) spontaneous emission width (which typically would
be of the order of ynA2a, where n is the atomic density).
Note, that these conclusions are significantly modified in
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more realistic situations, i.e., in an optically thick trap
with no sharp boundaries and of finite size a ranging
from 1 to 20A. In the case of moderate atomic densi-
ties n such that n(A/2m)% ~ 1-10, the elastic weak field
spectrum becomes non-Lorentzian and exhibits a narrow
peak at the resonance. The width of this narrow fea-
ture is controlled by the dominant single-atom dissipative
and dephasing processes such as spontaneous emission
to noncondensed states, quantum diffusion of the excited
atomic wave packets [10], etc.

In a recent Letter [11] we proposed yet another method
for optical detection of BEC. We investigated the limit-
ing case of the scattering of short but intense laser pulses
from a system of cooled atoms in a trap. In particu-
lar, we considered laser pulses with areas of multiples
of 2. The area of the pulse is defined as the integral
of the slowly varying envelope of the electric field mul-
tiplied by the atomic dipole moment. When the area
is 2w K, the atom cycles K times between the excited
and ground state. We have shown that above the criti-
cal temperature for the Bose-Einstein condensation, Tk,
the coherent scattering from such a system of atoms is
very weak and takes place primarily in the forward di-
rection due to the phase matching effects. Below the
critical temperature the number of scattered photons in-
creases dramatically and the coherent scattering occurs
into a solid angle determined by the size of the conden-
sate. Even below T,, sufficiently short 2w K pulses leave
the system relatively intact, providing a nondemolition
tool for observing BEC.

In a previous paper (hereafter called paper I) [12] we
formulated a general framework for the quantum field
theoretical description of atoms interacting with photons.
We discussed various approximations, including the case
of scattering of short but intense laser pulses off cold
atomic samples. We introduced several classes of models
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of the theory and discussed regimes of their applicabil-
ity: (i) class A models that neglect all static atom-atom
interactions; (ii) class B models that account fully for
excited-ground atom-atom interactions; and finally (iii)
class C models that take into account all relevant atom-
atom interactions.

This paper, which is the second in the series, contains a
detailed discussion of the problem of scattering of intense
short laser pulses. As outlined in paper I, we focus our
attention on the range of parameters describing magnetic
traps such as those developed by Monroe et al. [13]. For
simplicity we consider the strong field scattering for two-
level atoms with a ground s state and a triple degenerate
excited p state. The same assumption was adapted in
Ref. [11].

We start our discussion by considering the class A
models that neglect all static atom-atom interactions. In
Sec. II we present a detailed derivation of the results
presented in Ref. [11]. The calculations are performed
in the Fock representation of the quantized atomic fields.
Section III is devoted to the calculation of coherent and
incoherent spectra emitted in the process of scattering of
intense short laser pulses. In Sec. VI we discuss numer-
ical results for the spectra of scattered light for typical
values of parameters that are of interest to experiments.
These results provide an extension of the results reported
in Ref. [11]. In Sec. V we calculate the squeezing spectra
of the scattered field, and show that in homodyne type
measurements, the scattered field might exhibit broad-
band super-Poissonian statistics, with a narrow band of
sub-Poissonian and squeezing behavior at the exact res-
onance.

We reformulate our theory in Sec. VI using the posi-
tion representation for the atomic fields. With this refor-
mulation it is particularly simple to extend the theory to
class B and class C models where atom-atom interactions
are included. The effects of atom-atom interactions can
be shown to be negligible within the duration of the driv-
ing laser pulse. Their main effect (that effects the long
time behavior of the system) is to set appropriate initial
conditions for the system prior to the interaction with
the laser pulse. Within this framework we can calculate
scattering spectra for class B or C models, and compare
them with the results obtained for noninteracting atoms.
Finally, we conclude in Sec. VII.

The paper also contains four appendixes. In Appendix
A, we list some useful identities characterizing atomic
states in a harmonic trap. Appendixes B, C, and D con-
tain details of the calculations of various parts of the
spectra of scattered light.

II. CLASS A MODELS IN THE FOCK
REPRESENTATION

The Hamiltonian governing the interaction of light
with N bosonic atoms confined in a trap takes the fol-
lowing second quantized form in the Fock representation
[12]:
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H= Z“’%gjzgﬁ + Z(wfﬁ + wo)él éx
7l "

In Eq. (1) we have used the rotating wave approxima-
tion, as well as the dipole approximation in the length
gauge. The Hamiltonian is written in atomic units. The
symbols gz (gj_i) denote atomic annihilation (creation)
operators for the 7ith state of the center of mass mo-
tion of the atom in the trap. These operators are as-
sociated with the atoms in the ground electronic state.
For a rotationally invariant harmonic trap potential, 7 is
actually a triple index (n;,ny,n.), and the correspond-
ing energy is wl = wi(ns + ny + n;), where w, is the
trap frequency. The size of the trap in this work is re-
lated to the size of the ground state of the trap potential,
a = 4/1/2Mw, (for notation and some useful identities,
see Appendix A). The latter relation can be relaxed for
so called class A* models that account phenomenologi-
cally for the effects of (repulsive) atom-atom interactions.
One then treats ¢ and w; as independent parameters and

sets a > 1/1/2Muw; [12,10] to mimic an interacting con-

densate. The operators & (€ 7; ) are atomic annihilation

(creation) operators in the excited state trap potential,
which, in general, is different from the ground state po-
tential. The results of our analysis of short pulse scat-
tering do not depend strongly on the particular shape of
the excited state potential. The corresponding energies
are w,; + wop, i.e., they are shifted up by the electronic
transition frequency. We consider here the case of the
transition from an s state to a p state and therefore €7 ’s
and € 7;'.1 ’s have a corresponding vector character. This
is not the structure of the transition in a typical alkali-
metal atom such as cesium (65,3, F = 4-6P3,,,F = 5),
but the character of the transition is not essential for
our conclusions. ag, and a;%“ denote annihilation and

creation operators for photons of momentum & and lin-
ear polarization €3, (1 = 1,2). All the annihilation and
creation operators obey standard bosonic commutation
relations. The coupling g(k) is a slowly varying function
of k related to the natural linewidth (half width at half
|”, with ko = wo/c. Fi-
nally, i, (k) are the Franck-Condon factors (i.e., matrix
elements for the center of mass transition from the 7ith
state of the ground state potential to the mth state of
the excited state potential),

maximum) v = (8723 /3c)|e(ko)

i (B) = (g, e Ble, m). (2)

To keep the notation simple, we will omit the indices
g, e for the internal states in the following. We will use
the convention that the indices 7, @’ (17, M) denote the
center of mass states in the electronic ground (excited)
state potentials, respectively.
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The above Hamiltonian includes the strong resonant
atomic dipole-dipole interaction resulting from the ex-
change of transverse photons [14,15]. In this section, we
treat class A models, and neglect all other interactions
that may play a crucial role in atomic collisions.

If the system is driven by a short coherent laser pulse,
and if such a pulse is strong enough and short enough,
we may neglect spontaneous emission effects during the
pulse and substitute the electric field operator entering
the interaction Hamiltonian in Eq. (1) by a ¢ number.
The pulses we intend to use should have duration 7 <
300 ps or shorter, i.e., width vz = 1/77 ~ (3% 10) — 101!

. The first estlma.te shows that indeed v > v ~ 2.5
MHz, i.e., the spontaneous emission may be legitimately
neglected during the time of interaction of the pulse with
the atoms. Note, however, that this estimate is mislead-
ing, since the atoms will respond collectively and the ef-
fective spontaneous emission rate (due to both superradi-
ant initial state enhancement and bosonic final state en-
hancement) might thus be greatly enhanced [16]. We will
therefore have to check our assumption self-consistently
to assure that the total number of emitted photons N
is much smaller than the total number of atoms N. Un-
fortunately, the substitution of the electric field operator
by a c-number field during the interaction also eliminates
from the theory the effects of resonant dipole-dipole in-
teractions. The self-consistency check related to Ny is
not necessarily sufficient to assure that the effects re-
lated to level shifts induced by the dipole-dipole interac-
tions are negligible. We shall come back to this point in
Sec. VI.

Let us therefore assume for the moment that during
the interaction with the laser pulse the effects of dissi-
pative spontaneous emission and dispersive dipole-dipole
interactions are small, as compared to the effects of the
coherent driving laser. We can then substitute the prod-
uct of the electric field operator and the absolute value
of the electronic transition dipole moment by

- 0 - - s
(+) — ik-R—ickt
d€ » 5 Eﬂ:/dk o(k,pn)e , (3)

where 2 is the peak Rabi frequency of the laser pulse.
The function E(E, p) describes a (E, p)-dependent enve-
lope of the laser pulse. We assume that the pulse has the
form of a plane wave packet moving in the k7 direction
with a central frequency wr, and a linear polarization €z,
so that

. Q. L s
d£(+) g EELT["/L(t—kL-R/wL)]e’kL R zth' (4)
Here, 7 (vrt) is the temporal envelope of the pulse; it is
chosen to be real and assumed to have a bell shape with
a maximum at ¢t = 0 equal to 1.

Note that to obtain Eq. (4), the (k,u)-dependent en-
velope E(E, 1) must change on a scale of momenta of the
order of y/c ~ 10 — 300 m™*. On the other hand, the
characteristic scale on which the matrix elements 7z (k)
change, 6k is of the order of 1/a ~ 10° m™! for low n
[13]. As we go to higher n’s, 6k scales as 1/4/n, so it be-

comes ~ 10% m™! for the highest energy levels that are
still available in the trap. Since 8k > v /c for all v, in
question, we may thus safely substitute k by EL inside

"ﬁ‘l(EL). With this substitution, using Eq. (3) and Eq.
(4), the Hamiltonian (1) becomes

H=> wighes+D (wg +wo)élén
+—QT('th) [exp(ith) Z gt.é‘L . f; + H,c_] (5)
2 — n L]

where we have introduced a new notation for the anni-
hilation and creation of wave packets of excited states
which originate from the 7ith state of the ground state
potential,

=" nam(k)ém. (6)

Note that these annihilation and creation operators de-
scribe independent wave packets, i.e., they obey the stan-

dard bosonic commutation relations [f3, 3, et " = 67 64q,
with ¢,¢' = w,y,z enumerating the components of the
vectors fn and f.., Moreover, the energies w,7 vary very
slowly for the states in question and, therefore, for each
of the wave packets f;l, f_: , their energy can be approxi-
mated by wi+wo+k%/ (2M ). This assumption is equiva-
lent to the statement that the atomic wave packets in the
excited state potential will not experience much coherent
oscillation or diffusion (i.e., are in a sense frozen in shape)
within the duration of the laser pulse (7, < 1/w;). Fur-
thermore, w3’s are of the order of 10 Hz for low n, and of
the order of say, 105 Hz for the highest accessible states
in the trap [13]. Compared with vz, they can be safely
neglected.

The Heisenberg equations that follow from the Hamil-
tonian (5) now become linear. Thus at resonance,
wr ~ wo + k /(2M) and in the rotating frame in which
gn — e Witg fn — e~ Hwitwr)t £ they take a partic-
ularly simple form:

4alt) = i3 Toud)es - Fa(0), ")

L fa (6) = ~i5 TOrut)on(t). ®)

These equations may be easily solved analytically for any
pulse envelope

97(t) = ga(—00) cos [A(t)] — €L, - fa(—o0)sin [A(t)],
(9)

&L - falt) = —iga(—oco) sin [A(t)]
+&L - fa(—o0) cos [A(t)], (10)

with A(t) = (2/2) fioo T (vct')dt'. All other components

of ﬁ‘i remain unchanged in this process. The physical
picture is now the following: each of the 7 levels of the
ground state oscillator (when populated) creates an in-
dependent wave packet fz which is a superposition of the
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excited state wave functions. The population oscillates
coherently between the 7ith ground state and the corre-
sponding excited state wave packet. The system behaves
as if it consists of a set of independent two-level atoms
coherently driven by the laser pulse. If the area of the
pulse is a multiple of 27 the system will be left in the
same state after the pulse is gone as it was before it came.
Obviously, as |7i| increases, the approximations we have
made become more problematic, but they should hold
very well for the lowest available 10* states of the ground
state potential [13].
Note that the relations

fz = Znﬁvﬁ(EL)grﬁa (11)

A Z [nm (k)] "€k, (12)

z [nﬁﬁi(EL)]* am (kL) = 6ty (15)
> [ (kL)) " nizrs (kL) = Sz (16)

They will allow us to express solutions for gz (t) and & (¢)
as given above in Egs. (9) and (10) (and their conjugates)
uniquely in terms of gz(—00), €7 (—00), etc.

Of course, in reality the atoms will scatter photons,
since « is nonzero. The resonance fluorescence (RF) from
a single atom driven by a short pulse has been studied
by Rzazewski and Florjaniczyk [17]. They have shown
that the RF spectrum in such a case consists of 2K — 1
peaks, provided the pulse area is 2w K. Physically, mul-
tiple splitting results from temporal interference effects,
as photons emitted during the interaction with the pulse
interfere with each other. These results were then gener-
alized to include nonzero detunings, dissipation, and var-
ious pulse shapes (hyperbolic secant, exponential pulses,
chirped pulses, etc.) [18]. The total number of photons
emitted per atom in such a process Ni,4 was shown to be
typically of the order of v/vr, i.e. < 1.

III. SPECTRUM OF THE SCATTERED LIGHT

Before we turn to the calculation of the properties of
the light scattered from the system, we have to specify
the initial conditions for Egs. (9) and (10) at ¢ = —oo.
For the class A model, we assume that initially the
ground state energy levels were populated in accordance
with a Bose-Einstein distribution (BED) for noninter-
acting atoms in the harmonic well. The mean number of
atoms in the 7ith level at ¢ = —oo is therefore

Nj = (g:figﬁ) =ze Pws /(1 - ze_B“"‘), (17)

where 8 = 1/kT, and z is the fugacity. The relation
> 2 Ni = N determines z as a function of 8 and N.
Below the critical temperature 7., and in the appropri-
ately defined thermodynamic limit [19,20], z =1 and N,
becomes extensive. In all of the numerical examples pre-
sented below we shall, however, use BED for finite N
which, rigorously speaking, exhibits a “smoothed” phase
transition only. Some properties of BED for finite NV are
illustrated in Fig. 1, where we plot the temperature Bw;
as a function of the ground state occupation Ny for the
finite system we are considering.

After specifying initial conditions, we can calculate the
spectrum of scattered photons. Thus, using the Hamil-
tonian (1), we derive the Heisenberg equation for the
photon annihilation operator,

ag, = —ickag, —io(k) D ghén - ezanam(k),  (18)

n,m

and a Hermitian conjugated one for a%ﬂ. These equations

are now solved perturbatively with respect to the atom-
photon field coupling p(k). The formal solution of Egs.
(18) is

ag,(t) = e 7" (—00) —ig(k) Y nam (k)

t
y / a0z L ()gl(t).  (19)

The perturbative solution is then obtained by inserting

0.20

3
g o.10
10*
0.05
10°
10° ,
107 100
0.00 : : : + t : t
109 10" 102 10 10* 10° 10% 107 108
No

FIG. 1. The dependence of Bw; on the ground state occu-
pation Np for various values of V.
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gi(t), €x(t) constructed from Egs. (9) and (10), (11) and
(12), and (13) and (14).
The total spectrum of scattered photons is defined as

C(k,u) = Jim (al (t)ag,(8)), (20)
and can be divided into coherent and incoherent parts,

C(k, ) = Ceon(k, p) + Cin(k, ). (21)

ny,my,nz,m2
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The coherent part is, as in the single-atom case, propor-
tional to the modulus squared of the Fourier transform of
the mean atomic polarization. The incoherent part origi-
nates from the quantum fluctuations of the atomic polar-
ization. Although in experiments only the total spectrum
can be measured, the division into coherent and inco-
herent parts is meaningful since they have significantly
different angular characteristics, as we show below. The
total spectrum takes the form

[nﬁ17711 (E)] l."r’ﬁ'zﬁlz (E) Z Nl m, (EL) [nfif‘,'ﬁig (EL)] *

=
ny,7

o~

oo o0
y / dt, / dtye—i(ck—wr)tr gilck—wr)ts <fr:[; (t1) - ELga, (tl)gvTTz (t2) finy (£2) - 1) (22)
—o0 —oo

In the perturbative limit, we now insert the solutions of Egs. (9) and (10) into Eq. (22). At ¢ = —oo, the Heisenberg
picture coincides with the Schrodinger picture, so that we omit in the following the explicit time dependence of the
operators at t = —oo. Since initially all atoms are in the ground electronic state, we obtain

<f—;r,1 (t1) - €L97, (tl)g:r.12 (tz)f:;lz (t2) - €L> = (g:.l,lgﬁlg:.izgﬁrz) sin [A(tl)] cos [A(tl)] sin [A(tz)] cos [A(tz)]
+(gf~trl & - fa e f,%,ga;) sin® [A(t1)] sin® [A(t2)], (23)

where the expectation values () with respect to the BED remain to be evaluated.

We define two quantities that describe single-atom re-
sponse [17,18]. The single-atom spectrum can also be
written as a sum of coherent and incoherent parts,

S(w) = Scon(w) + Sin(w), (24)
with w = (¢k — wr)/vL, and

3 v c

Scoh,in(Z) = 8% 2 k_§(€E” <€) Weoh,in()- (25)

The dimensionless spectra Weoh in(z) are defined as

2

Weon(z) =~ [ et cos [A(t')] sin [A(¢)]dt'| ,
(26)
Win(z) =+ /_°° e~ @@Lt gin? [At")]at’ (27)

The analytic formulas for the single-atom spectra
Weon,in(w) for a variety of laser pulse shapes can be found
in Refs. [17,18]. For instance, for a hyperbolic secant
pulse 1/ cosh(yrt) of area 27 [21],

Weon(z) = mz?/ cosh®(mz/2), (28)
Win(z) = 72/ sinh®(7z/2). (29)
In the following, we shall concentrate on this case only,

and use the above expressions in numerical calculations.
The results that we shall present for pulses of 2wrK area

[
are universal, however, and only weakly depend on a par-
ticular pulse shape.

Using the relation

1

X3
i

(gjgll 97, 9;2 gy ) Weon (@)

2

+<gI‘i'1€L'fiilgLif,—;rzgﬁ'z)mn(W) . (31)
Making use of the properties of the BED, we get
(gf;.lgﬁlg%gﬁé) = 8715, Na, 8y, Na,
+8y 2, Oy Oy ({ (0, 97,)%) — NE,)

+85,7,0a,75 Nay (1 + Na, ) lay2ay,  (32)

and
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(9:1:15’1: - [, €L - f,gzgﬁ;) = 85,7, 071 7, Nay - (33)

Inserting the above expressions in Eq. (31), and per-
forming tedious but elementary calculations we finally
obtain analytic expressions for the spectra. In particu-
lar, the coherent part takes the following form:

Cin(F, 1) = Scon(@) 3 6NZ|nan(F — L) [* + Secon(@) 3 37 Na(1+ Na) nas (E — kp)|* + N Sin(w).

It is worth noting that the incoherent spectrum (35) con-
sists of three parts coming from (i) quantum dispersion of
the occupation numbers § N2 = ((gj.igﬁ)z) - (g:’-igﬁ)z, (i1)
processes of creation of the nth wave packet accompanied
by annihilation of the 7'th one for @ # 7', and (iii) the
single atom incoherent spectrum. Each of these contri-
butions can be evaluated analytically (see Appendixes C
and D). Obviously, both coherent and incoherent spectra
reflect quantum statistical properties of atoms, since they
depend on Ny’s, which are described by Bose-Einstein
and Fermi-Dirac distributions for bosons and fermions,
respectively. Additionally, the first two terms in Eq. (35)
for the incoherent spectrum depend explicitly on the sta-
tistical properties of atoms through 5N§ and the factor
(1 + Ngz:), which is a final state bosonic degeneracy en-
hancement for the Raman process involved. The later
factor is replaced by (1 — Nj:) for fermionic atoms [22].

The total number of emitted photons can be obtained
by integrating the spectrum,

Neot = Z/dE C ).
M

Obviously, Nt can also be divided into coherent and
incoherent parts. By fixing the direction of k and inte-
grating over the azimuthal angle ¢ one can also define
an angular distribution of photons dNy(6) [and, corre-
spondingly, dNoh(0) and dNj,(6)]

(36)

dNtot (0) = choh(o) + len(g)
27
_ sin(B)dGZ/ d<p/k2dk k),  (37)

where 0 is the angle between k and EL. Analogously,
one can define an integrated spectrum by fixing |k|, and
integrating the spectrum over the full solid angle.

IV. DISCUSSION OF THE SPECTRUM

The coherent spectrum is proportional to N2, whereas
the incoherent part is typically of the order of N only.
This means that when the number of atoms in the trap
is large, one expects that the number of coherently scat-
tered photons N, will dominate over the number of
incoherent ones, Nj,.

4717

2

Ccoh(’;;a f") = Scoh(w) ) (34)

ZNﬁ ar(k — kL)

The analytic expression for the coherent spectrum is de-
rived in Appendix B. The incoherent part of the spec-
trum, on the other hand, can be expressed as

(35)

PR

[
As shown in Appendix B, the coherent spectrum Eq.
(21) can be simplified to the following form:

oo l
R z
Ceon(s 1) = Seon(®)| 3 (7=, “tgmys
=1

2
x exp [ — 3(F — z)%a coth(ifw/2)] | -

(38)

Strictly speaking, as N — oo Eq. (38) can be used only
for T > T.. For finite N it can be, in principle, used at
all temperatures, but as T — 0 the convergence of the
series in Eq. (38) becomes very slow.

Note that according to Eq. (38) the range of possible
scattering angles is determined by the size of the trap
and a temperature-dependent factor that results from
destructive interference of different 7 terms in the sum
entering Eq. (34). As T grows, z — 0, and only the first
term in the sum in Eq. (38) remains relevant. We obtain,
then,

Ceon(ky 1) = Scon(w)N2 exp [ — 2(k — k1)%a%/Bw;].
(39)

For T ~ 10 puK, Bw; ~ 5 x 107° and the scattering will
occur practically in the forward direction and will cover
only a tiny solid angle with half angle < 1.0 x 10~%. The
total number of coherently scattered photons becomes,
then,

373/2 v Nz( Bws )5/2(2)3.

Nco = -
b 16 vz 2a2k2 L

(40)
In deriving Eq. (40) one has to take into account the fact
that the single atom spectrum W_.n(z) behaves as oc 2
for z — 0.

For N = 108, @ = 10 pum, N, will be of the order of
2% of N for a 100 ps pulse and 2 x 107%% of N for a
10 ps one. As we see, our theory is self-consistent in this
high temperature limit, since N < N.

As T decreases, more and more terms in the sum over
l in Eq. (38) contribute and more and more photons are
emitted. The critical value of Bw; for BEC may be esti-
mated to be (Bw;)e ~ (1.202/N)¥/3 ~ 2 x 1073 [19,20].
Amazingly, numerical analysis of the expression (38) in-
dicates that for temperatures higher than (even close to)



4718 L. YOU, MACIEJ LEWENSTEIN, AND J. COOPER 51

T,, only a few terms in the series (38) are relevant. In
other words, the high temperature approximation breaks
down only very close to the critical point. In this case,
the the single term on the right-hand side (rhs) of the es-
timate (40) should be replaced by a sum of a few similar
terms that differ by numerical factors of the order of one.
Therefore, to get a rough estimate we may still use the
expression (40) and obtain Nco, > N for a 100 ps pulse
and Neon = 4%N for a 10 ps pulse for T greater than
(even close to) T.. As we see, our theory is beyond the
limits of its validity for 100 ps pulses. However, we point
out the very strong dependence on a in Eq. (40); for flat-
ter potentials with larger a, the validity of the theory can
be easily extended into the regime of nanosecond pulses.
For the same reasons as mentioned above [i.e., rapid con-
vergence of the series in Eq. (38)], for T' greater than,
even very close to, T, most of the coherently scattered
photons will be emitted in the forward direction. Thus,
detection of scattered photons is very difficult since, in
practice, they cannot be distinguished from the laser pho-
tons.

Similar conclusions hold also for the incoherent part
of the spectrum at high temperatures. As shown in Ap-
pendix C, the incoherent spectrum can be represented
as

zll+lz
[1 — e—(11+lz)ﬁw:]3

Cin(k, 1) = Seon(®@) >

l1,la=1
x exp [ — (k — kr)2a?f(B,11,12)]
+NScoh(w) + NSin(w)7 (41)
with

(]_ — 6—113‘0:)(1 _ e—lzﬂwe)
1 — e~ (litl2)Bw: :

f(B,l,l2) = (42)

It can be proven that for arbitrary l,,l> > 1 and 3,
0 < f(B,l1,12) < 1. (43)

As T grows, only the term corresponding to l; =13 =1
contributes to the sum in Eq. (41), and the incoherent
spectrum becomes

Cin(lzv w) = Scoh(w)Nz(/Bwt/z)s
x exp [ — %(E — EL)2a2Bwt]
+NScon(w) + N Sin(w). (44)

Numerical analysis of the expression (41) leads to a
similar conclusion as in the case of the coherent spectrum.
For T greater than (even close to) T¢, only a few terms
in the series on the rhs of Eq. (41) are relevant, and
the high temperature expansion, works amazingly well.
Using this expansion we can estimate that for T greater
than but close to T, i.e., for Bw; ~ 2 x 10™3 and 300
ps pulses, the number of incoherently scattered photons
is much less than N. Note, however, that they may be
emitted into the full solid angle 47, since now the phase
matching introduces a small factor Bw; in the exponent.

The situation dramatically changes when T' < T,.. The
spectrum will contain a new term arising from the con-

densate. Assuming that on average there are Ny atoms
occupying the lowest energy state with # = (0,0,0), we
obtain for the coherent part

-

CBEC(k, 1) = Scon(w)NZexp [ — (k — kz)%a?].  (45)

As we would expect, the coherent scattering now covers
a much larger solid angle with half angle ~ 1.0 x 1072,
At a distance of 1 m from the trap the scattered photons
will be about 1 cm off the optical axis. The total number
of such photons also grows dramatically as Ny grows and
T becomes smaller. We obtain

1
NBEC = N2 : 46
coh 0 L Zk:%az ( )

The validity of the theory requires that N, < Ng. For
a 100 ps pulse this condition holds provided N, < 107.
For N = 108, Ny will in fact reach this value just below
the critical temperature [No/N = 1 — (T/T.)3]. About
10% photons will be scattered coherently into the solid
angle 4w /(kpa) as (1 — T'/T.) becomes ~ 3 x 1073, For
10 ps pulses, our theory is valid even if all the atoms were
in the condensate.

The incoherent spectrum, on the other hand, in the
presence of a condensate includes the term

CEEC(k, u) = —(No + 1)Scon(w) exp [ — (E — kz)%a?]
+(2Ng + 1)Seon(w@) + NSin(w).  (47)
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FIG. 2. The dependence of the number of coherently (tri-
angles) and incoherently (diamonds) scattered photons on the
condensate occupation Ny for (a) 7o = 1/vr = 100 (ps), and
(b) 7o = 1/ = 10 (ps) with N = 108.
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FIG. 3. The number of incoherently scattered pho-
tons due to the fluctuations of the condensate occupation
SN = No(No + 1) for 7 = 1/ = 100 (ps) (solid line)
and 7z = 1/yr = 10 (ps) (dashed line). Diamonds denote
the calculated points. For weakly interacting gases, this con-
tribution should be subtracted from the results displayed in
Fig. 2.

This expression is derived under the assumption that the
fluctuations of Ny correspond to those of the coherent
state, i.e., SN2 = Np [24]. The number of incoherently
scattered photons due to the condensate remains much
smaller than N in the whole regime of parameters con-
sidered.

The above analysis is well supported by our numerical
findings. In Fig. 2 we present results concerning the total
number of coherently and incoherently scattered photons
calculated according to Eq. (38) and Eq. (41), respec-
tively. In the limit where Ny is a significant fraction of
the total number of the atoms, we notice that the number
of incoherently scattered photons also shows a quadratic
dependence on Ny, since, for class A models as used in
Egs. (38) and (41), strictly speaking, §NZ = No(Np + 1)
because a Bose-Einstein distribution with no interaction
is used. According to the discussion above, a more ap-
propriate approach would be to set N2 = Ny [24]. In
other words, a correction has to be made whenever in-
teractions between atoms exist. In Fig. 3, we plot the
number of incoherently scattered photons due to fluc-
tuations of the condensate occupation using the expres-
sion JNZ = No(No + 1) which is used in calculating Eq.
(41) rather than §NZ = Ny. Comparing with the results
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FIG. 4. The angular and spectral dependence of the scat-
tering amplitude squared for (a) coherent scattering as given
by Eq. (38), and (b) incoherent scattering as given by Eq.
(41), for No = 5 x 107 with N = 105.

presented in Fig. 2, we see that those photons repre-
sent the dominant contribution to the incoherent scat-
tering that should be excluded in realistic interacting
systems. Therefore, for the two cases considered, scat-
tering is dominated by coherent events (Ncon > Nin),
and the perturbative calculation is self-consistent, since
Neon + Nin < N. We plot these quantities as a function
of No [which is equivalent to plotting the temperature de-
pendence as given in Fig. 1]. In Fig. 4 we plot the coher-
ent scattering phase-matching amplitude squared [from
Eq. (B9)],

oo 7m . .
fczoh(w —wr,0) = Z m exp [ — %(k — L)za2 coth(m,@wt/2)] s (48)
m=1

as well as the incoherent phase-matching amplitude squared [see Egs. (41) and (D5)],

le +12

Fi(w—wr,0) = i

I,l2=1

These quantities basically represent the collective
spectral-spatial response of the atoms due to phase
matching. For the coherent scattering, there are two
basic features. The narrow peak in the middle of the

[1 — e_(ll+lz)ﬁwt]3 exp [— (E - EL)Zazf(’B’ ll’l2)]' (49)

[

surface results from the phase matching for the field scat-
tered from noncondensed atoms. It has an angular width
~ +/Bwi/ka, and a frequency width ~ +/Bws(c/a). On
the other hand, the broad overall background is due to
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FIG. 5. The angular distributions of the scattered photons,
for No = 10® (solid line) and No = 5 x 107 (dashed line) with
N = 10%, (a) coherent scattering as from Eq. (38), and (b)
incoherent scattering as from Eq. (41); 7 = 100 (ps).

the condensate and has an angular width ~ 1/ka, and
a frequency width ~ c¢/a. Very similar conclusions hold
for the incoherent scattering amplitude squared except
that the angular distribution is now significantly broader.
Note also that in Eq. (41) for the incoherent spectrum,
two additional terms NS.n(w) and NSiy(w) give rise
to an extremely broad single atom dipole angular distri-
bution. However, their contribution to the total num-
ber of scattered photons is small, ~ Nvy/vr. In Fig. 5
we present a set of plots for the angular distributions of
the scattered field, for high and low temperatures (above
and below the condensation point). In Fig. 6 we present
the frequency spectrum for photons emitted at an angle
1/(krpa) with respect to the propagation axis of the laser
pulse. In the parameter regime we are considering, the
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FIG. 6. The frequency spectrum for photons emitted at an
angle 1/(kra) (with respect to the propagation axis of the
laser pulse) calculated from Egs. (38) and (41) for Ny = 10°
(solid line) and No = 5 x 107 (dashed line) with N = 10%, (a)
coherent scattering, and (b) incoherent scattering; 7, = 100
(ps)-

dominant contributing factor is Weon(w) for both coher-
ent and incoherent spectra.

V. SQUEEZING SPECTRUM

Calculations of the squeezing properties of the scat-
tered photons can be performed analogously to the calcu-
lation of the spectrum. First, we calculate the following
auxiliary quantity:

M(k, ) = lim <a£.“(t)a£.“(t)>. (50)

t—oo

As before, we obtain

—(gk, 95, 9%, 975 ) Weon(®) +(9k €L - Far€L - Ff 95, ) Wee(@) | (51)
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where

W) =2 [

— 00

[ ]

e Lt gin? [A(t)]at’

oo
X / et cos? [A(t")]at”

= —Win(z) + 27y,6(z) /:’0 sin? [A(t))]dt'. (52)

For a hyperbolic secant pulse of the area 27, we have
Wse(z) = —Win(z) + 476 (). (53)

Min(R, 1) = =Seon(w) 3 6NE | (F - kL)|* = Scon(@) 3

In Eq. (56) we have defined the corresponding single-
atom squeezing spectrum as

3 v ¢

Sse(@) = 872 % Q

(&, - €2)* Wic(@). (57)

The squeezing properties of the scattered field can be
measured in homodyne or heterodyne type measurements
in which the scattered field is mixed with a strong co-
herent signal [25]. Photon counting measurements on
the combined signal reflect the squeezing properties of
the scattered field. In particular, since in the present
case the coherent signal dominates over the incoherent
one, a direct measurement of the photon statistics in the
scattered light will also provide information about one
particular quadrature of the field. These types of mea-
surements would be difficult to implement for the case of
short pulse scattering. But measurements based on di-
rect interference of broadband squeezed pulses have been
proposed recently [26].

In order to characterize squeezing properties of the
scattered fields, we introduce a squeezing spectrum. We
use the expression of the squeezing spectrum based on
conventionally defined quadrature fields. In general, the
two (Hermitian) quadratures fields can be defined as

7 1 i —i

zy(k,p) = E(a,;,ue ¢/2 4 a%ue #/2y, (58)
- 1 ; s

za(k, ) = - (ag ,e™/* —al e™/3), (59)

where ¢/2 denotes the quadrature phase relative to the
local oscillator used in the homodyne-heterodyne mea-
surement. The squeezing spectrum CSC(E, u) is defined
as the normal ordered variance of the quadrature field
:1:1(1:5, 1), and is given by
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Following steps analogous to those in the preceding sec-
tion, we arrive at the final expression

M(];, p’) = Mcoh(i‘;v /J') + Miﬂ(’:’ p’)’ (54)

where the coherent part is
Mcoh(Ea /l/) = ""Scoh(w) 50 N*ﬂ‘ﬁ(E - EL)

= —Ccoh(ka 12

~

(55)

whereas the fluctuation part (which contributes to the
squeezing spectrum) is

Na(N + 1)|nam (B — kz)|* + NSue(w).  (56)

3

. m#FE

Csclkyp) = (23 1) — (: 21 2)?
1

= 5 [Cin(R, ) + cos(¢) Min(F, )]

Il

1

=5 [1 - cos(¢)] Cin(k, 1)

3 v ¢,
=

2 57 3 (G E)8(@) |, (60)

+N cos(¢)

2

where : z; : denotes the normal ordering of the field oper-
ators. The squeezing spectrum defined above determines
also the Mandel Q parameter for each of the modes [27].
Negative value of the squeezing spectrum for a particular
mode signals sub-Poissonian statistics and, equivalently,
squeezing for photons of the corresponding momentum k
and polarization u.

We found that for any ¢ and w # 0 the signal is
mostly super-Poissonian. It may, however, exhibit a nar-
row range of sub-Poissonian behavior when cos(¢) is neg-
ative. There are two interesting limiting cases of the ex-
pression (60). When ¢ = 0, the scattered radiation is
coherent at all frequencies except w = 0, where it ex-
hibits strong super-Poissonian behavior. When ¢ = n
the scattered light is super-Poissonian at all frequencies
except wo = 0, where it exhibits strong sub-Poissonian
behavior. The case ¢ = 7 can be realized, for instance,
if the strong coherent signal has the same phase as the
coherent part of the scattered field [note the minus sign
in Eq. (55)].

VI. CLASS C MODELS IN THE POSITION
REPRESENTATION

In this section we first reformulate the theory for class
A models in the position representation. This approach
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will allow us to extend the theory to class B or C models,
i.e., to include effects of atom-atom interactions.

Under the approximations that we have made in Sec.
II, the Hamiltonian describing the evolution of the system
during the laser pulse becomes

H=> wrf]fa
+%T(7Lt) [exp(iwnt) ;y};& fat Hc] (61)

Note that we are considering here the quasiresonant case
such that wr, &~ wo + k%/(2M). Also, the trap energies
wf and wg, do not enter Eq. (61). We may rewrite this
Hamiltonian in the position representation by introduc-
ing the atomic annihilation fields

Ty (R) = gavi(R), (62)
B (R) =Y enva(R), (63)

and their conjugates; the ¢§(ﬁ), 1/)%(1_%‘) are the wave
functions for the corresponding trap states. We also in-
troduce the excited wave packets field

Us(R) =3 favi(B)

- -

= exp(—iky - R)T.(R), (64)

and its Hermitian conjugate.
The Hamiltonian (which is valid only within the dura-
tion of the pulse) becomes thus

H= /dﬁ wpBL(R) - T4 (R) + %T(m)
x [ expiwz) / dR WY(R)ey - §,(R) + Hel. (65)

This Hamiltonian describes a sum of independent bosons
at each spatial position. Since the motion in the trap
potentials is frozen within the duration of the pulse,
the Hamiltonian does not contain any information about
the trap potentials. In the position representation the
Heisenberg equations for the atomic fields are local, and
do not couple atomic operators at different locations.
But, of course, this does not mean that the trap potential
does not play any role. On the contrary, it determines
the initial conditions for the Heisenberg equations for the
atomic fields. These conditions correspond to BED for
the atoms that are in the ground electronic state in the
trap. This initial BED is thus related directly to the ex-
pansion (62) and (63) and can be most conveniently ex-

pressed as a vacuum state for the operators ¥ #(R) and

in terms of the operators 9:‘;’ gii-

The reason why we could neglect the dependence on
w2 and wg in (65) is that the relevant motion in the trap
(wt) is much slower than the coherent driving process
(). Motion is not effected by the trap potentials within
the duration of the laser pulse. It is thus tempting to
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check whether the similar situation holds for atom-atom
interactions.

Let us begin the discussion with short range atom-
atom interactions respomnsible for atomic collision pro-
cesses, and postpone the discussion of long range dipole-
dipole forces for a moment. In order to include
short range atom-atom interactions in the Hamiltonian
Eq. (65), one has to add three terms [12] describing
ground-ground, ground-excited, and excited-excited in-
teractions. Within the shape-independent approximation
these terms all have the following form [12]:

Hyy = ”9’79 / AR Ul (B) WS (B)T,(R)W,(R), (66)
Hye = bye [(AR WY RTYE) - BB, (67)
Hoo = 255 [ R T - [)(B) - 85(B)] - 8,(), (69)
where

bagugece = 4Taggge.ce/M, (69)

with agg, age, and ace denoting the scattering length for
the ground-ground, ground-excited, and excited-excited
interactions, respectively. Note that the addition of
atom-atom interactions to the Hamiltonian (65) does not
affect its locality—it remains still a sum of independent
contributions at different locations due to the shape-
independent approximation [12,23].

Obviously, atom-atom interactions introduce collective
energy level shifts and deform atomic wave functions. We
can estimate those shifts from perturbation theory to be,
at worst, of the order of the quantity bgg ge e times the
atomic density. Taking the density to be N/a3, the scat-
tering lengths agg ge,ce to be of the order of few nanome-
ters, and N = 103, these shifts are at most of the order
of 1 MHz. This estimate is, in fact, exaggerated since,
in reality, due to atom-atom repulsion, the density of
the system will be much smaller (for positive scatter-
ing lengths as required for the BEC). The latter state-
ment can be shown to be true in the framework of self-
consistent Bogoliubov-Hartree theory (see, for instance,
Ref. [12] and references therein). As we see, the shifts are
large in comparison with w¢, and definitely play a crucial
role in the long time behavior of the system. They do,
in fact, determine equilibrium properties of the system.
On the other hand, they can be safely neglected within
the duration of the short laser pulse, since they are much
smaller than ~r,.

The only interactions which are not yet accounted for
are the collective dipole-dipole interactions due to the
exchange of transverse photons. They were eliminated
from the theory, due to the linearization procedure dis-
cussed in Sec. II. But similar arguments as presented
above allow us to neglect the dipole-dipole shifts within
the duration of the pulse. The magnitude of these shifts
can be estimated to be Nd?/a3 ~ N~v/(kra)®, where d
is the electronic transition dipole moment. For N = 108
the dipole-dipole shifts are of the order of GHz. Neglect-
ing them is therefore already quite reasonable for 100 ps
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pulses, and becomes more appropriate for shorter pulses.

All these estimates show that the Hamiltonian (65) is
generally valid within the duration of the laser pulse for
class A, B, and C models provided that the collective
spontaneous emission rate stays small compared to .
The differences between various classes of models come
from the fact that each of them may impose different
initial conditions for the Heisenberg equations of motion

1
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of the atomic operators.

It is also interesting to observe that in order to cal-
culate the spectra it is sufficient to know the equilib-
rium density of the system, the density-density correla-
tion function, and their respective Fourier transforms.
Elementary calculations, analogous to those discussed in
preceding sections, yield

Clk,w) = 5 lek)PIcs &, [ dFi [ aft {([w)(Bywy ()RR [w) (Byw (R)e 0 R] ) Wonn ()

+<WM®6~¢A®8@*”ﬂ[&

In particular, the coherent spectrum becomes

Ceon(k, 1) = Scon(w) ‘/dﬁ<@;(ﬁ)\pg(ﬁ)ei(ﬁ—h)~é> 2

(71)

As we see, the evaluation of the coherent spectrum re-
quires only the knowledge of the mean atomic density at
equilibrium. The above result can be compared to ex-
pression (38) for the coherent spectrum obtained for the
case of noninteracting atoms. We see that in place of the
scattering amplitude defined in Eq. (48), we now have a
form factor which is the Fourier transform of the mean
atomic density distribution. At high temperatures, one
can use the Boltzmann distribution with the appropri-
ate size for the spatial density profile. The results for
class A and C models do not differ much in this situ-
ation. In both cases, the incoherent part of the spec-
trum does depend on the density-density correlations via
(\1:;(1'%’)\1:9(R)w;(ﬁ')\pg(é')), and accounts for the quan-
tum statistical effects analogous to those considered in
the study of the refraction index of a degenerate Bose gas
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FIG. 7. The angular distribution of coherently scattered
photons from the condensate for the class A [solid line cal-
culated from Eq. (38)] and the class C model [dashed line
calculated from Eq. (71)] for No = 10°. We have assumed a
scattering agg = 107%a = 1 nm and 77, = 100 (ps).

TRy (B)e O E | Wi (o) } (70)

[

by Morice, Castin, and Dalibard [28]. For low temper-
atures, below the condensation point, one can construct
the mean density for the interacting system using the
self-consistent Bogoliubov-Hartree approximation. Here
we shall consider only the case T' ~ 0, and use the ap-
proximate solution of the self-consistent equations [29]

PPEO(R) = (W} (R) Wy (B)mro ~ 20 (B3 — R?) (72)

for R < Ry and zero otherwise. The size of the conden-
sate in this approximation is given by

Ry = a(60Npagy/a)'/®, (73)

where a4y refers to ground-ground scattering length.
The coherent spectrum in this approximation becomes

CEEC (F, ) = Seon() 2og'e
2
x |sin(€) +3°°Zﬁ - 35";# . (14)

where ¢ = |k — kz|Ro. The above result should be com-
pared to Eq. (45) for the case of noninteracting atoms.
As we see, the scattering occurs mainly in the forward
direction and is limited in divergence by the size of the
condensate Ry. Contrary to the previously discussed case
of a noninteracting system, it does not have a Gaussian
shape. It decays as 1/£®, and contains characteristic
oscillations in the wings, due to the singularity of the
derivative of the density (72) at R = Ro. Comparison
of the angular distributions obtained for class A and C
models is shown in Fig. 7.

VII. CONCLUSIONS

In this work we have investigated theoretically the
problem of scattering of intense short laser pulses off a
system of cooled atoms. We have presented a detailed
theory of such processes, and have examined carefully
the regimes of its validity. We have demonstrated that
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by scattering pulses of area 2r K one may detect the on-
set of the Bose-Einstein condensation. In the regime of
validity of our theory, 2wrK pulses leave the system of
trapped atoms practically unperturbed. Above T, both
coherent and incoherent scattering is very weak and oc-
curs in a very narrow cone in the forward direction due to
phase matching effects. As T becomes smaller than T,
angular distributions of scattered photons as well as their
numbers change dramatically. The number of scattered
photons increases, while the angular divergence for the
coherently scattered photons becomes determined by the
condensate size. Scattered radiation is typically super-
Poissonian, but might also exhibit squeezing in a narrow
range of frequencies at the exact resonance. Most of the
theory presented in the paper concerns class A models
which neglect atom-atom collisions. We have, however,
generalized the theory to include all relevant atom-atom
interactions. Using the position representation we have
related the spectra to the mean density and the density-
density correlation function in the system. For interact-
ing systems, angular distributions of the scattered pho-
tons differ from those corresponding to noninteracting
systems. Scattering of short laser pulses on a system of
trapped atoms thus provides an interesting way to de-
tect the actual state of the system, i.e., its temperature,
degree of condensation, etc. It also provides useful infor-
mation for characterizing the effects of atomic collisions.

We have conducted similar calculations for a system
of trapped fermionic atoms. Since the validity of the ap-
proximations used in the fermionic case are quite different
from the bosonic case, we will present those results and
comparative studies between the bosonic and fermionic
atoms elsewhere [22].
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APPENDIX A: HARMONIC OSCILLATOR
NOTATION

In this appendix we introduce some basic notation for
the center of mass motion of atoms in the trap. The trap
potential is assumed to be that of an isotropic three-
dimensional harmonic potential

Vi(R) = 1Mw?R? =

%Mmf(a:2 +y? + 2%). (A1)
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The Hamiltonian #;, describing the motion in the poten-
tial (A1) can thus be represented

Hr = Hhe + Hiy + Hioz, (A2)

where

th . hu)tblb:c (A3)

is a Hamiltonian of a simple one-dimensional harmonic
oscillator, for which b, (b}) are the corresponding anni-
hilation (creation) operators. The eigenstates of #};, can
be constructed as

) = |nz) ® ny) ® [n2), (A4)

with |n;) being the eigenvector of H,. It is easy to check
that the trap size (related to the size of the ground state
wave function) is

1

= 1(0]2® + y* + 2%|0) = A5
3(0lz® + y* + 2°|0) 2Mw,’ (A5)

and that the position operator can be written as
R =a (bl +bs,b} + by, b +5.). (A6)

APPENDIX B: COHERENT SPECTRUM

In this appendix we give key steps leading to the for-
mula Eq. (38) for the coherent spectrum. We start with
the summation as given in Eq. (21)

=" Nanza (5k), (B1)
where 6k = k — kz. Using the identity
Na = zeBwa Zzl -—lﬂw" (BQ)
T ] —zeBwn
we can represent
L(6k) = Y 2 Tea (N ey (1) Ze (). (B3)
=1
Here,
Tea(l) = Y €710 (my e @Rea®itb)in,) . (B4)

Mg

Using the Baker-Haussdorf formula [27], and unity de-
composition in terms of coherent states

1
1=+ [ Eodlooel, (85)
we obtain
Icz(l) _ 15k2 z; /dz —iaféza;o,e—i&ié,ago;

Ie—lﬁw,blb,

Z IneXn

Pz>' (B6)
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The sum over 7 can be easily performed so that
Icc(l) — 6%5k2a21 / d2pwe—i5E,apze—iJE,ap;

™
X exp [(e_w“" — l)p;pm] (B7)

The remaining integration over g, yields

1 1 lBw
I (l) = 1= o=ihar &XP [-§6k§a2 coth(%)] . (B8)

Finally we have

() = Zz _wwt)

X exp [——~6k2a2 co th(l'Bwt )] (B9)

APPENDIX C: INCOHERENT SPECTRUM—
THE FLUCTUATION PART

In this appendix we calculate the part of the incoherent
spectrum due to the fluctuations of N3, i.e., the first term
in Eq. (35). Thus we need to perform the summation

where we have defined

oo

Lo (6F) = 3 et

nge=0

T (6Kz)|?

(C2)

and used the identity (which applies to noninteracting
bosons—see main text for discussion regarding SN2 = Ny
being more appropriate when ground state interactions
exist).

6NZ = Nz(Nsz+1) = Zzz' —iAwn, (C3)
It is well known that
Tnan, (0F) = (nafe™Ret2 40 |n,)
= L,_(6k2a?)e~2%ka", (C4)

where L,_(6k2a%) are the Laguerre polynomials of or-
der n, (see, for instance, [27]) which has the following
integral representation [30]:

I;(0k) = ZSMIn (68)|? o (oka) = 1 s\ e ©5)
OT; nz( =@ - 27 T . o
= Z lZle_lﬂwg‘IiwI,'yIiz, (Cl)
=1 Therefore, we obtain
J
- 4 had s sk2a
Tia (ka) - 571; e?d,’_ nzzo e—lﬂu,nm (nzie—zék,a(bl +b,)|nm)e—%6k:a26n, In(1— _'iz_ )
1 e’ _1l§k2g2 1 B[ ()
=— ¢ —d Skza® ____— —=6k2a2 coth| ——= ) |.
smif T T 1 A exP[ gt=® O T (C6)
[
In the above expression, we have used the same method =7+ 70, (C10)
as described in Appendix B to perform the summation
over 77. We have also defined and arrive at the final expression
~ 8k2a? 1 _1 _ 1w
IBI(T) = lﬂwt —1In (1 — _..:_a_) . (C7) Izzx(l) = me ;Me:aze TOIO(ZTOe‘BTt)
It is easy to check that the following identity holds: 18w
Xexp[ ~6k2a’®co th( t)], (C11)

am\
h('T) =

where

b 1Bw, _ 2 To
2 1—e iBwe 7 479’

(C8)

Jkﬁaze‘lﬁ“"

To = .
0 1— e~ lBw:

(C9)

We change the integration variable in Eq. (C6) to

where Io(z) denotes the zeroth order modified Bessel
function [30].

As we shall see below, the part of the incoherent spec-
trum calculated in this appendix cancels out from the
final expression for the total incoherent spectrum. Nev-
ertheless, we have decided to include this appendix, since
the method developed above can be useful in other cases
(one-dimensional traps, anisotropic traps, weakly inter-
acting atoms in traps).
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APPENDIX D: INCOHERENT SPECTRUM

To complete the calculation of the first two terms in
Eq. (35) for the incoherent spectrum, we observe that

68) =5 3 Na(Ns + 1) | (6F) |

A R
= ZNﬁ(Nn‘& + 1) [nam (68)|*
- Z&Nﬂn (6F)|. (D1)

The above formula shows that the statistical fluctuation
part calculated in Appendix C will cancel the second term
in Eq. (D1). The first term, on the other hand, can be

|

IV (6k) =

expressed as

IR =N+ > AT, (D2)
13,l=1
where
I (k) = Y emmetlandbony, L (5E,)[7. (D3)

ng,n, =0

In order to evaluate the above expression, we use a tech-
nique similar to that discussed in Appendix B: we employ
the Baker-Haussdorf formula [27] and introduce the de-
composition of unity in coherent states. The summation
over n, and n) can then be easily performed, and we
obtain

% /d2pme—z’6k,a(so;+p:)<pz|e—lzﬁw¢blb= gi0kzabl Libksabs o~ Buwiblbs [0)- (D4)

The above integral turns out to be Gaussian and, after elementary calculations, we obtain the final formula:

1

(1)
(6k ) - 1 — e~ (2+l1)Bw:

which was used in Section IV.

exp [ — 8k2a?

(1- e‘llﬁw:)(l — e_lzﬁuu)] ’ (D5)

1 — e~ (la+11)Bwe
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