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We present numerical results from solving the time-dependent nonlinear Schrodinger equation
(Nl SE) that describes an inhomogeneous, weakly interacting Bose-Einstein condensate in a small
harmonic trap potential at zero temperature. With this method we are able to find solutions for
the NLSE for ground-state condensate wave functions in one dimension or in three dimensions with
spherical symmetry. These solutions corroborate previous ground-state results obtained from the
solution of the time-independent NLSE. Furthermore, we can examine the time evolution of the
macroscopic wave function even when the trap potential is changed on a time scale comparable
to that of the condensate dynamics, a situation that can be easily achieved in magneto-optical
traps. We show that there are stable solutions for atomic species with both positive and negative
s-wave scattering lengths in one-dimensional (1D) and 3D systems for a fixed number of atoms. In
both the 1D and 3D cases, these negative scattering length solutions have solitonlike properties. In
3D, however, these solutions are only stable for a modest range of nonlinearities. We analyze the
prospects for diagnosing Bose-Einstein condensation in a trap using several experiments that exploit
the time-dependent behavior of the condensate.

PACS number(s): 03.75.Fi, 67.90.+z

I. INTRODUCTION

Recent experimental advances toward achieving Bose-
Einstein condensation (BEC) in trapped atomic vapors
[1], [2] provide continuing impetus for theoretical descrip-
tions of the properties of such a condensate. In particu-
lar, diagnosis of BEC in a trap will depend on accurate
knowledge of condensate behavior in the presence of var-
ious probes.

While the condensate ground-state wave function can
be determined by solving the time-independent nonlinear
Schrodinger equation (NLSE) [3], some behavior is best
investigated using the time-dependent version. For ex-
ample, a time-dependent description is particularly use-
ful in the examination of condensate stability. By solv-
ing the NLSE, it is also straightforward to model the
condensate response, even in the nonlinear regime, to an
external perturbation of arbitrary strength and tempo-
ral profile. This response may include the nonlinear cou-
pling between different modes of excitation of the con-
densate. The time-dependent condensate characteristics
are often significantly different from those of an uncon-
densed atomic sample, and may thus provide a useful

*Present address: Joint Institute for Laboratory Astro-
physics, University of Colorado, Boulder, CO 80309.

diagnostic of the presence of BEC. In this paper, we de-
scribe a method for solving the time-dependent NLSE for
a Bose-Einstein condensate at zero temperature, and use
it to explore several of the cases described above. This
technique can be extended to finite temperatures, as will
be described elsewhere.

In the past, most detailed studies have concentrated
on homogeneous or quasihomogeneous condensates with
effectively infinite spatial extents. However, critical dif-
ferences arise in the response of an inhomogeneous con-
densate, for which the detailed effects of its finite size
must be taken into consideration, and for which the ef-
fects of the external trap potential may have important
consequences. One notable set of work into strongly in-
homogeneous systems has involved liquid He adsorbed
in Vycor glass [4]. The particular aspect of these stud-
ies that is most closely linked to our present work de-
scribes how individual pores in the Vycor are filled with
He atoms. In this process, one has to determine the prop-
erties of the inhomogeneous assembly of atoms in a pore
[5]. Of particular concern in this case is the evolution
of the density of states available to the incoming atoms,
especially near the superfIuid phase transition. In this
paper, rather than considering the spectrum of elemen-
tary excitations, we look directly at the behavior of the
condensate in the trap in space and time. These issues
are, however, closely linked.

A situation of considerable interest arises when the
trapped atomic species has a negative 8-wave scattering
length a. In this case, which holds for a number of the al-
kali atoms [6], the nonlinear interaction between atoms is
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II. NUMERICAL METHODS

At zero temperature, the condensate wave function
g(r, t) may be described by a self-consistent, mean Beld
NLSE known as the Gross-Pitaevskii equation [8]. If a
harmonic trap potential is included, this equation be-
comes

zh
' = — V' g(r, t) + 'm~, r Q(r, t)-gg r, t h2

+mU, I@(r, t) I'@(r, t),

where m is the atomic mass, urq is the (isotropic) angular
trap frequency, and N is the number of atoms in the
condensate. Uo describes the interaction between atoms
in the condensate and for very low temperatures has the
form

4~h~a
0 (2)

First, consider a one-dimensional condensate. In order
to facilitate the numerical solution of the one-dimensional
version of the NLSE, we scale the 1D version of Eq. (1)
in terms of harmonic oscillator units,

(
2m~q j

attractive. For 1D systems or spatially homogeneous 3D
systems, the theory of the NLSE with a ( 0 is well devel-
oped. In 1D, the attractive interaction can compensate
exactly for the dispersion of a wave packet, leading to an
integrable, and highly stable, soliton solution [7]. In 3D,
for the homogeneous case, all solutions are predicted to
be unstable [8]. For an inhomogeneous condensate, how-
ever, previous work into the a ( 0 case has been limited.
We find that in 3D the spatial localization provided by
an external trap potential can stabilize the condensate
against collapse, provided that the nonlinearity is rela-
tively weak. This result supports previous suggestions
by Hulet [9] and Clark [10] regarding the stabilizing ef-
fects of a positive external potential on a small trapped
condensate. For the homogeneous case, Stoof [ll] has
shown how a negative scattering length actually changes
the nature of the condensate order parameter. The ex-
tension of that analysis to an inhomogeneous gas has yet
to be done. We do not, therefore, know the precise rel-
evance of the 3D solutions we find for a ( 0 to a phase
transition at; nonzero temperature. We shall, however,
make some general comments on their potential impor-
tance in future experiments.

We also model several prototypical experiments that
demonstrate a number of aspects of condensate behav-
ior in space and time; these might be used to determine
whether a Bose condensate has been produced. Specifi-
cally, in Secs. V—VII, we describe the evolution of a con-
densate that has been released &om a trap, the behavior
of the wave function when the trap potential is subject to
sharp perturbations, and the response of a ground-state
condensate when the scattering length is tuned using an
external magnetic field.

The NLSE thus becomes

+~ I4(& )I'&(& ) (4)

Because N appears as part of the nonlinear potential,
it is necessary to ensure that the wave function is properly
normalized. Specifically, we require

I&(*)l'~* =1

Clearly, this 1D model does not correspond in an obvious
way to a specific situation in BEC, and so the normal-
ization must be defined somewhat arbitrarily. However,
we still include a brief discussion of some of the proper-
ties of Eq. (4) because it yields general insight into the
important effect that dimensionality has on nonlinear dy-
namics and because of its close link with nonlinear optics
[7] [»].

In 3D, for an isotropic trap potential, the ground-state
solution must be spherically symmetric [13], so we need
to consider only the radial part of the wave function,
which we write in the form

~(„) ~4(r)

where A is a constant used to ensure proper normaliza-
tion. With this substitution and the transformation to
harmonic oscillator units

f
p =

I I
r, 7 = cugt ,

(2m~q p

we find that the 3D NLSE becomes an eBectively 1D
equation,

,~4(p, r)
07

~ ~(p r) + —,p 4(p r)
t9p

As before, we require the norm of @(r) to be one, which
means that

l&(p r)l'dp =1

We can take advantage of the time-dependent nature
of Eqs. (4) and (8) to determine numerically their time-
independent ground-state solutions. We begin with the
analytic, normalized, ground-state solutions of Eqs. (4)
and (8) in the absence of the nonlinear terms. We
then apply the full NLSE to these solutions and prop-
agate them through time using the semi-implicit Crank-
Nicolson numerical method for dig'usive, initial value,
partial differential equations [14]. At each time step we
can increase or decrease the value of the nonlinear con-
stant (C~P = 47rNho/wham, CsP = 8A2¹ru) adiabati-
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Thus,

@(~+8r)
@(r)

1 (g(v-+ &-) l
@()1,/ Im {g(v- + 8r) /g (7.) })«8( +~ )/@( ))r '

and so the energy is straightforward to determine from
consecutive time steps of a numerical simulation. %'e
usually calculate p from an average over several hundred
pairs of consecutive time steps to reduce the effect of any
random numerical noise in the individual phases.

Once a ground-state wave function is known, it is possi-
ble to monitor its response to a rad. ially symmetric, tirne-
dependent perturbation in the external potential by solv-
ing the NLSE while changing the potential at each time
step. We describe the results of such calculations in later
sections.

Before continuing, however, we must address the crite-
ria for the lifetime of the condensate in the face of high
frequency excited modes.

III. CONDENSATE LIFETIME AND DAMPINC

There are several issues to consider regarding the sta-
bility of the overall motion of the condensate. The first is

cally until reaching a desired value of C„~. The result-
ing solution is thus the ground state of the NLSE cor-
responding to that C„i. Physically, this technique corre-
sponds to increasing or decreasing either the number of
particles in the condensate or the scattering length. Dur-
ing our 3D calculations, we maintain a normalization ofj ~P(p)~ = 1. This means that the values of the nonlin-

ear constant that we quote are for C„i = 2&a(2mwq/h) ~

in order to satisfy Eq. (9).
The presence of the nonlinear potential creates a limit

to the numerical stability of this method. The Crank-
Nicolson algorithm that we use is stable and unitary for
any size of time step; that is, numerical errors will not
grow with time [14]. However, as a result of the nonlin-
ear coupling between different vibrational modes of the
condensate (as described in the next section), the tiny
perturbations in the wave function caused by random
numerical noise, even at the d.ouble precision level, can
mimic a real excitation of the condensate and thus the
input of kinetic energy into the condensate. This effect
limits our ability to find ground-state solutions at high
values of C„~.

The time-dependent NLSE can also be used to calcu-
late the energy per particle for the ground states found
using the method above. While the probabilities
for these ground states are stationary in time, the wave
function amplitudes contain a time-dependent phase fac-
tor exp( —i@7'), where p is the desired energy eigenvalue
in units of Luq. Now, note that at a given spatial point,
the wave function variation over a time step bw can be
characterized by

the possibility of the coupling of the condensate motion
to any uncondensed atoms that may be present. The
second is the set of conditions for which excitation into
very high energy modes leads to depletion of the con-
densate. A related, but nonphysical, issue concerns the
stability of the numerical algorithm used. Because our
time-dependent models allow us to fully monitor the con-
densate motion, we can ensure that our simulations sat-
isfy the stability criteria set out in the remainder of this
section.

First, let us briefIy examine how coupling to atoms
that are thermally excited, that is, not part of the con-
densate, might affect its motion. This effect will not be
present here because we assume that the system is at zero
temperature. It will, however, affect real experiments,
for which the temperature may be only slightly below
the critical condensation temperature. In that case, it
is expected that thermal atoms will damp the motion of
the condensate via Landau and collisional damping. In
the homogeneous case, Landau damping is the dominant
mechanism. In the case of a trapped gas, however, the
relative importance of collisional damping will increase
due to the lack of a continuum of excited modes, but
should generally occur at a lower rate than for Landau
damping [15]. The assumption that these damping rates
are small compared to the frequency of the excited modes
is equivalent to being outside the region of critical Quc-
tuations, as shown by Eckern [16].

A more important consideration in the present case is
the effect of the direct coupling of the condensate motion
into high frequency modes due to the nonlinear interac-
tion. Any perturbation in the potential causes a corre-
sponding, time-dependent, change in the wave function.
This change in the wave function in turn causes further
variation in the nonlinear potential, and so on. As a
result, the nonlinearity acts to couple the excited vibra-
tional modes of the condensate to one another, which
can eventually lead to the population of modes with a
variety of momenta. (Note that in a finite sized, inho-
mogeneous condensate, there may exist components of
different momenta. In this case, the important criterion
for the existence of a condensate is a spatial phase coher-
ence, not necessarily a macroscopic population in a single
momentum state. ) Because we evolve the solutions to
the NLSE in time, we can observe directly the growth of
such excitations on the condensate following a change in
the external potential. The time evolution of the conden-
sate motion for modes of modest frequency, and including
the nonlinear coupling, is thus fully accounted for in our
model.

It should be noted that vibrational modes with very
high energy become essentially independent of the con-
densate, and for these the mean Beld approximation in-
herent in the NLSE becomes inappropriate. We identify
three related criteria that an excitation must satisfy for
condensate coherence to be maintained, and thus for the
mean field approximation to remain valid. . First, for an
excited mode to be considered a part of the condensate,
its kinetic energy, must not be significantly greater than
the magnitude of the condensate self-energy ~KUo~. Fur-
thermore, the wavelength of the excitation should not
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be small relative to the coherence length of the mean

the density of particles in a given region of t e con en-
sate must remain sufficient y argsa

'
1 lar e that a notion of phase

coherence among the assem y p 'blbl of articles is sensible.
Clearly these criteria are difficult to define in a strict,

They are also closely related to the
n oint 7 .onset of coherence around the condensation point [ ].

the precise p ysicahysical mechanism of the nonlinear coupling
~ ~

between vibrational modes and e ithe time scales associ-
ated with this process. We believe that this coupling will
depend on t e s apes oh h f the excited modes and their rel-

ll as on the size of the nonlinearity,ative energies as we as on
more detai eand will thus be very system dependent. A more i a

numerica s u y o1 stud of the properties of the excite mo es

We believe that the considerations outlined in this sec-
h ld t be of great concern in the work presente

here. Because we can observe the development o exci e
modes, we can ensure ath t our simulations are such that
they unambiguous y sa isb 1 t'sfy the coherence criteria a ove.
Furthermore, we n afi d that the time required for numen-

ifest themselves as visible excitations ocal errors to mani es
uite lar e. In fact, thosethe condensate ground state is quite large. n ac, ose

times are on the same or er as
of real atomic condensates, which will likely decay as a
result of three-body collisions [18]. Indeed, the on y in-

1 t bl b havior we observe in this work is for
solutions with negative scattering lengths and sufficien y
large nonlinearities.

IV. GROUND-STATE SOLUTIONS

62k2 ( i%Upi,4m
(12)

are all unstable [8]. In a homogeneous condensate, long
wave length disturbances will grow and destroy t e con-
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ters, the harmonic oscillator unit of lengt is equivalent
to1.95 @man a „& od C„ f 100 corresponds to a condensate
population of N —28 000.

Figures 2(a) and 2(b) show the variation of the ground-
state energy per particle wit „~ oC for the 1D and 3D
cases, as eter mined t '

d by the method outlined above.
Again, we n goofi d d agreement with the results from a
time-independent calculation.

We would expect the 1D condensate to be stable for all
values of the C„j. We do, indeed, find stable solutions for
Dot posi ive anb h t' d negative values, with a smooth vari-
ation of p over the range shown in Fig. 2 a . n
with a & 0, stable ground states are also to be expected,
and Fig. 2(b) shows the variation of p in that region.
For a ( 0, in contrast, disturbances with wave vectors A:,

such that

As a first demonstration of the methodd of Sec. II we
have determine groun -s ad d- tate wave functions in both 1D
and 3D for a range of values of the nonlinear constant.
These appear in igs. &aj an

em witf h 3D solutions we have compare t em
stud of Ethe results of a previous, time-independent, stu y o q.

(8) [3]. The wave functions in Fig. 1(b), or a, g
11 ith those previous results. We have norma-very we wi ose

ized all of the wave functions plotted in is paper
unity over the ra ia coord' 1 dinate for ease of comparison.

A t t f the stability of these solutions, we avesa es o
h' h theyevolved them through time for w & 70, over w ic ey

0 the non-showed no visible change. However, for a &
linear cog.p ing e weeq. 1' b t n vibrational modes, as mentione

t to ro a ateth I eding section, limits our abi ity to propaga e
a ground-'state wave function indefinitely through ime
without excitation. In fact, this eKect prevents us rom
even finding pure grofi d ground-state solutions for igher values

To place these results in the context of current exper-
imental arameters, we must conver t out of harmonic

m = 2.21 x 10 kg andoscillator units. For Cs, m = 2. x
a 3.45 nm (for a collision of F = 3, m~ = —3 on
E = 3, m p = —3 [19], although a may be tuned using a
ma netic field in this case [20]). A usual magnetic trap
&equency is uq —20vr rad s
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FIG. 1. (a) 1D condensate wave functions wi
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FIG. 2. Ground-state condensate energy per particle as a
function of nonlinear constant for 1D (a) and 3D (b).

densate. However, for a condensate that is localized in
space, e.g. , by a trap potential, low momentum compo-
nents that satisfy Eq. (12) are not present, provided
that the nonlinearity NUO is not too great. Indeed, Fig.
2(b) shows that values of p can be found for relatively
small nonlinearities, but that this energy has an asymp-
totic cutofF at C„& ——1.62. Beyond this point, the
trap potential can no longer compensate for the negative
nonlinear potential and thus a stable condensate cannot
occur. Nevertheless, the fact that stable ground-state so-
lutions can exist at all for atoms with negative scattering
lengths should be of interest, in light of the number of
alkali species with states for which a ( 0. Note that
a small C„~ does not necessarily mean that the conden-
sate contains only a small number of particles. Recent
results have suggested that a can be tuned using an ex-
ternal magnetic field [20]; by tuning a to an arbitrarily
small negative value, it would be possible to have a cor-
respondingly large value for % while staying within the
region of stability.

We emphasize, however, that it may be difIicult to
reach these a ( 0 solutions experimentally via a normal
condensation process [11]. Whether these ground states
can be "grown" using other laser cooling processes is an-
other issue that needs to be addressed. Such a growth
process would, of course, need to stabilize the total num-
ber of atoms in the condensate. When T g 0, ther-
mal atoms will be present and available for scattering
into the condensate. Because the energy of the conden-
sate decreases as atoms are added, N will diverge in this
case, and a stable condensate cannot exist. It is possi-
ble that a stable situation might occur if the increase in
particle number due to condensation were balanced by
the enhanced collisional loss that is predicted to occur in
trapped condensates [18].

V. EVOLUTION IN FREE SPACE

In this and the next two sections, we consider three
relatively simple computational "experiments" to demon-
strate several important aspects of condensate dynamics.

We first consider an atomic sample in a trap. If the
trap potential is turned ofI', the sample will fall freely
through space and may be imaged at a later time using
any of a variety of standard techniques [21].

We begin with 3D ground-state solutions as deter-
mined in the preceding section for three cases: a ) 0,
a = 0 (uncondensed), and 0, ( 0. We then turn off
the trap potential and follow the subsequent condensate
free evolution. This wave packet development appears in
Figs. 3(a)—(c).

These plots display several instructive features. First,
the expansion of the wave function with time is quite
uniform between the three cases. This effect shows that
straightforward wave packet dispersion is the dominant
infIuence on the spatial evolution of the wave function.
The repulsive or attractive interaction in the nonlinear
potential has a much smaller efI'ect. Since the ratio of
the radii of the a ) 0 and uncondensed wave functions
decreases toward unity quickly with time, it seems that
such simple time-of-fIight measurements do not provide
a particularly good diagnostic of BEC.

These results also help to clarify a somewhat coun-
terintuitive aspect of the a ( 0 solutions, namely that
a confining trap potential can stabilize the condensate
against a collapse brought on by attractive atomic inter-
actions. The fact that the a & 0 wave function expands
so quickly confirms that confinement in the trap had sim-
ply excluded unstable long wave length components, as
required by Eq. (12). As the trap disappears, the kinetic
energy h A: /2m due to confinemen is suflicient to keep
the wave packet expanding with little impedance from
the attractive interaction NUO.

It is interesting to compare the above a ( 0 result with
the behavior of the 1D case for the same scenario. Equa-
tion (4) can have stable solutions even in the absence
of a trap potential; these solutions may be solitons, for
which the attractive interaction exactly compensates for
the wave packet dispersion. As a result, the spatial form
of the wave function does not change in time. Figure 4
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shows the time evolution of a solution with C„& ———10.0
over v = 28.0. Between v. = 0 and w = 4, the trap poten-
tial is smoothly turned oK. The wave function does not
change much during this time because due to its very nar-
row form, it is not strongly inBuenced by the trap. After
v = 4, the solution is allowed to evolve in &ee space, dur-
ing which time it does not change shape; such behavior
is one criterion for the existence of a soliton.

'. Co3~~= -1.6

0.6—

0.4

(a)
x=O

POSITION

FIG. 4. Evolution through time of a 1D soliton solution as
the trap potential is turned oK over 0 & v. & 4 and subse-
quently in free space. Note that the wave function exhibits
no variation in form during the free space evolution.

0.2 45 VI. RESPONSE TO EXTERNAL
PERTURBATIONS
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5 6 We now consider a situation in which the condensate

is subjected to radial perturbations while still confined
by the trap potential. Most analytical methods rely on
linear response, which limits investigation to weak per-
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FIG. 3. Evolution of 3D wave functions in free space.
Wave functions with nonlinear constants of —1.6, 0, and 45
are shown with dotted, solid, and dashed lines, respectively.
These wave functions at v = 0, w = 17.5, and 7 = 35 appear
in (a), (b), and (c).

FIG. 5. Response of 3D wave functions to perturbations in
the trap potential. Between 7 = 20 and 7 = 60, the trap
potential term is multiplied by 5; at other times it has the
constant default value. (a) C„~ ——0. (b) C„, = —1.0, showing
solitonlike behavior.
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turbations. By solving the time-dependent NLSE numer-
ically, however, we can model the condensate response
to perturbations of virtually any strength or time de-
pendence. We should recall that the treatment here is
strictly limited to T = 0. The effect of uncondensed
thermal atoms on the condensate response should be to
produce a modest damping of the collective motion [15].

As an example, we follow a 3D condensate response as
the shape of the trap potential changes abruptly. Figures
5(a) and (b) show the time evolution of an uncondensed
wave function (a = 0) and that of a condensate for which
a = —1.0. At w = 20, the trap potential term is multi-
plied by 5, and at 7 = 60 it is returned to its original
value. (The time taken for the potential to change is
8r 0.07.) As expected, this perturbation excites a few
vibrational modes in the uncondensed sample, causing it
to ripple back and forth within the trap.

However, any similar excitation is damped out very
quickly in the a & 0 condensate; it settles almost immedi-
ately into steady-state solutions after both trap changes.
[The short-lived rippling that does occur is not visible on
the time scale of Fig. 5(b).] This striking result is analo-
gous to the solitonlike behavior of the 1D wave function
in the previous section. However, in the 3D case, the
trap potential must always be present to ensure that a
solution can exist. We believe that the high degree of
stability of condensates with negative scattering lengths
may make them attractive candidates for study in sys-
tems for which N can be stabilized against divergence,
such as the atom laser.

VII. VARYING SCATTER.ING LENCTH

As a final example, we simulate the condensate re-
sponse when the scattering length is tuned adiabatically
over some range, as is possible by applying an external
magnetic field. In Fig. 6, we show the shape of the
ground-state 3D wave function over a range of values of
the nonlinear constant, which is equivalent to a scan of
a. The resulting change in the size of the condensate can
be substantial, especially for small and negative values
of a; compare also Fig. 1(b). Such a variation in the
condensate radius could be an effective and straightfor-
ward diagnostic of the presence of BEC, since no change
would be expected in the absence of a condensate. Fur-
thermore, by tuning a to a sufBciently negative value, it
should be possible to force the condensate into the re-
gion of instability, thus inducing the macroscopic wave
function to disappear suddenly and entirely.

70

FIG. 6. Variation in the shape of a 3D wave function as
the nonlinear constant is scanned over a wide range, which
is equivalent to the scattering length being tuned with an
ex:ternal magnetic field.

have found solutions corresponding to ground-state con-
densates in 1D and 3D for atoms with both positive and
negative scattering lengths. Furthermore, we have shown
that the condensate time-dependent response to a vari-
ety of perturbations can be modeled, and we have used
several computational experiments that take advantage
of condensate behavior in time to demonstrate some of
its interesting properties.

A number of further areas can be explored by solving
the time-dependent NLSE as well. The spectrum of vi-
brational modes within an inhomogeneous condensate is
straightforward to determine, and will be the subject of a
forthcoming paper. This technique could be extended to
include the effects of the uncondensed atoms that would
be present at nonzero temperatures, and to study var-
ious other trap geometries, possibly with nonsymmetric
perturbations. One particularly interesting configuration
would be that of an atom laser, in which a condensate
contained in a suitable cavity could undergo stimulated
amplification of its particle number, while outputting a
coherent atomic beam. In this case, if the atomic species
used had a negative scattering length, it might even be
possible to produce an "atomic soliton laser. "
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