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We study the Rydberg-atom—ground-state-atom collisions within the framework of the quasi-
free-electron model. We show that the general formulation of the problem based on the three-body
Faddeev equations requires the off-shell extension of the two-body amplitude for electron-atom
scattering. The two-body off-shell amplitudes for electron scattering by Rb and Cs atoms are
calculated using the pseudopotential approach. The cross section for collisional quenching and
broadening of Rydberg states due to perturbations by Rb and Cs atoms are calculated, and the
results are compared with experimental data. The off-shell extension of the scattering amplitude
usually improves agreement with the experiment. However, both on-shell and off-shell results fail in
the region of low principal quantum numbers, where the multiscattering effects become important.
Our calculations and their comparison with the experiments confirm that the Cs™(®P) state is a

resonance rather than a bound state.

PACS number(s): 34.60.+z, 32.70.Jz

I. INTRODUCTION

Collisions of highly excited Rydberg atoms (A**) with
ground-state atoms (B) represent a typical three-body
problem of quantum mechanics. In contrast to a more
common case of the Coulomb interaction between all par-
ticles, we have here the Coulomb interaction between one
pair of particles (Rydberg electron e and the ion core A™)
and short-range interactions between two other pairs (e-
B and A*-B). There are two different approaches to
the theoretical investigation of this problem: the quasi-
free-electron model [1], or impulse approximation [2], and
the adiabatic quasimolecular approach [3]. The quasi-
free-electron model is more justified for a high principal
quantum number n of the Rydberg atom. In this case
the Rydberg electron interacts only once with the per-
turber B during the collision. However, for lower n the
A**-B collision cannot be considered as e-B or At-B
scattering event any longer. The multiscattering effects
can be neglected if [4] (atomic units are used throughout
the paper)

Te-B

VAB > 27n3’ (1)
where v 4 p is the relative velocity of the colliding partners
and r.-p is the effective radius of the e-B interaction.
There are other conditions for the impulse approximation
to be valid, discussed in the literature [2,5,6], but the
condition (1) imposes the strongest restriction on n for
thermal collisions with a typical collision velocity of 2 x
10~* a.u. This especially concerns collisions with alkali-
metal atoms, where the radius r.-p, is very large due to
both a large polarizability of the perturber B and a low-
energy 3P resonance in e-B scattering. In this case the

typical limit on n given by (1) is n > 25.
On the other hand, the adiabatic quasimolecular ap-
proach can be applied for low enough n, when the number
of coupled equations to be solved is reasonably small.

1050-2947/95/51(6)/4675(12)/$06.00 51

Borodin and Kazansky [7] suggested a special method
to incorporate the low-energy 3P resonance within the
framework of the adiabatic approximation. This allowed
us [4,8] to describe the experimentally observed [9,10]
oscillatory n dependence of the Rydberg state broaden-
ing due to collisions with the ground-state alkali-metal
atoms. However, this model does not give a smooth tran-
sition to the impulse-approximation limit at high = [8].
An approach permitting the complete description of
the three-body dynamics and allowing, in principle, the
smooth transition from low-n to high-n limit is that of
three-body Faddeev equations [11]. This method is actu-
ally more suited to solution of three-body problem with
two short-range interactions rather than to the three-
body Coulomb problem because the latter experiences
substantial difficulties with convergence [12]. Recently
we showed [6] how to set up the Faddeev equations for
the problem of A**-B collisions and how these equations
can be reduced to the conventional impulse approxima-
tion. The important step in this procedure is the on-shell
reduction of the two-body scattering operator describing
e- B collisions. This reduction can be justified for the case
of a rare-gas-atom as a perturber [13]. In this case the e-
B scattering operator can be given with a good accuracy
by the scattering-length approximation and does not de-
pend strongly on the energy. However, the case of an
alkali-metal perturber is quite different. The scattering-
length approximation becomes valid only for very low
energies (below about 1 meV); therefore for n < 100 we
should generally use the off-shell amplitude. The main
purpose of this paper is to study the off-shell effects in col-
lisions of Rydberg atoms with ground-state—alkali-metal
atoms. We will do it in the first approximation of the
Faddeev theory, which is similar to the impulse approx-
imation, but includes the off-shell two-body amplitude.
In the next section we derive the first-order Faddeev ap-
proximation, in Secs. III and IV we discuss the method
of calculation of the off-shell scattering amplitudes, and
in Sec. V we present our results on collisional cross sec-

4675 ©1995 The American Physical Society



4676

tions and broadening rates and their comparison with
experimental data.

II. FIRST-ORDER FADDEEV APPROXIMATION

In order to show how the off-shell effects appear in the
quasi-free-electron model we consider the Faddeev equa-
tions describing Rydberg-atom—ground-state-atom scat-
tering. They were written and employed before in Refs.
[6,14] and only a brief outline will be given here.

Let us consider the Rydberg atom A as a system con-
sisting of particles 1 (the ion core A1) and 2 (the Ryd-
berg electron). This system interacts with a particle 3
(the perturber B). We introduce the Jacobi momentum
coordinates

miks — mak;
kyy=—F—"7—
my + ma
(2)
(my + ma)ks — ma(k; + k2)

B my + mg + M3 |

|

The alternative Jacobi coordinates could be obtained by
an appropriate interchange of indices.

Introducing the two-particle Faddeev operators T;; and
(i) [11], we have the set of equations

TU2) = T1y — T1Go(T1) + T), (3)
T3 = —Ty3Go(T1 + T®), (4)
T(23) — _T23G0(T(12) + T(13)), (5)

where Gy is the three-body Green’s function for non-
interacting particles and T, describes the initial bound
state of AT and e and has the form

2m12

T12(k21,93) = —6(qs — p) (l € | +L§1—> Pe, (k21), (6)

where p is the initial momentum of B relative to A, ¢; is
the energy of the bound state, ms is the reduced mass
(in our case miz = my), and ¢, (kz21) is the initial bound-
state wave function in the momentum space. T3 has the
form

T13(k3y, d5; ka1, qz; E) = ti3(ksy, kai;€2)d(ah — qz2), (7)

where

2
@-E- L, py = almtms) g
22 my + mg + mg

t13 is the t operator for the two-body problem, and F
is the total energy. T2 and T,3 are defined in a similar
way.

Equations  (3)—-(5) should be solved for
7(12) 7(13) T(23)  Then the cross section for B-A scat-
tering, accompanied by the transition f + 7 in the target,
is

/
dos ;= %(m13)2(27r)4dﬁ’ | T2+ T2 2 (9)

fe1

T, = - / ®} (ka1, a3) T (kz1, qs) dkndas,  (10)
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where

®s(k21,q3) = ¢, (k21)d(as — p') (11)

is the final-state wave function, p’ being the relative mo-
mentum in the final state.

The first-order Faddeev approximation can be ob-
tained from Egs. (3)—(5) by setting Th, = Ty3 = 0.
This means that during the scattering process the ion
core does not interact with both the Rydberg electron
and the perturber. In fact, the ion-core—perturber po-
larization interaction is important in elastic scattering.
However, as we have shown before [6], the contribu-
tion of this interaction to the scattering cross section
may be considered independently, since the simultaneous
electron-perturber and ion-perturber interactions are un-
likely. Let us concentrate here on the electron-perturber
contribution. Employing the smallness of the electron
mass as compared to the masses of the ion core and the
perturber, and assuming that the relative A-B momen-
tum is much greater than the electron momentum and the
relative collision velocity is much smaller than the elec-
tron’s velocity (the typical conditions for the thermal-
energy collisions), we obtain for the electron-perturber
contribution to the scattering amplitude

7—(2) _ ¢* (k . P’
Fei =" ¢; (k21 + Q)taz | ka1 + Q, kag; E — 2%

X @, (kZI)deh (12)

where Q = p — p’ is the momentum transfer.

Equation (11) represents the first-order Faddeev ap-
proximation. It can be reduced to the standard impulse
approximation if we use the on-shell reduction of the two-
body t operator. However, if the energy and momentum
dependence of the off-shell scattering amplitude is strong,
this reduction can change the results substantially. In
particular, a big difference can occur in the case of a low-
energy narrow resonance in the free-electron—atom scat-
tering. In this case the on-shell scattering amplitude as
a function of momentum has a sharp peak and according
to Matsuzawa [15] this causes oscillations in dependence
of collisional or broadening cross sections as functions
of the principal quantum number of the Rydberg atom.
However, if one uses the off-shell scattering amplitude,
no oscillations occur since the scattering amplitude as a
function of the electron momentum does not have a peak
at negative energies. The second type of behavior of the
scattering cross sections seems to be more reasonable be-
cause it provides a smooth transition from the case of a
low-energy resonance to the case of a bound state. Re-
garding the experimentally observed oscillations [9,10] in
the n dependence of the Rydberg-state broadening due to
collisions with alkali-metal atoms, it was shown [16] that
the Matsuzawa’s mechanism cannot describe quantita-
tively these oscillations and another mechanism was sug-
gested [7], which involves multiple-scattering approach.

Another case that indicates a substantial difference be-
tween the impulse and the first-order Faddeev approxi-
mations involves the existence of a weakly bound state of
electron in the perturber’s field. The on-shell scattering
amplitude does not contain any singularity for a real mo-
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mentum, although it has a peak in the case of the s-wave
scattering. The off-shell scattering amplitude does have
a pole at negative energy corresponding to that of the
bound state. The position of this pole does not depend on
the momentum and causes a very strong increase of the
scattering cross section as the binding energy of the elec-
tron in the Rydberg atom approaches the binding energy
of the negative ion B~. (Of course, the first-order ap-
proximation becomes invalid in this case.) In particular,
a bound state of p symmetry does not affect the broad-
ening cross section calculated in the impulse approxima-
tion [6], but does affect the cross section calculated in
the first-order Faddeev approximation. Once again, the
second type of behavior seems to be more physical.

Equation (11) can be used to calculate the collisional
shift and broadening of Rydberg states. If the scattering
amplitude is exact, the shift and the width are deter-
mined by the real and the imaginary part of the ampli-
tude respectively. Alekseev and Sobel’man [17] suggested
the use of this relation employing the scattering ampli-
tude calculated in the impulse approximation. However,
the determination of the width in terms of the imaginary
part of the scattering amplitude implies the validity of
the optical theorem and the latter is violated in the im-
pulse approximation [2]. This can lead to unphysical re-
sults. In particular, the level’s width does not disappear
in the limit of small relative velocities when the energy
of the system Rydberg atom plus the perturber cannot
have an imaginary part. Omont [18] showed that the
equation of Alekseev and Sobel’man is valid in the limit
n? > v k. For thermal velocities this condition typically
implies n values at least greater than 70.

Lebedev and Marchenko [19] suggested another ap-
proach, employing the impulse approximation but not
using the optical theorem. Recently we showed [6] that
their equation for the inelastic (quenching) cross section
describes satisfactorily experimental data on Rb(nS)-Rb
collisions. We can incorporate the first-order Faddeev ap-
proximation into this equation and check how the off-shell
extension of the scattering amplitude affects the cross
section. The derivation of the equation for the quench-
ing cross section is very similar to that given in Ref. [19]
and we will present here only the final result:

Qmax oo
inel m 1 / 2
oinel = L% dQ kdkgn (k) |
T A CO L P Ko@)
X IfeB(k,klvcosglaei) |2a (13)

where Qmin =| A€ | /vap, Ac being the energy defect
for the inelastic transition, Qmax = 2uvap, Where p is
the reduced mass of the A-B system, and g, is the ra-
dial part of the electron wave function in the momentum
space. The lower limit of integration over k is given by

ko(Q) = % - _AQ‘G

The off-shell e-B scattering amplitude f.p is consid-
ered as a function of four variables: the initial momen-
tum k, the final momentum k’, the angle 6’ between k
and k’, and the electron energy ¢;. In Eq. (12) these
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variables are connected by the equations
(k)2 = k% + 2A¢, (14)
k? + Ae — Q2/2
r_
cosf = o . (15)

These equations represent conservation of energy and
momentum in the A-B collisions.

There are two modifications in Eq. (13) compared to
that of Lebedev and Marchenko. First, the absolute val-
ues of momenta k and k' in Eq. (13) are not identi-
cal. This modification is not important, since a typi-
cal kinetic energy of the Rydberg electron equals 1/nZ,
whereas a typical energy transfer determining the dif-
ference between k and k' is less than 1/n3. The second
modification, the negative value of ¢; in Eq. (13), is much
more substantial. We will analyze it below considering
the Rb and Cs atoms as examples.

III. CALCULATION OF THE OFF-SHELL
SCATTERING OPERATOR

In Refs. [6,16] the on-shell amplitude for low-energy
electron scattering by alkali-metal atoms was studied. To
extend this amplitude off the energy shell a complete in-
formation on the electron-atom interaction is necessary.
In principle, knowing the on-shell scattering phase shifts
and the negative-ion binding energies one can reconstruct
the scattering potential [20]. In the case of the electron-
atom interaction the situation is complicated by the Pauli
exclusion principle. The actual electron-atom interaction
includes a nonlocal exchange operator. However, at low
enough energies this effect can be incorporated by intro-
ducing the pseudopotential [21]

v 2 v e @ . (16)
S,lym
This equation simply suggests that for each combination
of the electron orbital angular momentum ! and the to-
tal spin S of the e-B system there is a spherically sym-
metric potential v; describing the e-B scattering. As-
suming that only two partial waves (s and p) contribute
nontrivially to the scattering amplitude, we have to find
four spherically symmetric potentials corresponding to
18,38, 1P, and 3P scattering. The higher partial waves
for low-energy scattering can be described in terms of the
Born phase shifts [16].
The scattering t operator satisfies the Lippman-
Schwinger equation [22]

HE) = v — vg® (B)t(E), (17)
where g(°)(E) is the Green’s function for the free motion
9(E) = [Ho — (E +im)] ™", n—0.

The solution of Eq. (17) can be expressed in terms of the
Green'’s function of the full Hamiltonian [22]
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t(E) =v —vg(E)v, (18)

9(E) = [Ho +v — (E +in)] .

Using the momentum representation for ¢ and expand-
ing t(E) and g(FE) in partial waves

t(E) = (2l + 1)ty(K, k, E) P(cos 0), (19)
l
9(x,v E) =Y ai(r,’, B)Yim (F)Yin (7'), (20)
lm

where 6 is the scattering angle, and using Eq. (18), we
obtain

ti(k' k, BE) =t (K, k) + £ (K, k, B), (21)

1
t (K, k) = s

Ji(K'r)v(r) ji(kr)rdr, (22)
tl(z)(k',k, E) = —*2—7%5 /jl(k'r')vl(r')gl(r’,r, E)
xvy(r)ji(kr)(r')*r?dr'dr, (23)

where j; is the spherical Bessel function. For numerical
calculations it is convenient to introduce the function

T'I

w(r' k,E) = 2/gl(r',r,E)vl(r)jl(kr)rzdr, (24)

which satisfies the differential equation

a2  I(l+1)

dr? r2

+2E — 2v1(r)] wi(r) = rji(kr)v(r).
(25)

The boundary conditions depend on the sign of energy.
For positive energies £ > 0 we can specify the outgoing-
wave boundary conditions to guarantee the correct on-
shell result, i.e.,

w(r) — C(E) exp(iV2Er) as r — oo (E > 0),  (26)

where C(FE) is defined uniquely by the differential equa-
tion (25).

However, for E < 0 the right-hand side of Eq. (25)
prevails over the decaying exponential in Eq. (26) and
the boundary condition depends on the asymptotic be-
havior of the potential v;(r). In our case the potential at
large distances is v;(r) ~ —a/(2r*) [see Eq. (29) below],
where a is the polarizability of the atomic perturber. The
boundary condition for negative energies becomes

«a 1 . 8k .
u(r) — FWZIEI <7'Jl(k7') - m]l—l(’“‘))
+0 ('riﬁ) asT — oo (E <0). (27)
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Equation (25) can be integrated numerically and the sec-
ond contribution to the ¢ operator is given by

& (K K, B) = % / ri (K)o () (r, k, E)dr.  (28)

The off-shell scattering amplitude differs only by a
numerical coefficient from the scattering operator (in
atomic units)

f(E) = —4n*t(E).

IV. CALCULATION OF THE
PSEUDOPOTENTIAL

The problem has been reduced to comstruction of
spherically symmetric potentials v;(r). We have done
this by parametrizing the function v(r) in the form

N
1 > arTh
=1
u(r) = ——5——— Y cjexp(-r/s;)

r N
3 bri-1) j=1
j=1

_%{1 + (d? — 1) exp[—da(r — 70)]}

S (1 - exp(—r/d3))4’ (29)

T

where a is the polarizability, r¢ is the radius of the hard
core to take into account the Pauli exclusion principle
(see the discussion below), and the coefficients aj, bj,
cj, s;, and d; are fit parameters that should reproduce
the low-energy scattering phase shifts and the energy of
the bound negative-ion S state. Although this problem
can be solved in principal on the whole real-energy axis
[20], for our applications only the low-energy region is
important; therefore the potentials obtained in this work
reproduce the scattering features only in the region below
about 1 eV.

Since we do not include explicitly the exchange inter-
action, our pseudopotential should take care of the Pauli
exclusion principle. In particular, it should be repulsive
at short distances to avoid an appearance of the bound
states associated with the inner-shell electrons. Our cal-
culations have shown that this repulsion is very strong
and corresponds practically to an infinite wall at r be-
tween 3.6 and 5.2 a.u. Although this does not cause a
problem in the fit procedure, this leads to divergencies
for t¥) and t® in Eqgs. (22) and (23). In fact, these
divergencies compensate each other and the final result
for t is finite. To analyze the behavior of the scattering
operator in this case we have considered scattering by a
potential with a hard core. All necessary equations for
this case are given in Appendixes A and B.

For our fit procedure we used the Nelder-Meade sim-
plex algorithm [23] to minimize the sum of the absolute
differences between the phase shifts calculated with the
potential given by Eq. (29) and the phase shifts obtained
by the modified effective range theory [16,24,25]. To en-
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TABLE I. Parameters of the potentials.
Potential a To a; b; M cj S; df1,2,3}
Rb IS 328 4.04 61278091 137699.41 2 91.389989 0.57981914 1.7396640
-22229927 155428.21 161.63356 0.40456942 0.14976577
6615418.3 49379.489 4.3738002
Rb 35 328 5.0 -126.03096 53.466903 1 13.766280 2.2646836 1.8734923
0.16545671
0.26222017
Rb 'P 328 2.8 -239.60267 0.0028933263 2 -2.0048060 0.32744923 0.034193255
-0.46375238 0.0010664387 0.14898776 0.18509251 0.17694527
5.9889732
Rb ®P 328 3.878 46083384 -6175.5154 2 62.916566 0.61059330 1.0311556
-27057553 -1127.4859 477.18992 0.26963274 0.0055405060
5033759.8 24040.626 3.7912937
Cs's 402 3.878 37040856 177877.57 2 86.887285 0.59902520 1.3841794
-20399750 110012.28 171.60150 0.45744529 0.12667271
5848821.0 49124.547 4.6774974
Cs 3s 402 5.0 1 -49.810816 20.964605 1 9.1911958 2.1857269 1.3414170
14.979380
2.9865104
Cs 'P 402 3.9 1 -19.941913 11.367579 1 24.623086 1.5416545 0.89139250
0.24999025
4.6409640
Cs3p 402 3.878 3 36168743 -6070.6198 2 54.513680 0.60432915 1.0349518
(resonance) -28988912 -1102.3471 471.47533 0.26561496 0.0048422922
6650590.8 24457.553 4.8255784
Cs3p 402 3.878 3 25717702 594.94084 2 57.029834 0.62844539 1.1931197
(bound -24141361 1017.9819 15.516507 0.029868476 0.11465591
state) 4900896.9 34556.585 3.7909393

sure the proper negative ion bound state energy values,
the radial Schrodinger equation with the potential (29)
has been integrated twice—from the hard core with zero
boundary condition on the core and from the infinity with
exponential decay boundary condition—and the absolute
difference of the logarithmic derivatives was added to the
sum of the phase shift differences.

The results of our fit procedure are presented in Table
I. The S potential exhibits a deep and narrow minimum
at r = 5.6 a.u., supporting one bound state with binding
energy 0.486 eV for Rb and 0.471 for Cs. The 3S po-
tential has a very shallow minimum at large distances of
about 13 a.u., supporting a virtual state. The latter leads
to the large in absolute magnitude 3S scattering length
A = —16.9 a.u. for Rb and A = —22.7 a.u. for Cs [16].
The 3P potential (including the centrifugal part) has a
deep and narrow minimum at r = 3.6 a.u., and a low
barrier at r = 17 a.u., providing a low-energy resonance
with the position € = 0.023 eV and width T" = 0.025 eV
[16] for Rb and € = 0.0126 eV and I" = 0.0091 eV for Cs.

V. RESULTS AND DISCUSSION

In Figs. 1 and 2 we present the k£ dependence of the off-
shell amplitude f(k,k, E) for different negative values of
the energy E. They are related to the principal quantum
number n by the Rydberg formula E = —1/2(n—u)? and
for the quantum defect we have chosen p = 3.133 and
p = 4.049 for Rb and Cs, respectively. They correspond
to the nS levels. At high n the off-shell amplitude is close
to the real part of the on-shell amplitude; therefore we do
not expect any drastic changes in the Rydberg collision
cross sections in this region. However, for lower n the
difference is very large. In particular, when E approaches
the energy of the 1S bound state, corresponding to n —
p = 5.29, the off-shell amplitude diverges. On the other
hand, for such low n both the impulse and the first-order
Faddeev approximation are very unlikely to be valid.

Very striking changes occur in the 3P scattering. The
off-shell amplitude as a function of momentum no longer
exhibits the resonance behavior since it behaves in the
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FIG. 1. Off-shell amplitudes f(k, k, E) for e-Rb scattering.
The energy is given by the expression E = —1/2(n — u)?,
where g = 3.133. Numbers near the curves indicate the prin-
cipal quantum number n. For 3S and ! P scattering the values
of n are the same as those for 1S and 3P, running from n=14
(bottom curve) to n=35 (top solid curve). Dashed curves,
real parts of the on-shell amplitudes.

resonance way only as a function of energy. On the other
hand, the absolute value of the amplitude is still very
large and it gives the major contribution to the Rydberg
collision cross section in the intermediate-n region. In
Fig. 2(e) we present the off-shell e-Cs, 3P amplitude
obtained by assuming a Cs™(3P) bound state with the
energy 0.027 eV. The amplitude as a function of n passes
through a pole at n = 26.496; therefore it has very large
absolute values between n = 20 and n = 35.

Before presenting the results on inelastic scattering and
broadening cross sections, we should note that the exper-
imental data [9,10] on broadening exhibit an oscillatory
dependence of the broadening rate on n in the interme-
diate n region (n varies between 15 and 30). We showed
before [4,8] that these oscillations cannot be explained
within the framework of the single-scattering (e.g., im-
pulse) approximation, and the multiple-scattering effects,
which can be taken care of by the quasimolecular ap-
proach [7], are essential for their explanation. Therefore,
in this paper we will not attempt to describe the oscil-
lations, but will try to reproduce the averaged values of
the broadening rates.

In Fig. 3 we present the cross sections for the quench-
ing of Rb(nS) states by the ground-state Rb atoms.
When calculating the quenching cross sections with the
off-shell amplitude we found that at n < 14 a substantial
contribution to the cross section is given by the range of
momentum k > 0.3. Since these momenta are too high
for our amplitude to be reliable, we stopped calculations
at n = 14. For comparison with the experiment we plot
experimental data of Hugon et al. [26] on the destruction
of Rydberg states and data of Heinke et al. [9] on colli-
sional broadening. The latter have been extracted from
the following relation between the broadening rate and
collisional cross sections

7/N = 2(Va™(V)), (30)

where ~ is the spectral line width, IV is the number den-
sity of the perturbing atoms,

1, .

Ubr — 5(amel + a,el) (31)
is the broadening cross section, and the angular brackets
mean the average over the velocity distribution. As we
showed before [6], the approximation

/N = (V)e((V)) (32)

can be used with good accuracy. Note that the difference
between the broadening and the quenching rates repre-
sents the elastic-scattering contribution to the broaden-
ing, which is small for high enough n.

The difference between the on-shell (solid line) and the
off-shell (dashed line) results is very large at 14 < n < 20.
The experimental points for quenching cross sections lie
between the two curves in this region of n and have rather
large error bars. Therefore, it is difficult to conclude
which theoretical curve agrees better with the quenching
experiment. The off-shell results agree better with the
broadening data. However, at low n the contribution of
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FIG. 2. Same as in Fig. 1 for e-Cs scattering, but for u = 4.049. (e) gives the *P amplitude in the case of the Cs~ (*P)
bound state with the energy 27 meV corresponding to n = 26.496.

the elastic scattering to broadening might become impor-
tant [6].

In Fig. 4 we present the data on quenching of the
Rb(nP) states by the ground-state Rb. Once again, the
difference between the two theoretical sets of results is
very large at n < 30. It seems that the off-shell results
agree better with the experiments, but, similarly to the
on-shell results, they turn down sharply at n < 17 and
become much lower than the experimental values. This
indicates the importance of the multiscattering effects in
the region of low n.

In Fig. 5 we present the broadening of Rb(nD) states
by the ground-state Rb atoms. For a consistent compar-
ison with the experiment we have included the contribu-

tion of the A*-B elastic scattering, which is given by the
cross section [19]

o 2/3
0‘841+B =7.16 (m‘) y

where « is the polarizability of the perturber. Applying
this equation to Rb and Cs atoms at T' = 513 K, we ob-
tain 2.16x1071* and 2.04x10~'* MHz cm? respectively.

The off-shell effect drastically improves the agreement
with the experimental data on line broadening, although
there is still some disagreement in the magnitude. We
should note, however, that there are some uncertainties
in the experimental data. First, there is about a factor
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FIG. 3. Quenching cross sections for the Rb(nS)-Rb colli-
sions. Solid curve, the on-shell calculations [6] for the collision
velocity corresponding to T=530 K; long-dashed curve, the
off-shell results for the same velocity; short-dashed curve, the
cross sections, obtained from the broadening data [9]; squares
with error bars, the experimental data [26] on the quenching
cross sections.

of 2 difference between the results of Heinke et al. [9]
and Thompson et al. [10]. Second, the data of Heinke et
al. [9] are systematically slightly smaller than the previ-
ous results [28] obtained in the same experimental group.
For the purpose of comparison between the two sets of
experimental results Heinke et al. [9] suggested that one
should divide the self-broadening data [10] for K by 2.08.
However, the graphical results of Heinke et al. on the
self-broadening of Rb differ from both the reduced data
of Thompson et al. and the previous data of Weber and
Niemax [28]. For the purpose of comparison with the
theory we present in Fig. 5 the data of Thompson et al.
[10] normalized to those of Heinke et al. at n=23.

In Fig. 6 we present the broadening rates for Cs(n.S)
states perturbed by the ground-state Cs. In this case
both the on-shell and the off-shell results strongly exceed
the experimental data up to n = 30. The important
feature of the Cs(nS) states is a small value of the frac-
tional part of their quantum defect. (The quantum defect
p = 4.049.) The inelastic cross section in this situation is
very close to that of the [-mixing process [19]. This limit
treated in the scattering-length approximation gives [18]

T 10fF Ro(WP)-Rb _ — 7 T T —— _
= 3 / T
2 4 /

s 2 !

; I

gL % i
ot

o 04 |

£ [ |

éo.z-% |

T 0.1 | . . .

10 15 20 25 30 35 40
n

FIG. 4. Quenching cross sections for Rb(nP)-Rb collisions.
Solid curve, the on-shell results [6]; dashed curve, off-shell
results; squares with error bars, the experimental data [27].
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FIG. 5. Broadening of Rb(nD) states by the ground-state
Rb atoms. Solid curve, the on-shell results; dashed curve, the
off-shell results; circles with error bars, the experimental data
[9,10] (see the text).

AZ
o= 2:2 . (33)
n ’UAB

To make an estimate in the case when the scattering-
length approximation is invalid, we can replace mA2 in
the numerator of Eq. (31) by the elastic e-B scattering
cross section. In any case, we obtain very large values for
the alkali-metal atoms, which are much larger than the
geometrical cross section 2.57n* of the Rydberg atom at
n < 30. Apparently, the impulse approximation is not
applicable in this case [19]. To illustrate the point, we
present in Fig. 6 the “geometrical” limit of the broaden-
ing rate (dot-dashed curve), which was obtained by us-
ing the geometrical cross section for inelastic collisions.
We conclude that in the region of intermediate values of
n (between 20 and 30) the impulse approximation de-
scribes better quenching of those Rydberg states whose
fractional part of the quantum defect is not very small.
Furthermore, in this case the first-order Faddeev approx-
imation agrees better with experiment than the standard
impulse approximation.

As a further illustration of this point, we present in Fig.

- T~ _ 7 cs(nS)+Cs

[}
o
T
N
/

/

broadening rate (10~14 MHz cm3)

12 16 20 24 28 32 36 40
n

FIG. 6. Broadening of Cs(nS) states by the ground-state
Cs atoms. Solid curve, the on-shell results; dashed curve, the
off-shell results; dash-dotted curve, the “geometrical” limit
on the cross section (see the text); circles with error bars, the
experimental data [9].
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FIG. 7. Broadening of Cs(nD) states by the ground-state
Cs atoms. Solid curve, the on-shell results; dashed curve, the
off-shell results; circles with error bars, the experimental data

(9]-

7 the broadening of Cs(nD) states (quantum defect p =
2.466) perturbed by Cs atoms. Once again, the off-shell
effect strongy improves agreement with the experimental
data, even better than in the case of self-broadening of
Rb atoms.

In Fig. 8 we present the theoretical Cs(nS)-Cs cross
sections and compare them with the results obtained as-
suming the Cs~(3P) bound state, corresponding to the
scattering amplitude of Fig. 2(e). The cross section
increases enormously and leads to strong disagreement
with the experimental data. Once again, we see that ex-
perimental data on Rydberg collisions indicate the exis-
tence of a Cs™ (3P) resonance rather than a bound state,
in accordance with the results of recent relativistic R-
matrix calculations [29]. However, whereas in the im-
pulse approximation the bound state leads to a reduction
of the cross section, in the first-order Faddeev approxi-
mation it leads to a very large increase.

VI. CONCLUSIONS

We have demonstrated that the off-shell effects play
a very important role in the Rb(nl)-Rb(5s) and Cs(nl)-
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FIG. 8. Quenching cross sections for Cs(nS)-Cs collisions.
The curve “resonance” corresponds to the Cs™ (*P) resonance
state, the curve “bound” to the bound state with the energy
27 meV.
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Cs(6s) collisions at n < 40. We have found that the
first-order Faddeev approximation reproduces the exper-
imental results on quenching cross sections better than
the standard impulse approximation. However, at low n
both versions of the single-scattering approximation, that
is, the impulse approximation and the first-order Fad-
deev approximation, become inadequate for a descrip-
tion of the Rydberg-atom—ground-state-atom scattering.
On the other hand, at n > 40 off-shell and on-shell ap-
proaches give close results; therefore the off-shell effects
can be neglected in this region. Typically it corresponds
to the range of electron kinetic energies where the scat-
tering length approximation is valid.

Another advantage of the first-order Faddeev ampli-
tude is that it represents the first-order approximation
to the solution of the exact three-body Faddeev equa-
tions. Higher-order corrections taking into account the
multiple-scattering effect can be obtained from these
equations [6] and they contain the off-shell scattering am-
plitude. Therefore the results obtained in the present
paper serve as a basis for obtaining more precise the-
oretical data on the Rydberg-atom—ground-state-alkali-
metal-atom collisions.

A certain interest may represent data on the Rydberg-
atom collisions with the ground-state Ca atoms. The
bound Ca~(2P) state has a very small binding energy
and should strongly affect these processes in the region of
high n where the single-scattering approximation is more
reliable. Recent experimental observatons [30] of the
electron transfer in Ca(nl)-Ca(4s?) collisions provided a
certain input for the theory [14]. An observation of the
quenching of Rydberg atoms by ground-state Ca atoms
would be very useful for further theoretical investigation
of the off-shell effects in the Rydberg-atom—ground-state-
atom scattering.
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APPENDIX A: OFF-SHELL AMPLITUDE FOR
POTENTIALS WITH A HARD CORE

We apply the formulas for the off-shell amplitude to a

particular case when the potential has a hard core
_ JUp=00 whenr<a

Vi) = { U(r) when r > a. (A1)

First, we will obtain the expressions with a finite Uy and
then make it infinite.

In this appendix it will be convenient to use Riccati-
Bessel functions (see Appendix B) and to introduce the
parameters

x = V2E, (A2)
v=+2(V(r) — E). (A3)
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Equation (25) now becomes
d? 2
(6r-

where J;(kr) is the Riccati-Bessel function.

(l+1 2 4 x2
(7'2 ))u;(kr,E)= 7 ka Ti(kr),

(A4)

1. Calculation of u;(kr)

The solution of Eq. (A4) is

_ [ BJ(kr) + AT (iyr)
w(kr, E) = { glz(") + Cf’é’")’y

where the first terms are partial solutions of the inho-
mogeneous equation and the second ones are the general
solutions of the homogeneous equation. The coefficient B
is uniquely determined by the differential equation and,
using Eq. (B1) (see Appendix B) for the Riccati-Bessel
functions, can be shown to be

forr <a

for r > a, (A5)

1 'y + x?
B= T2k A%+ k2 (46)
The coefficients A and C should be found by matching
the solutions at r = a

AJi(iva) — Cfi(a) = gi(a) — BJi(ka), (A7)
A% o@D _ iy gD (g

Solving these equations, we obtain for the coefficients
A and C

4 = W(fi(a), 91(a) — BJi(ka))
W(fi(a), Zi(iva))

(A9)

W( - gi(a) + BJi(ka), Ti(iva))
W(fi(a), Ji(iva)) ’

where W is a Wronskian defined by Eq. (B10) (see Ap-
pendix B). The limits of the coefficients as v — oo are

C =

(A10)

1
Bo=— o, (A11)
e 2e>3)+(1—77a) W(f,<a),g,;clz(); wJika) 4
_ _gi@) + i ilka)
Coo = fi(a) (413)

2. Contributions to the amplitude from the core
(r<a)

Equation (22) immediately gives

R CROE

2 2 a
_kakx / Tk Ti(kr)dr.  (Al4)
0
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When evaluating Eq. (23), we distinguish between the
contributions from inhomogeneous and homogeneous so-
lutions

SO k) = (1 +x%)?

K'k(y? + k?) /o Ji(k'r) Ji(kr) dr,  (A15)

2A(v?

2 a
(Zh)(k' = _2AT X7 ) Ji(K'r) Ty (Gvyr) dr,
k! o (

(A16)

where the relevant integrals are calculated in Appendix B
[see Egs. (B12) and (B13)]. To obtain the limiting
forms we combine Eqs. (A14) and (A15) together and
use Egs. (A12) and (B13) in Eq. (A16):

5O k) + 520K k)

0Pt R) [
- k'k(y2 + k2) Ajl(k"')jl(kr)dr

Y—oo X2 L ’
i W/ Ti(k'r) Ti(kr) dr,

(A17)

W(fi(a),9i(a) + 35 Ji(ka))

(2h)/ .0 Yo '
FEMK k) 28 —2gi(K'a) K@)

(A18)
3. Contribution from the region » > a

From Egs. (22) and (23) we obtain

R R =~ / U(r)J(k'r) Ti(kr) dr,  (A19)

100 =~ [ UOAEDaC) + O dr
as vy — oo, (A20)

where C, is given by Eq. (A13). The final result for the
off-shell amplitude for the potentials with a hard core is
the sum of Egs. (A17), (A18), (A19), and (A20).

It is interesting to consider the scattering amplitude on
shell for the hard sphere, ie., k = k' = x and U(r) = 0
Vr > a. In this case g;(r) = 0 and fi(r) = H;(xr). Only
Eq. (A18) gives a nonzero contribution and, using the
Wronskian (B11), we obtain the expected result for the
amplitude

iJ (xa)

filx) = m-

(A21)

APPENDIX B: EXPRESSIONS WITH
RICCATI-BESSEL FUNCTIONS USED IN THIS
PAPER

1. Differential equation and linearly independent
solutions

The differential equation for the Riccati-Bessel func-
tions is
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P L Wikr) + (k? - &:;—1)) Wikr)=0  (B1)

and the linearly independent solutions are

Ji(kr) = krj(kr), (B2)
Ni(kr) = krmy(kr), (B3)
HOD (kr) = krhMD (kr), (B4)

where j;, 71, and hfl’z) are the spherical Bessel functions.

2. Recurrence relations

The recurrence relations follow directly from those for
spherical Bessel functions [31]

20 +1

Wi () = Z2Wi(e) - Wica (2), (85)
T = W) - TWiCa), (86)
= W)~ Wi (2). (87)

3. Asymptotic behavior

We need only one function J; and here is its asymptotic
behavior for large imaginary argument

il+1

Ji(iz) — > exp(z) as ¢ — oo, (B8)
1

J (iz) — %exp(m) as T — oo. (B9)

4. Wronskians

We define the Wronskian as

WW (kz), V (kz)) = W‘;—V - V‘Z—W. (B10)
With this definition, we have
W(Ji(ke), HP (kz)) = ik. (B11)

5. Important integrals

Using the differential equation (B1) for Riccati-Bessel
functions it is not difficult to show that

W(Ji(k'a), Ji(ka))
k2 — k2 ’

/0 " ) Tikr) dr = (B12)

where the Wronskian is defined by Eq. (B10). The asym-
totic form (B9) gives the limit of the above integral for
large purely imaginary k = iy:

a d+1
Ti(k'?) Ti(iyr) dr — Z—27 exp(ya)Ji(k'a) as v — co.

(B13)

Another important case is k' = k. The % uncertainty
in Eq. (B12) can be resolved by I’'Hospital’s rule and we

/ T2 (kr)dr =
0

5 (77 (ka) + T2, (ka)]
l+ 1/2

Ji(ka)Ti—1(ka). (B14)
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