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Theory of double in&ernal bremsstrahlung during elec&ron-capture decay
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The theory of double internal bremsstrahlung during an allowed electron-capture transition is
developed in an approximation in which the atomic electron is treated nonrelativistically but the
effects of the nuclear Coulomb field are fully included. For capture from the K shell detailed results
are obtained for the intensity distribution of the two photons as a function of the photons' energies
and relative angle of emission. Numerical results are presented for the distribution of the sum of
the photon energies for Ar and Fe and compared with available experimental data. It is found
that the inclusion of Coulomb effects results in a substantial reduction in the intensity of the energy
spectrum of the photons and improves quantitative agreement with the experimental data for Ar.
However, for Fe serious discrepancies remain.

PACS number(s): 32.80.Wr, 23.40.—s

I. INTRODUCTION

Internal bremsstrahlung (IB) in electron capture is a
process which has long been of interest. Since the pio-
neering theoretical studies by Moiler [1] and Morrison
and Schiff [2], many experimental investigations have
been reported. Concomitantly, the theory of IB has un-
dergone extensive development largely through the intro-
duction of elaborate mathematical techniques by Glauber
and Martin [3,4]. For allowed transitions agreement be-
tween theory and experiment is very good [5], and more
recent investigations of IB have been concerned with the
study of forbid. den transitions and with the use of the IB
process as a tool for measuring the mass of the electron
neutrino.

Although less likely, double internal bremsstrahlung
(DIB), i.e. , the emission of two photons, may also oc-
cur in electron-capture decay. In this case both photons
share the available energy statistically with the neutrino
and thus have continuous energy distributions. The sum
of the energies of the two photons also forms a continu-
ous distribution, the end point of which yields the total
energy released in the decay.

The probability with which DIB occurs is, of course,
quite small. Because of the presence of an additional
factor of n, the fine structure constant, and the reduction
of the available phase space resulting &om the presence of
an additional photon, the probability for DIB is expected
to be no greater than about 10 times the probability
for IB. This alone makes observation of the phenomenon
quite diKcult and helps account for the fact that, over
the years, little effort has been made to investigate it.

The first observations of the phenomenon were re-
ported by Ljubicic, Jones, and Logan [6] (LJL), who
investigated DIB in the electron-capture decay of Ar.
Using a dual parameter pulse-height analysis system,
they observed the continous energy distribution of th&

two photons at an angle of 90' between the photon mo-
menta and determined the distribution of the total energy
of the photons over a substantial energy range.

Shortly thereafter, Pisk, Ljubicic, and Logan [7] pro-
vided the first theoretical study of the process based on
the modern theory of the weak interactions. Following
the approach of Morrison and Schiff [2], these authors
performed a lowest-order perturbation theory calculation
in which the effects of the nuclear Coulomb G.eld on the
intermediate electron states were neglected, these states
being described by relativistic plane waves. For the initial
electron states nonrelativistic Coulomb wave functions
were used, with only contributions &om zero-momentum
states being taken into account. The actual calculations
were limited to capture from the K shell.

The results of this theoretical work were found to give
a reasonably good fit to the data of LJL for the sum-
energy spectrum of Ar. However, when an absolute
comparison was made for the ratio of the DIB sum spec-
trum to the IB spectrum, the agreement was less than
satisfactory.

These pioneering studies of the DIB process were fol-
lowed by a series of papers by members of the original
collaborations together with various co-workers in which
they reported observations of DIB in Ar at relative
emission angles other than 90' [8], observations of DIB in

Fe [9,10] and in Cs [11],and studies on the contribu-
tions to DIB at low energies &om I.—and M-shell electron
capture [12,13]. The general pattern that emerged from
this work was one of reasonable qualitative agreement be-
tween theory and experiment, but serious disagreement
when quantitative comparisons were made.

In view of the important role that Coulomb effects are
known to play in the IB process, it is clear that such ef-
fects must be taken fully into account in the theory of the
DIB process before meaningful quantitative comparisons
may be made. In this paper we shall develop the basic
theory of the DIB process for allowed electron-capture
transitions in an approximation in which the atomic elec-
tron is treated nonrelativistically but the efFects of the
nuclear Coulomb field are fully included. While this will
restrict our results to nuclei whose nuclear charge is not
too large, it will provide much more accurate results at
low'er energies where the spectra are most intense and
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where the influence of the nuclear Coulomb field is great-
est. Also, since most of the experimental data which have
been reported thus far were taken at energies at which
the process is completely dominated by electron capture
&om the K shell, we shall, in this paper, limit detailed
calculations and numerical results to this case.

In Sec. II we develop the general formalism, establish
the nonrelativistic approximations, and describe the cal-
culation of the transition matrix element. In Sec. III
the two-photon distribution function is obtained. Nu-
merical results are presented in Sec. IV and compared
with available experimental data. Section V contains our
conclusions.

II. TRANSITION AMPLITUDE FOR DIB

A. General formalism

In the lowest order of perturbation theory, DIB is de-
scribed by the two Feynman diagrams shown in Fig. 1.
(By comparison, the contribution from diagrams involv-
ing nuclear intermediate states is negligible for allowed
electron-capture transitions. ) Adopting the usual V —AA
theory for the weak interaction and employing standard
methods [14], one readily obtains the following expres-
sion for the total probability amplitude associated with
the two diagrams of Fig. 1:

S = 2~b(k „—kg —k2 —E )M,

with the transition matrix element given by

M = Ge (1+Pee) f de f dec f deedg(e )red, (e )

xg„(r„)A„G, (r„,rg)at (r~g)

xG (rl, r2)a2(r2)4 (r2) (2)

where I'„= p„(1 + Aps), A„= p„(1 + ps), and G is
the vector coupling constant of the P interaction. Re-
spectively, P; and Py represent the initial and final states
of the nucleus, and P and P, (with associated energies
E and E,) represent the states of the emitted neutrino
and the initial electron. The energies of the two emitted
photons are kq and k2, and k is the energy released

in the electron-capture process, to be shared statistically
among the three emitted particles. The photon states
are characterized by a, defined by

1 j(' ei
a, r ik;.v

(2m) & +2k;

(4)

With the resulting simpliGcations the transition matrix
element assumes the form [15]

(5)

with 8 = A~B„and I) 2 = I(kq, eq,' k2, e2) with

I(kl ee; ke, ee) = f dec f deeG, (0, ee)p eee-

x G, (rg, r2)j e2e '"'"'(t, (r2).

Each electron propagator G~ is represented by a Dirac-
Coulomb Green's function which satisfies the pair of
equations

[E —H(r)] G~(r, r ')p4 —h(r r'), —(7a)

and its adjoint

G~(r, r')p4[E —H(r')] = h(r r'), —(7b)

where ki and ei are a photon's momentum and polar-
ization vectors, respectively (satisfying k; . e; = 0), and
we have chosen V = (2x) as the normalization volume.
The operator Pq2 performs the interchanges (kq ++ k2,
eq ++ e2) which connect the two Feynman diagrams in
Fig. 1. Finally, the energies associated with each of the
G, 's, which describe the propagation of an electron mov-
ing in a nuclear Coulomb field, are given by e = E, —k2
and e' = E~ —kg —k2.

For an allowed electron-capture transition the wave
functions of the leptons involved in the P interaction can
be replaced by their values at the origin. Furthermore,
in the nonrelativistic limit the nuclear matrix elements,
which we denote by B„,reduce to

(a) (b)

FIG. 1. Feynman diagrams for electron capture accompanied by double internal bremsstrahlung.
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where H is the Dirac Hamiltonian for an electron moving
in the nuclear Coulomb field. We shall only have need
of the latter of these equations which, when written out
explicitly for a point nucleus of charge Ze, becomes

~I
G~(r, r') j & +1 —p4(E+ a/r') = b(r —r'),—(8)

~l
where o, = Zn and & acts on the function G@(r,r')
which precedes it as indicated by the direction of the
arr ow.

For purposes of calculation it is convenient to express
the Dirac-Coulomb Green's function G~(r, r ') in terms of
the Green's function g~(r, r ') for the iterated or second-
order form of the Dirac equation. Indeed, the eKective-
ness of this approach was first demonstrated by Glauber
and Martin in their classic papers [3,4] on radiative elec-
tron capture; and, not surprisingly, it is equally useful
in the study of DIB. Hence, following closely the work of
these authors, we define the second-order Dirac-Coulomb

4t

Green's function so as to satisfy the equation

g@(r, r')[V' + (E+ n/r') —1 —io. V'(a/r')]

dr"i dr2, ~ 0)ri p V'i +p4 e'+ a ri + 1

x[—ij.eqp„k2„—2e2 V2]e ' '"'P, (r2)& (11)

g. ( i, 2) =, dpi2' 3 dP g (P P )e~(si ~i —P~ ~~)

(12)

after an integration by parts has been performed with
respect to r2 and use has been made of the fact that the
wave function of the initial electron P, satis6es HP, =

In the next section we shall describe in detail the repre-
sentations to be used for the second-order Green's func-
tions. For now, in order to complete our formulation of
the problem in general terms, we simply wish to antic-
ipate that it will be convenient to describe the "outer"
Green's function g, (ri, r2), as well as the wave function
of the initial electron P„by means of the Fourier integral
representations

in which V' acts to the left. The first-order Green's
function may now be written in terms of the second-order
Green's function as

~l
G@(r,r ') = g~(r, r ') [j.9' +/4(E + o,/r') + 1]. (10)

Using this relationship we And that I&2 may be written
as

dpi', (p)e'" ", (13)

which serve to define g, (pi, p2) and P, (p). With the in-
troduction of these forms, an integration by parts with
respect to ri may be performed after which the integra-
tion over r2, followed by the integration over p, may be
carried out by elementary methods. The result of all this
integration is the following expression for Ii2.

1
Ii2 = dpi dp2

27r 3/2

x [
—ip . e2p„k2„—2ie2 q2] P~(q2),

dri g, (0, ri)e'~' "
[
—ij. qi + p4(&'+ &/ri) + 1]j.eig. (pi, p2)

(14)

where qq
——pi —kz and q2 ——pq + ki. To proceed further

with our analysis, it is necessary to choose specific forms
for the Green's functions and the wave function of the
initial electron.

B. Nonrelativistic approximations

For moderately light nuclei the initial electronic state
can be adequately represented by a nonrelativistic Cou-
lomb wave function; and in view of the far greater com-
plexity attendant on the use of Dirac-Coulomb wave func-
tions, it is important to consider first the nonrelativistic
regime. In general, this is expected to yield results with
a relative accuracy of order Zo. .

A particular advantage of introducing the second-order
Green's function is that, consistent with the use of a
nonrelativistic wave function for the initial electron, one
can employ an approximate Green's function which has

a much simpler structure. This approximate Green's
function is obtained by neglecting the 6ne structure
terms (a/r') a2nd c7. . V'(a/r') in Eq. (9). The second-
order Green's function may then by written in the form
g@(r, r') = Ig&(r, r') where I is a unit matrix and
g&(r, r ') is a scalar Green's function which satisfies the
equation

g~(r, r') [V'2 + E2 —1+2oE/r'j = b(r r'). (15)—
This equation has the same form as that satisfied by the
nonrelativistic Coulomb Green s function and is readily
reduced to the latter equation by defining a = aE, F =
(E —1)/2, and Gs (r, r ') = 2g@(r, r ') . Then Gs (r, r ')
satisfies

[8 —H„,(r ')] Gg(r, r ') = S(r r'), —

where H„,(r ') = —V'2/2 —o,/r'
The particular function g,', (0, ri) which will be used to
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represent the "inner" Green's function has been studied
in considerable detail by Glauber and Martin [3]. In par-
ticular, these authors have shown that g,', (0, r) possesses
the following integral representation [16]:

g'(0 ) =-—" -"
27r 0 ( s )

where y, = (1 —e' ) ~ and ii = ae'/p, .
With regard to the "outer" Green's function the sit-

uation is more complicated, and we approach its con-
struction by first transforming to momentum space via
the Fourier transforms introduced earlier. In view of
the simple connection between the approximate second-

order Green's function and the nonrelativistic Coulomb
Green's function discussed above, it fol.ows that, within
the approximation that we have adopted, we may write
g,'(pi, p2) = 2G~(pi, F2) where Gg(pi, p2) is the nonrel-
ativistic Coulomb Green's function in momentum space.
For this latter Green's function three equivalent repre-
sentations due to Schwinger [18] are available, the most
suitable form for our purposes being that given by Eq.
(1') of Schwinger's paper, viz. ,

G (» ) = G' '(& I ) + G' '(s, u ) + G"(p, I ),

(i8)
with the three contributions to Gg(pi, pq) defined by

G(o), , ~(Pi —P2)
(Pl ~ P2) —

g 2/2

2~' (~ —»/2) (&i —&2)' (~ —s 2/2)
' (20)

where now a = ae and F = (e —1)/2, and v is defined
by v = a/v —2E.

As the notation suggests, G& (pi, p2) corresponds to
a &ee-particle approximation while the other two con-
tributions take into account Coulomb effects. Thus, by
employing this particular representation for the "outer"
Green's function, one can readily investigate the inHu-
ence of Coulomb efFects on the "inner" Green's function
alone by approximating the "outer" Green's function by

G& (J7i, p2). In addition, this representation possesses
the practical advantage of permitting the most efBcient
computation of numerical results since it lends itself to
the highest degree of parallelization, and the numerical
methods that must be invoked show superior numerical
stability.

The relative importance of the two Coulomb terms may
be judged by examining the dependence on the photon
energy A:2 of the quantity v which appears in the defini-
tion of Gs (pq, p2). As is readily confirmed, v assumes
it largest value at k2 ——0 where it is slightly less than
one. (It difFers from unity by terms of order a .) As k2
increases, v rapidly decreases, declining to values of order
a or smaller as soon as k2 is beyond the binding-energy
region, i.e. , v ( u for k2 )) a /2. Therefore, for pho-
ton energies above the binding-energy region, it becomes
consistent with our previous approximations to employ
for the "outer" Green's function the approximation

GE'(Pl)P2) Gg (Pl)P2) + Gg (Pl&P2) (22)

In view of the fact that this approximation is well sat-
isfied by essentially all currently available experimental
data, it will be adopted in this paper as the basis for
detailed calculations and the computation of numerical
results.

Finally, we must choose the state of the initial electron
so that the form of its wave function may be specified.
As previously discussed. , in this paper detailed calcula-
tions will be limited to radiative capture from the K
shell for which the Fourier transform of the nonrelativis-
tic Coulomb form for P~(r) is readily found to be

(2a) ~ o,
(tz(p) = (, ,), xR,

where y~ determines the spin state of the initial K elec-
tron. Equipped with the above representations, we are
ready to proceed with the evaluation of Eq. (14).

C. Evaluation

We begin the evaluation of Ii2 by introducing the
Glauber-Martin representation Eq. (17), along with Eq.
(23), into Eq. (14) and performing the integration over
r~. This yields the result

g, &i2 f1+ sb"
ds

~ ~
dpi dp2, 2 2 2 ( &7''Vi+'74 + ) i 2+ 2)2 ~ r 2+ 2i

o + &2)

x Gg (g7i, F2)p . ei [j. e2p~k2~ + 2ie2 Vq] X~, (24)
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where 0 = p(2s+ 1). To organize our further calcula-
tions, it is convenient at this point to introduce a set
of functions of A:q and k2 which, for the sake of discus-
sion, we shall henceforth refer to as amplitude functions.
The set of functions and its members are denoted by
A = (Sp, Sy, Vp, Vj, V2, T'& ) and, by definition, satisfy the
set of equations

s (Pl P2) y (25)s ) a2+q22 2

where Z is defined as the set E = (sp, sy, vp, vy, v2, t
& )

whose members are defined by

ferential transition rate over the neutrino's momentum
and sum it over the spin states of the neutrino and the
initial electron. With the introduction of Eqs. (29) and
(28) into Eq. (30) and the use of standard projection
operator techniques to perform the spin sums, these op-
erations lead to the following result for the differential
transition rate for the emission of two photons with ener-

gies and directions within dk~) dk2 and dO&)d02 of k&)k2
respectively [17]:

du&» ——W~ kqk2 1 —(kz + k2)/k
(2nap)

2~ s

sp ——1/(0. + q, ),
sg = 20/(0. + q~),
Vp = q2/(0' + q~ )

Vy = 20.gy/(0' + q, )',
v-, = 20q, /(0'+ q,')',
t,, = 2o.qg;q2, /(0 + q, ) .2 2 2

(26a)
(26b)

(26c)

(26d)

(26e)

(26f)

In terms of these amplitude functions Ii2 may be writ-
ten as

5/2
I~2 = P — Ai2y~) (27)

with Aq2 = A(kq, eq., k2, e2) and

A(ky, ey', k2, e2) = ip ~ Vj + (p4e'—+ 1) Sy + ap4Sp

XP CyP 62+~ k2~

+2i[—ip;T ~e2~ + (p4e' + 1) e2 V2

+a'74e2 Vp]P ey. (28)

The amplitude functions lend themselves to consider-
able analytic reduction after which numerical methods
must be used to complete their evaluation. The details
of this analytical work along with final formulas suitable
for numerical integration are contained in Appendix A.
To conclude this section, we combine Eqs. (5) and (27)
to obtain the following final expression for the DIB tran-
sition matrix element:

cxG a s/2 pM= p (0)8 (Ag2 + A2g) ya, (29)
2m 2 vr Qkqk2

where Ay2 ls given by Eq. (28).

III. TWO-PHOTON DISTRIBUTION FUNCTION

) ~ (1 + y4)(Ay/ + A2])
pol

x (1 + ps)(Ag2 + A2g) dkgdk2dAj d02, (31)

T (kq, k2) = ) Tr (1+p4)Aq2(1+ ps)Ag2
pol

(32a)

Ts(k~, k2) = ) Tr (1+p4)A~2(1+ ps)A2g
pol

with which the DIB transition rate may then by written
as

did» WK s kgk2 [1 (kg + k2)/k~~x]
(2aa p) 2

2vr s

x T (kq, k2) + T (k2, kq) + 2Re(Ts(kq, k2))

X dkidk2dOid02) (33)

where Re denotes the real part of the accompanying func-
tion. To express our final results for T and Tg as com-
pactly as possible, we first define

where, assuming that the polarizations of the photons
are unobserved, g &

indicates a summation over the
polarization states of the two photons, and R'~ is the
transition rate for nonradiative K capture which is given
by Eq. (Bl) of Appendix B.

The tasks of performing the indicated polarization sum
and evaluating the trace appearing in Eq. (31) remain.
These calculations, performed using standard techniques,
are straightforward but exceedingly tedious. We present
only the final results, most easily stated by first defining

The transition rate dao~~ for the emission of two pho-
tons with momenta in the ranges dki and dk2 during an
allowed K-capture transition is related to M by Fermi's
golden rule, i.e.,

d~&& —2~
~

M
~

h(k~~„—kz —k2 —E )dk) dk2dp„,

(30)

where p„ is the momentum of the emitted neutrino.
Since the neutrino is unobserved and two K electrons

are normally present initially, we must integrate the dif-

S2 ——aS() + ~'Sg,

v, = ~v, +.'v„
(34)

(35)

P„=P„(kg, k2) = S„(k2,k~)
A„—= A„(kg, k2) = V„(k2, kg)

G,~ = G;, (kg, k2) = T,~(k2, kq)

(n = 1, 2),

(n = 1, 3),
(i, ~ = 1,3).

(36)

(37)

(38)

In terms of these quantities T is found to be given by

and, to distinguish between direct and exchange terms,
we also introduce
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( l, k2) = 32 k2 Vi Vi+ S, + S2 —2pl2k2S2Vi n, + k2n, x V, . T nl —pl2k2ni x V, T n2

+ 2 (Sl S2) nl ' T ' nl. x n2 k2V1 ' nl V3 —V2 ni x n2 + TijTij —T~n2jTbn2b

+ V3 —V2 — V, —V, . n,

ere n; =;/k, , (& = 1, 2), pi2 ——ni . n2, e;j& is the permutation symbol (used below), and the summation
convention is invoked with respect to the Cartesian indices i, j, k which appear. The final expression for Tg proves to
be considerably more complicated, leading us to write it as a sum of terms

Tb(ki 1 k2) —16 (Tbl + Tb2 + Tb3 + Tb4 + Tbs + Tb6 + Tb7) ~

with the individual contributions to Tb found to be given by

klk2 2
bi

—— i.Ai+ SiPi+ S2P2 (p, ,2
—1) + P2Vi+ S2A1 . (ni+n2) (@12 —1) —Vi x A, . nl x n2

+Vl nlA1 ' n2p12 Vl n2A1 ni @12 + ~1 Al ' n2 nl pl2 + ~ + P2 @12

+Pl Vl n2 nl p12 + ~ + ~2 @12

Tb2 k2S1 [n2kekijGij nl x n2 G ' nl] kiPi [niger;jT'j + ni x n2 T ~ n2],

TQ3 A2 V2 A2 nlV2 ' nl A2 ' n2V2 n2 + p12A2 ' nlV2 n2 V2 ' A3 + V2 n1A3 ' nl

(41a)

(41b)

+ 2 ~ n2A3 ' n2 pi12V2 ' n2A3 ' nl V3 ~ A2+ V3 n2A2 ' n2+ V3 nj A2 ' nl p12V3 ' n2A2 ~ nlV ~ (4lc)

Tq4 ——kl V2 x Al nl —V2 n2A1 nl x n2 —A1I.ekzjT&j Al x n2 'T n2 V3 x Al nl

+V3. r~2A1 nl x n2+.P2nlA, eI.;jT,j + P2nl x n2 T n2 (41d)

Tq5 ——k2 Vl x A3. n2 —A3-nlV1 - nl x n2 —V1I.ek;jG;j —Vl x nl - G. nl —Vl x A2 n2

+A2 nlV1 - nl X n2+ S2n2I eI&jG&j S2ni X n2 ~ G ~ nl (4le)

T = T .G. . —T. .G.b6 T'jGij Tij Gib (nljnlk + n2jn2k @12 2jnlkn) + V3 ' +3 V3 ' nl+3 nl V3 ' n2+3 n2

+@12V3 n2A3 nl
fT1Tb7: [TijGji ni T G ni —n2 G. T. n2 +ni T.n2n2 . G ni —G;,Tjz + ni G niT, ;

+n2. T n2G, , —ni G nin2. T.n2].

(41f)

(41g)

IV. RESULTS AND COMPARISON
WITH EXPERIMENTS

To obtain numerical results, one must first evaluate
the zero- and erst-order amplitude functions, starting
with Eqs. (A7) and (A16) and associated equations. The
several multidimensional integrations are most efficiently
performed by using the technique of Monte Carlo inte-
gration for which we employ the very powerful adaptive
Monte Carlo subroutine VEGAS due to Lepage [19]. Us-

ing a Silicon Graphics IRIS Indigo R4400 workstation,
we have found it feasible to configure vEGAs to yield re-
sults for our amplitude functions having a one standard
deviation error estimate of not more than 1%, and all re-

sults presented in this paper have a computational error
of this order.

We consider first the two-photon distribution function.
As we shall discuss in more detail below, very few exper-
imental data on the DID process are presently available,
and most that are were taken at an angle of 90' between
the momentum vectors of the two photons. Therefore in

this paper we shall limit our computational eKorts to the
evaluation of the energy distribution of the two photons
foI a Ielatlve emission aIlgle of 90 only.

For tabulation purposes we normalize our results for
the two-photon transition rate, as given by Eq. (33), to
the transition rate for ordinary (nonradiative) K capture.
Representative results for Ar and Fe are displayed in
Tables I and II, respectively. When a comparison is made
with the theory of Pisk et al. [7], it is found that the two

theories yield predictions for the two-photon distribution
function which are similar in form, but that the inclu-
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TABLE I. Theoretical energy distribution of photons emitted in DIB at a relative angle
of 90' for Ar. The values shown are of the ratio (dho~~/dkidk2dQidAq)/W~ x 10 in
units of (mc ) (sr)

k2/kma„

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

6.34
24.3
53.1
93.6
149
231
351
498
O. l

12.5
46.4
96.3
163
241
372
351
0.2

17.9
61.6
121
244
241
231
0.3

20.3
61.6
96.3
93.6
0.5

20.3
98.4
121
163
149
0.4

k1 / kmax

17.9
46.4
53.1
0.6

12.5
24.3
0.7

6.34
0.8

sion of Coulomb effects produces an overall reduction in
intensity of roughly 20% [20].

The only published experimental data on the two-
photon energy distribution are those of Ljubicic, Jones,
and Logan [6] for s Ar. But the experimental data have
been reported directly as counting rates versus the en-
ergies of the two photons and thus deviate substantially
&om the actual intensity distribution due to the resolu-
tion and sensitivity of the detectors used. Since the nec-
essary corrections are not known, a direct comparison of
these data with the present theory is not possible.

Because the counting rate in DIB experiments is very
low, it is extremely difEcult to get good statistics for
the two-photon energy distribution. This has led experi-
menters to sum their data over the energy range of their
experiment (with the sum of the energies of the two pho-
tons kept constant) and present their data in the form
of a sum-energy spectrum. Such spectra were reported
in Ref. [6] for Ar and in Ref. [9] for sFe. But, once
again, these spectra were reported directly as counting
rates and require correction for the eKciencies of the de-
tectors before they can be compared with theory. Since
these corrections are not known, we have been forced to
use a less direct method of comparison.

Considering the Ar case as being representative, first
we compare the theoretical sum-energy spectrum pre-
dicted by the present theory with that predicted by
the theory of Pisk et al. for the experimental condi-
tions under which the Ar data were obtained. Specif-
ically, we calculate the two theoretical sum-energy spec-

tra for the sum-energy range 210—810 keV using Eq. (42)
shown below with a minimum detectable photon energy
of Eo ——105 keV and a detector bin width of LE = 50
keV. Plots of the resulting sum-energy spectra are shown
in Fig. 2. They reHect the similarity of form for the two-
photon distribution function that was noted above. In-
deed, the two curves shown have almost identical shapes
and almost completely overlap when they are scaled to
a common maximum. The principal difference between
them is the overall reduction of intensity which is brought
about by the inclusion of Coulomb effects.

Because of this similarity of shape, we may anticipate
that, if the sum-energy spectrum predicted by the present
theory were adjusted for detector eKciency and normal-
ization and then plotted, the resulting curve would look
very similar to that obtained from the theory of Pisk
et al. , and agreement with the experimental data would
probably be just about as good as that shown in Fig. 3 of
Pisk et al. From this we conclude that the shape of the
sum-energy spectrum is not very sensitive to Coulomb
effects and that only an absolute determination of the
sum-energy spectrum will reveal the predicted reduction
of intensity due to the in8uence of the nuclear Coulomb
field.

At present the only experimental data which do per-
mit an absolute comparison between theory and exper-
iment are those for W iDB( E90')/Wi

B( E), the ratio of
the DIB sum-energy probability distribution to the prob-
ability distribution for the emission of a single IB photon.
Such data have been reported in Ref. [6] for Ar and in

TABLE II. Theoretical energy distribution of photons emitted in DIB at a relative angle
of 90' for Fe. The values shown are of the ratio (dw~~/dkidk2dQqdf4)/W~ x 10 in
units of (mc ) (sr)

4/kmax

0.8
0.7
0.6
0.5
0.4
0.3
0.2
O.l

2.36
10.2
25.2
50.4
86.8
143
215
265
0.1

4.37
19.4
45.7
85.6
142
203
215
0.2

6.04
24.8
57.0
103
142
143
0.3

6.75
24.8
45.7
50.4
0.5

6.75
27.9
57.0
85.6
86.8
0.4

k1/kmax

6.04
19.4
25.2
0.6

4.37
10.2
0.7

2.36
0.8
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FIG. 2. The Ar sum-energy spectrum for the experimen-
tal conditions of Ljubicic, Jones, and Logan. The dashed
curve represents the prediction of the theory of Pisk et al.
while the solid curve is the prediction of the present theory.
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Ref. [9] for Fe and can be compared with the theoretical
predictions by employing the relations [21]

E+AE/2 k —2&0 d (g 90o)
dk dk

E—AE'/2 0 dkgdk2dOgd02

LE2
2

WDgB (E, 90'), (42)

E+DE/2
dk = AE Win(E),

E—AE/2
(43)

where k = k~ + k2, k = kq —k~, and E is the mea-
sured DIB sum energy, LE is the energy width of the
detector bins, and Eo is the minimum detectable photon
energy. For the present theory dm~~ is given by Eq. (33)
while, to comparable accuracy, dm~ is given by the well-
known result of Glauber and Martin [3] which we have
reproduced in Appendix B. For the theory of Pisk et al.
dm~~ is given by Eq. (8) of their paper and, to the same
level of accuracy as was used in Pisk's calculation, dm~
is given by the familiar result of Morrison and SchiK [2],
reproduced by Pisk et al. as their Eq. (A4). The em-
ployment of these theoretical expressions in Eqs. (42) and
(43) above produces the results shown in Figs. 3 and 4
for Ar and Fe, respectively. For comparison we have
also reproduced in these figures the experimental data of
Refs. [6,9].

In the case of Ar the results of the present theory ap-
pear to improve agreement with the experimental data.
However, the fact that the two theories differ most at
high energies makes one suspect that their differences
are more likely to be due to the omission of relativistic
effects in the present theory. (Pisk et al. use relativistic
plane waves to describe the intermediate electron states. )

FIG. 3. The ratio W oq s(E, 9 '0)/ Wqs(E) as a function of
the photon sum energy E for Ar. The experimental results
are from Ljubicic, Jones, and Logan and the two curves shown
represent the predictions of Pisk et at. (dashed curve) and the
present work (solid curve).

However, it can also be argued that the cumulative ef-
fect of neglecting the influence of the nuclear Coulomb
field will be greater at high sum energies. Whatever the
cause, we observe that in the case of Fe, for which the
spectrum end point occurs at a much lower energy, there
is little difference between the predictions of the two the-
ories and thus no resolution of the disagreement with the
experimental data.

However, it is important to recognize that the ratio
WD~B(E, 90 )/W~B(E) does not provide a sensitive test
for Coulomb effects in the DIB process since, as has
been pointed out by Pisk et al. , effects due to the in-
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FIG. 4. The ratio Wq o(Es, 9 )0/ yW(Es') as a function of
the photon sum energy R for Fe. The experimental re-
sults are from Ljubicic, Nakayama, Isozumi, and Shirnizu and
the two curves shown represent the predictions of Pisk et al.
(dashed curve) and the present work (solid curve).
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fluence of the nuclear Coulomb field on the electrons in
both processes will tend to cancel out. This would lead
one to expect the present theory to yield a spectrum for
WDiB(E, 90')/W~B(E) which has a shape similar to that
predicted by the theory of Pisk et ol,. but with an in-
tensity which is reduced by roughly half as much as that
experienced by the DIB spectrum itself, and this seems
to be borne out by the curves displayed in Fig. 4.

essary. For the purpose of demonstration it is sufIicient to
consider in detail the reduction of a representative mem-
ber of the set A. The other amplitude functions may be
treated in an entirely similar manner; for them only final
results will be presented.

For each of the three terms in Eq. (18) for the "outer"
Green's function there will be a corresponding contribu-
tion to A so that we may write

A = A(') + A(') + A('). (A1)
V. CONCLUSIONS

The inclusion of Coulomb effects in the theory of the
DIB process leads to a substantial reduction in the overall
intensity of the resulting spectra while leaving the shapes
of both the two-photon energy spectrum and the sum-
energy spectrum largely unchanged. With regard to the
sum-energy spectrum, upon comparison with available
experimental data one finds some improvement for Ar,
but there remains a serious disagreement between theory
and experiment in the case of Fe. For this isotope there
is a clear need for further experimental investigation.

To provide a more definitive test of the present theory,
there is a need for absolute measurements of the two-
photon energy distribution (i.e. , relative to the rate for
ordinary K capture) or even a similar determination of
the sum-energy spectrum. The binding-energy region, in
particular, merits such study since it is here that the DIB
probability is largest and, at the same time, Coulomb
effects are most important. Data taken at angles other
than 90' would also be of value.

To study the binding-energy region, it will also be nec-
essary to extend the present theory of the DIB process to
include capture from higher shells, specifically from 2s,
2p, and 3p initial states, since such processes are certain
to play an important role at very low energies just as
they do in the IB process. And to apply the present the-
ory to this domain, contributions from the second-order
amplitude functions will have to be included in the cal-
culations. Thus much work on this process remains to be
done, and it is hoped that the present paper will serve
to encourage renewed experimental efforts to study this
rare but interesting process as well as further theoretical
work.

ACKNO WLEDC MENTS

In the following sections we describe in detail the re-
duction of the amplitude function S0 to illustrate the
methods employed. This is followed by a summary of fi-
nal results for all the amplitude functions for each of the
three orders that contribute.

1. Zero-order amplitude functions

We begin by introducing Eq. (19) for Gz(pi, p2) into
Eq. (25) and performing the integration over pz, thereby
obtaining

S,"= —2 dsi
o

1 1 1
"'(p; — ~) (-'+ t', )' (-'+ ~:)

' (A2)

1 = (1 —x —y)= 6 dx dya bc p p [a+ (b —a)x+ (c —a)y]

to rewrite Eq. (A2) as

(1+s
S,"= -12

S
1 1—x

x dx dy (1 —x —y)
0 0

1
x dpi'

Py 260 ' P'i + c0
(A3)

where t& ——p& + k2 and q&
——p& —A:&.

We now make use of Feynman's well-known parame-
trization technique for replacing a product of momentum-
dependent denominators by a single denominator [22] .
Specifically, we employ the formula

I wish to express my thanks to C.L. Lin and S. Gillespie
for reproducing in digitized form the experimental data
shown in Figs. 3 and 4 and to E.T. Gawlinski for his
advice on computational matters. I have also benefited
from many discussions with S.Y. Larsen.

with

bo = xki —(1 —x —y)k2,
co ——(1 —x —y)(a + k2) —2yf + x(o + ki).

(A4a)

(A4b)

APPENDIX A
The integration over pz may now be performed by simply
recalling the following integration formula (valid for n &

2), which is associated with Feynman's method:
In this appendix we illustrate the methods by which

the six amplitude functions defined by Eq. (25) can be
simplified analytically, thereby reducing the number of
integrations for which numerical procedures become nec-

dk I'(n —3/2)
k2 —2k - p+

3i2

(s p2)n —si2
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Its employment in Eq. (A3) leads to

(p) 3, „(1+sl~
2 o E s )

(c b2) 5/2
' (A5)

Since further analytic reduction does not appear pos-
sible, we conclude our analysis of Sp by preparing Eq.
(A5) for numerical evaluation. This simply involves mak-
ing the change of variable

s + u = s/(1+ s),

which results in the following 6nal expression for Sp

(A.6)

where cp and bp are now regarded as functions of x, y, and u.
The reduction of the other zero-order amplitude functions proceeds similarly. The 6nal results for all of them may

be summarized as follows:

3A(') = —-~2 du dx dy(1 —x —y) ",Z('),
0 0 0 (1 —u2)

(A7)

with the members of the associated zero-order set Z(o) = (so, si, vp, vi, v2, t, ) given'by

(0) 5/2
sp = dp

(0) 7'/2
Si = 50'Xdp )

vp = (bP + k2)dp
-( )

- - 5/2

vi ) = 5crx(bp —k, )do~,

v2( ) = 5o.x(bp+ k2)dt~,

t, = 50x (bp, bpq —ki;boy+ bp, k2q + ki, k2q) dt +b;qdp /5

(A8a)

(A8b)

(A8c)

(A8d)

(A8e)

(A8f)

with dp defined by dp = 1/(cp —bp2).

2. First-order amplitude functions

The reduction of the first-order contribution to Sp proceeds largely along similar lines. We begin by introducing
Eq. (20) for G&(pe, )72) into Eq. (25), thereby obtaining

p ( s ) (2~ P] ) (2~ P2) (Pi P2)' (a' + v2)' (a' + ei)

We again make use of Feynman's parametrization technique, this time employing the formula

1 x y z= 4I dx dy dz
o o o [az+ b(y —z) + c(x —y) + d(1 —x)]

(A9)

to rewrite Eq. (A9) as

(g) 48a
d

1+ s
d d d d d

o & s i o o o aip2 2bi 'S'2+ ci
5 ) (A10)

with

ai = (1 —y+ z),
bi —(x y)171 zk2

i = (
' + k') + (y —z) (&' + Ql) + (x —y)pl — ~(1 —*).

(Alla)
(Allb)
(Al lc)
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The integration over p2 may now be performed with the aid of the Feynman integration formula introduced in the
preceding section. Its use in Eq. (A10) leads to

S(1) d8 dX lg CLZ GP1 -— (A12)

Next, we introduce spherical coordinates in p1 space and perform the angular part of the pq integration using standard
methods. The result of this is

0 = 37lG d8 dX lg GZZ dP1-
1

A13
(f' + pig')'/'

where

dq ——z(a + k2) + (y —z)(o' + kz) + (x —z)p& —28(l —x),
fg = agdg —(x —y) p~ —z k22,

gg ——2z(x —y) k2 —2a~ (y —z) kg,
lj2gi = (gi. g~)

(A14a)
(A14b)

(A14c)

(A14d)

At this point we prepare for numerical integration of the five remaining integrals by introducing the following changes
of variable:

s -+ u = s/(1+ s),
g m v = p~/(1+ p, ),

resulting in the following final expression for S0

1 1 x y 1 Qg 1S = -era du dv dx dy dz
2 0 o 0 o o (1 —u) (1 —v) (2t —p~) gq (fq —pqgq) /'

1
(A15)

(fi + pxgi)'/'

in which aq, gq, fq, and pq are to be regarded as functions of x, y, z, u, and v.
The reduction of the other first-order amplitude functions proceeds similarly. The final results for all of them are

1 1 1
A( ) = du dv dx dy dz& )(x, y, z, u, v)Z

0 0 0 0 0
(A16)

with the common part of the integrands given by
l

in which we have employed the following definitions with
1=1

(A17)
and the members of the associated first-order set Z( ) =

(1) (1) ~(1) ~(1) ~(1) (1)q(so, s~, vo, v~, v2, t, ) given by

(A18a)

(A18b)

vo —— (1 —y)I& k2 + (x —y) Js gq /5, (A18c)

(A18d)

v2 ——oaq(y —z) (1 —y)I7 k2 + (x —y) J7 gl )
-(1) (1) {1)~

(A18e)

(4f —14f'pig' + ~5pig, )

5g,'- (f; —p~g') "~'

(4f +14f'pig'+775pig, )
(f. + p.g;)'~'

(A19c)

3. Second-order amplitude functions

I(') = —,(A19a)
1 1

(f' —pig') "~' (f' + pig') "~'. '

J(;) 1 (2f' —~pig') (2f'+ ~pig')
(~ —2)g,' (f' pg*)"~' (f'—+ J g*)"'

(A19b)

= era, (y —z) (1 —y) J7 gg;k2, —(x —y)

x J7 k~;g~, —(1 —y)I7 kz, k2,(1} (1)

+(*—))) (~"g»g»/g) —~*' '&*)/)

The procedure for reducing the second-order contribu-
tions to the amplitude functions is identical to that used
to simplify the first-order contributions. The final results
are of the same form, except for one additional integra-
tion, and diH'er only in a few details. Thus we present
only final results, prefaced by the following set of defini-
tions:
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a2 ——ai + (x —y)(2f —p', )(1 —p) /SpE,

d, = di —(*-y)(2~ —p', )(1 —p)'/4p

f2 = a2"2 —(& —y) &i —z k2~

(A20a)

(A20b)

(A20c)

g2 ——2z(x —y) k2 —2a2 (y —z) ki,
1/2g. = (g2 . g2)

(A20d)

(A20e)

with which the second-order amplitude functions may be
written as:

p(2)
1 1 1 1 K Q

dp dx dy dzF( )(x, y, z, uv, p)El ),
0 0 0 0 0

(A21)

with the common part of the integrands given by

~(2) ~
15 u ~ Z P

" a2F (z, y, z, u, v, p) = —b'av( (A22)

and the members of the associated second-order set E = (sp, si, vp, vi, v2, &; j given by(2) (2) (2) ~(2) ~(2) ~(2) (2)

Bp ——a2I& /5,(2) (2)

s, = era, (y —z)I,(2) 2 (2)

vpl
i = (a2 —z)Is( k2+ (x —y) Js g2 /5,

vi = o a2('g —z) J7 g2 —Ip ki-(2) 2 (2) - (2) "

v2 = o.a2(y —z) (a2 —z)I& k2 +(x —y) J7 gi

t, =oa2(y . —z) (a2 —z) J~ g2;k2, . —(x —y) J7 ki, g2,. —(az —z)I„ki;k2~(2) = (2) . (2) . (2)

+(*—u) (». g2'q»lg. —»~ be/3),(2) . . 2 (2)

(A23a)

(A23b)

(A23c)

(A23d)

(A23e)

(A23f)

in which we have employed Eqs. (A19) with i = 2.

APPENDIX B

to Glauber and Martin [3]:

dip~ = W~ k(1 —k/k „) ' dkdO, (B2)
n 2 (1+Bi,)

Here we record for ease of reference two well-known
formulas [5] that we use in the evaluation and plotting of
our Anal results. For normalization purposes we employ
the transition rate for ordinary allowed K capture which,
in. the nonrelativistic Coulomb approximation, is given by

with

Bi, (k) = 1 —— 1+ (2K(Ai) —1)3 1+ rji 1 —rji

(B3)

3
R'~ = 2G —k „BB',

7r
(B1)

and Ai ——(1 —ili)/(1+ qi), qi ——(1 + k/B~), where
B~ is the K-shell binding energy, and K(Ai) is repre-
sented by

where, as before, we have assumed the presence of two
K electrons initially.

Within the same nonrelativistic Coulomb approxima-
tion that we have used for our study of the DIB pro-
cess, the transition rate for IB during an allowed K-
capture transition is given by the following formula due

' dxx- ~

K(A, ) = A,
p 1 + ix

= ln(1+ Ai) —gi Q (—&i)"

, n(n —il, )
(B4)
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