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A model for cooling a system of bosons in a harmonic trap via their interactions with a thermal
bath of other particles is studied. The master equation describing the evolution of the system is
derived for an arbitrary number of spatial dimensions. This equation is characterized by transition
rates between trap levels. We present an analytic approximation for these rates and compare it with
exact formulas, derived for the case of an even number of spatial dimensions. Analytic expressions
show very good agreement with the exact ones for a wide range of parameters. We also discuss the
cooling dynamics in terms of the approximated rates.
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I. INTRODUCTION

Much of the work of atomic physicists has recently
been devoted to observing eKects related to the quan-
tum statistical properties of weakly interacting gases of
atoms [1]. Apart Rom the fundamental interest in such
phenomena, quantum statistical eKects might lead to in-
triguing applications such as the development of coher-
ent sources of atom . It is clear that to observe quantum
statistical eBects it is necessary to reach very low tem-
peratures and high atomic densities. Thus part of both
theoretical and experimental research in atomic physics
is now focused on cooling mechanisms for atoms con6ned
in traps at high densities [2].

One of the well-established cooling procedures is laser
cooling [3—5]. In laser cooling, atoms absorb energy from
a laser beam and then emit spontaneously in such a way
that the energy balance in each absorption-emission pro-
cess is negative. With some of the laser cooling mech-
anisms proposed so far, such as velocity selective popu-
lation trapping [6] or Raman cooling [7], atoms can be
cooled down to temperatures (or energies) below the pho-
ton recoil EIt [= (hk) /(2M), where k is the laser wave
vector and M the atomic mass]. However, such schemes
have been designed for atoms in the free space (and not in
a trap) and are limited to low atomic densities [8], where
atom-atom interactions are unimportant. An alternative
procedure that is not restricted by those limitations is
evaporative cooling [9,10]. In evaporative cooling, the
most energetic atoms are removed from the trap. With
this technique, although the number of atoms in the trap
decreases, the temperature is drastically reduced so that
the phase space density increases. Here, as opposed to
laser cooling, atom-atom collisions are necessary ingredi-
ents for thermalization.

Another route to cool samples of particles is sympa-
thetic cooling [ll—14]. With this technique, a gas of par-
ticles (A) is cooled via its interactions with another gas

(B), which is already at low temperature. Typically, one
can assume that either the number of particles in B is
very large and/or that the particles are kept cold by an-
other mechanism (such as laser cooling or evaporation
cooling). Then B can be regarded as a thermal bath and
therefore the final temperature of A will be very close to
the original one of B. Here, as in the case of evapora-
tive cooling, the required thermalization occurs due to
particle-particle collisions.

Sympathetic cooling was proposed in the late 1970s
and initial applications of this method concerned cooling
of charged particles, such as diferent isotopes of magne-
sium ions [11,12], or cooling of Hg+ ions via interactions
with laser cooled Be+ ions. These pioneering experiments
have had a direct impact on experiments involving stor-
age and cooling of antiparticles [15]. In particular, cool-
ing of antiprotons in an ion trap via interactions with
electrons have been proposed [16] and demonstrated by
Gabrielse and collaborators [17]. The same group re-
cently proposed positron cooling of ions [18]. Sympa-
thetic cooling of molecules interacting with a burr gas
of sHe in a cell has also been proposed [19]. In that case
the He atoms were in thermal equilibrium with the walls
of the cell. The molecules were cooled through collisions
with the He atoms and loaded into a trap.

To our knowledge, the idea of sympathetic cooling of
neutral particles, and in particular atoms, has not been
exploited in the literature. In this paper we discuss such
possibility concentrating on the following physical situa-
tion: the gas of alkali atoms B is con6ned in a large and
rather loose trap, such as a magneto-optical trap (MOT)
(cf. [5]). Typically, for alkali atoms such traps have fre-
quencies of the order of 10—100 Hz and sizes of few mi-
crometers [20]. The gas B is cooled by some mechanism
(e.g. , laser cooling or evaporation cooling) to a temper-
ature TI3. The temperature TI3 might still be relatively
high for the B atoms, which are additionally assumed
to be relatively heavy. The gas A is composed of other
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alkali atoms, that are assumed to be stored in a tight
trap such as a far-ofF resonance dipole trap (FORT) [21].
Tight traps may have frequencies in the range of few kilo-
hertz and sizes of 0.1 pm [22]. A atoms have smaller
mass, but not necessarily much smaller than that of B
atoms. Of course, in principle, the same physical forces
can be used. to store both atomic species. In the latter
case the di8'erence in trap frequencies would also result
from the diIII'erences of atomic masses, dipole moments,
etc. We think, however, that the idea of using a FORT
inside a MOT is interesting itself, since it leads to the
extreme frequency and size differences and moreover can
be also used in the context of evaporation cooling of a
single atomic species.

Although the temperatures reached with sympathetic
cooling cannot be too low (i.e., lower then the temper-
ature of B atoms), the main advantage of this method
consists in its passive character. For this reason it may
be employed to cool A atoms even when all other pro-
cedures fail. Second, even though the temperature of
the gas B might be relatively high, it might at the same
time be sufBciently low for the gas A, so that the A atoms
at this temperature might already exhibit quantum sta-
tistical eKects. The reason for that is that in general
A particles are characterized by a mass different (and
charge, in the case of ionic systems) from that of the B
particles. This appealing property of the sympathetic
cooling can be illustrated when one considers the condi-
tions for the appearance of Bose-Einstein condensation
(BEC). As is well known, BEC in three dimensions oc-
curs when nA & 2.612, where n is the atomic d.ensity
and A = (2mb /MvT) ~ is the de Broglie wavelength
[23]. In the physical situation that we consider, for a
fixed density (temperature), the lighter A atoms reach
the critical point at a higher temperature (at lower den-
sity) than the heavier B atoms.

The quantum dynamics of many-body cooling is a very
complex problem in general. A master equation describ-
ing the dynamics of a small sample of the laser cooled
atoms in a microtrap has been proposed and analyzed re-
cently [24]. The quantum statistical nature of the atoms
is reflected in the dynamics of the cooling process. For
evaporative cooling, the quantum kinetic equations de-
scribe the evolution at least in the first stages of the cool-
ing process before the Bose-Einstein condensation takes
place [25,26]. A master equation for evaporation cool-
ing can also be derived under certain circumstances [27].
This master equation has the advantage that it permits
one to study atom number fluctuations in each of the trap
levels and thus provides a more complete description of
the cooling process. In particular, it can, in principle, be
used to describe the dynamics of condensate formation.

In this paper we present and analyze a simple model
describing the quantum dynamics of sympathetic cool-
ing. We consider a gas of particles A trapped in a har-
monic potential and interacting with other particles B
that can be regarded as a bath at a given tempera-
ture. The interaction between the particles are due to
atom-atom collisions, which we model using the stan-
dard shape-independent potential approximation [28,29].
We use methods borrowed from quantum optics to de-

rive a master equation for the reduced density operator
of the system A. The master equation describes cooling
through transitions between different trap levels. The
rates at which these transitions occur depend on the spe-
cific properties of the atomic collisions, as well as on the
characteristics of the trap and the temperature of the
atoms of the bath. In principle, they contain all the in-
formation concerning the cooling process. It is the main
goal of this paper to analyze these rates and to present
accurate analytic formulas for them. The results and the
techniques developed can be generalized to study other
problems, such as the above mentioned problem of evap-
oration cooling of atoms in a loose MOT with a tight
FORT in the center.

This paper is organized as follows. In Sec. II we intro-
duce the model, describing separately the atomic bath,
the system, and the system-bath interactions. In Sec. III
we derive a master equation for sympathetic cooling, un-
der Born and Markov approximations. Exact formulas
for the transition rates between diferent levels are given
in Sec. IV and are compared to analytic approximations
using the saddle point method. In Sec. V we discuss
qualitatively the process of sympathetic cooling in terms
of the master equation derived in Sec. III. In Sec. VI we
summarize the results.

II. MQDEL

A. Bath

We consider that the system B contains a practically
infinite number of bosons of mass M~ embedded in a
practically infinite volume, with Gnite density n~. The
free Hamiltonian for the bath B of particles in a second
quantized form is

Hgg —— dkek 6k tbk.

Here k is a wave vector in a d-dimensional space,

(hk) z

2M (2)

is the corresponding energy, and b(k)t and b(k) are cre-

We consider a system of particles A that are confined
in a trap and interact with other particles B in a finite
region of space. We assume that the particles B are prac-
tically unafkcted by their interactions with the system
A, so that B can be regarded as a reservoir for A. We
assume that the reservoir is in thermal equilibrium at
some given temperature. The thermalization in the bath
B occurs due to some external cooling mechanism (e.g. ,
laser cooling or evaporation cooling) and as a result of
collisions between the B particles. In this section we in-
troduce the Hamiltonian for the bath B, the system A,
and their mutual interactions. The formalism will be de-
veloped for the case of d spatial dimensions.
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ation and annihilation operators of bath particles in the
plane wave states with momentum k. They fulfill the
usual commutation relations

[b(k), b(k')] = b(k) t, b(k') t = 0,

b(k), b(k')" = 8~ i (k —k') .

where A~ = (2+5 P~/M~) ~ is the thermal de Broglie
wavelength for the bath particles. Note that the temper-
ature T~, although high for the B atoms, might still be
quite low for the A particles.

(b(1 )b(k')) = (b(1 )tb(1 ')t) = 0,

(b(k)tb(k')) = n(k)8~"l(k —k'),
(3a)

(3b)

where n(k) defines the number of particles with wave
vector k and is given by

n(k) = ~~
—Pa &(k)

1 —ze —~ '~"~

In the above expression, P~ = I/(KTri) is the inverse

temperature and z is the fugacity. Note that both n(k)
and e(k) depend only on A,'= ~k~. Particle and energy
densities are connected to these quantities by the rela-
tions

One could easily extend this model to the case of a bath
of fermions by simply introducing anticommutation rela-
tions between creation and annihilation operators. How-
ever, we will be interested in a situation in which the
bath is far from the range of temperatures and densities
at which quantum statistical properties are important.
For this reason the results of the paper will not depend
on the bosonic or fermionic character of the bath. Note
that, formally, Eq. (I) does not take into account colli-
sions between the bath particles. At high temperatures
and low densities, however, the major role of those col-
lisions is to thermalize, i.e. , to keep the temperature of
the bath constant. It is therefore legitimate to use the
Hamiltonian (I) and assume appropriate thermal distri-
bution of the B particles. Alternatively, one could view
Eq. (I) as a Hamiltonian for quasiparticles that describes
effective excitations of the system B with the collisions
between the bare particles accounted for. Quasiparticle
creation and annihilation operators can be constructed
using a self-consistent Bogoliubov-Hartree method [30].
In such a case, the dispersion relation (2) would, in gen-
eral, be modified, but again the modifications are negligi-
ble in the high-temperature low-density limit considered
here.

In thermal equilibrium, the density operator describing
the state of the bath p~ corresponds to the usual Bose-
Einstein distribution (BED). In this situation, we have

B. System

The system A consists of N particles (bosons) of mass
M~ confined by a harmonic potential in d dimensions. In
a second quantized form, the Hamiltonian describing the
system can be written as the sum of two contributions.
The first one is the free Hamiltonian, which in the Fock
representation takes the form

II~ = ) hv(n +n„+ . )ata„,

where v is the trap frequency, n = (n, n„, . . .) with
, ~&, . . . = 0, 1, 2, . . ., and a~ and a are creation and

annihilation operators of particles in the nth level of the
harmonic potential, respectively. For the sake of clarity,
we have written Hamiltonian H~ (7) for the simplest case
of an isotropic harmonic trap. With slight modifications,
the theory presented here can be easily extended to non-
isotropic and nonharmonic traps (see Sec. VB below).
The second contribution to the total Hamiltonian H~ ~
is due to the atom-atom interactions and its role will be
specified later.

C. Interactions

The interactions between the particles belonging to the
system and those of the bath are due to atom-atom col-
lisions. For suKciently low temperatures, we can use the
shape-independent approximation [28,29] to write down
the corresponding Hamiltonian. Physically, this approx-
imation means that the wave functions of both kinds of
particles do not change significantly over distances char-
acterizing the interparticle potential for low-energy col-
lisions. The interparticle potential can be then safely
replaced by a zero-range Dirac b potential. In the Fock
representation the interaction Hamiltonian is thus given
by

H~ ~ = ) dkdk'p„„(k, k')at a„bt(k)b(k'), (8)
n, n'

1

(2~)'
1

(2~)~

dkn(k),

dkn(k) e(k), (5b)

where

Cp„„(k,k') =

respectively.
Here we will be interested in the case in which the bath

is at relatively high temperature so that its statistical
properties do not play an important role. In that case,
the BED can be replaced by a Boltzmann distribution,
for which

(x) is the wave function corresponding to the nth level
of the harmonic oscillator, and C is a constant depending
on the d-dimensional scattering length a„. For example,
in three dimensions

4' h2a„
2p
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with p the reduced mass.
Without loss of generality, we can exclude &om the

integration over k and k' in (8) the values for which k =
k'. This is clear since

) dkp „(k,k)at a bt(k) b(k)
n, n'

the interaction picture. Integrating formally this equa-
tion and substituting it back into (13), we obtain

dp(t) i
dt

= --IH — (0), p(o)1
t1 " [H&-&( )~ [H&-&(t )~ p(t —'r)l].

h2 0

oc ) at a
~

dkbt(k)b(k)
~

(11)
) ~

is a constant operator, proportional to the product of
the number of particles in the system A and the bath B;
therefore we can always remove it &om the Hamiltonian.
Hence, in the integrals including k and k it will be im-
plicitly assumed that k g k'. On the other hand, we an-
ticipate that it will be useful to make a rotating-wave ap-
proximation (RWA) in the master equation derived from
the Hamiltonian (8). To this aim, it is convenient to
rewrite Eq. (8) in the form

(12)

Here Ho contains the part of H~ ~ given in (8) in which
the sum is extended over values with P& „(ni—n&) =
0. H contains the part of H~ ~ with the sum extended
over the values for which P& (ni —n&) = o. and the
integral is extended to ~k'~ ) ]k]. We wish to point out
that in the master equation derived in the next section,
an additional RWA will be made at the end of derivation.
Due to this RWA the Hamiltonian part of the master
equation (that describes shifts of the energy levels) will
not be correct in general [31,32]. However, in this paper
we will be interested in only the decaying part of the
master equation, which is correctly described under the
mentioned RWA, provided the trap frequency v is larger
than the cooling rates. The latter assumption will be
made throughout the present paper.

III. MASTER EQUATION

The Schrodinger equation describing the evolution of A
and B does not give much information about the cooling
process. However, when B can be regarded as a bath, one
can derive a master equation for the system A only. This
gives clear physical insight into the problem and simpli-
fies it enormously. In this section we present a derivation
of such a master equation, following well-established pro-
cedures in the field of quantum optics [31,32].

We first move to an interaction picture defined by the
unitary operator exp [

—i(H~ + H~)t]. In this picture,
the density operator p describing system-plus-bath de-
grees of freedom fulfills

Now we define the reduced density operator for system
A only, p~ = Tr~(p), where Tr~ stands for the trace
over the bath states. It can be easily shown that in the
interaction picture it satisfies

dp~(t) 1

dt h2
d7.Tr~([H~ gg (t),

x[H~ ~(t —~), p(t —~)]]}. (15)

In the above expression we have made use of the fact that
Trz([H& &(0),p(0)]}= 0, since the density operator for
the bath p~(0) is diagonal in the Fock basis (with respect
to H~), whereas Hz ~ does not contain any diagonal
matrix elements [the reader should recall that we have
extracted the terms with k = k' in H~ &, see Eq. (11)].

Next we perform Born and Markov approximations.
The latter is related to the fact that the bath atoms are
practically unaffected by their interactions with the sys-
tem; this allows us to write p(t —~) = p~(t —~) p~(0).
For the Born approximation we have to assume that the
correlation time v of the system-bath interaction is much
shorter than the typical time over which p~(t) changes,
i.e. , the cooling time [32]. From the technical point of
view, the correlation tixne 7 can be defined as a time for
which the integrand of (15) practically vanishes. It can
be shown that

Mgg
vT min 1, gP~ hvM~/M~

A
(16)

Vz z(t) = drHA B(t —T)
0

—= &.(t) + ) .[I'-(t) + &.(t)']
m=1

The cooling time, on the other hand, depends on the col-
lision processes (scattering lengths, densities, etc.) be-
tween atoms and it is assumed to be the longest time
scale of the problem. Since for two alkali-atom species
the mass ratios cannot be to high, Eq. (16) indicates
that the suKcient condition for the Born approximation
to hold is that the trap frequency should be much larger
than the cooling rate [33]. In this case, we can safely sub-
stitute p~(t —w) by p~(t) in the integral (15) and extend
the upper limit of the integral to infinity.

Let us now make use of Eq. (12) to obtain

= ——[H~ ~(t), P(t)], (13)

where the tiMe indicates that the operator is expressed in
Substituting this expression into Eq. (15) and using Eq.
(12) again, we obtain
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dPA(t) ———
2 Tra(HO(t) Vs(t) p~(t) p~(0) —Vs(t) p~(t) p&(0)Hp(t) + H.c.j

——) Tr~(H~(t)V~(t) p~(t)p~(0) —V~(t) p~(t)p~(0)H~(t) + H.c.j
&x=1

——,).T'~(H (t)'V (t)p~(')p~(o) —V (t)p~(t)p~(o)H (t)'+ H.c ). (18)

To get this expression, we perform an additional RWA,
i.e., neglect terms rotating at multiples of the trap fre-
quency. Again, this approximation is based on large trap
&equencies compared to the cooling rates.

Note that in the derivation of Eq. (18) we have ex-
cluded from the very beginning the interactions between
system particles. However, when the trap frequency is
the largest kequency in the problem one can make the
independent rates approximation [32] and siinply intro-
duce directly the Hamiltonian H~ ~ in the Anal master
equation.

Finally, performing the trace in Eq. (18), taking into
account the bath properties (3), and returning to the
Schrodinger picture we obtain the master equation

dp~ = ——[H~ + H~ ~, p~] + &p~,
dt

(19)

z= ) (20)

where

where H& & is the original Hamiltonian H~ ~ plus the
terms corresponding to shifts produced by the elimina-
tion of the bath in the master equation. In the follow-
ing we omit those terms, but they can be easily derived
&om Eq. (18). Physically, they account for the energy
level shifts due to the effective interaction between sys-
tem particles via their collisions with bath particles. The
Liouvillian 8 describes the cooling process and is given
by

I'„„', = — dkdk'p„, „k,k' p, k', k

xn(k) [n(k') + 1]b[e(k) —e(k') + cchv], (23)

where n is defined through (22).
Note that, in general, the master equation (19) is not

written in the Lindblad form [34] and therefore its in-
terpretation in terms of transitions between trap levels
may be misleading [31]. However, one can see by simple
inspection of this equation that the I"s with m = n' and
m' = n do correspond to transition rates between level

~n) and ~n'). These are precisely the rates that enter into
the evolution equation for the energy and thus the ones
responsible from the cooling process (see Sec. V).

One should also stress that the master equation has
three important properties: it conserves the trace of the
density matrix, it describes physical decay processes, and
it conserves the positivity of the density matrix. The erst
property follows readily from Eq. (21) and the second and
the third from the fact that, using expressions (23) and

t

(9), one can show that the inatrix I' ', is positively
defined. Diagonalizing this matrix one can reduce each
of the Liouvillians (21) to a sum of Lindblad-like terms
of a form proportional to Cp~Ct —

2 p~CtC —2CtCp~,
where the operators C and Ct are appropriate bilinear
combinations of a~ 's and am~'s. In such a representation
the physical soundness of the master equation is evident.
Unfortunately, such a representation is generally difIicult
to handle, unless the matrix (23) has some very special
properties.

I) I'„', (2at a p~at a
n, n, m, mI I

n+n' m m'p& p& n+n' m+m') ~ (21)

The sum in this expression is extended to n, n', m, m',
fulfilling

l=z, y, ...
) (m, —m', ) = —~. (22)

l=x, y, ...

The Liouvillian (21) accounts for transitions of particles
&om one level of the harmonic oscillator to another, ex-
periencing a change in the energy of o;hv. Thus the term
with o. = 0 conserves the energy, whereas the terms with
o. ) 0 (n ( 0) describe processes increasing (decreasing)
the energy. These transitions are characterized by

IV. RATES

d7 dkdk pn nI k) k ym mI k, k

(k) [ (kC ) + 1] [ (i)—ccc(lcc)+cchv]7 /5 (24)

In the preceding section we derived the master equa-
tion describing the sympathetic cooling of atoms by their
interaction with a bath composed of other atoms. The
cooling is described in terms of rates as given in Eq. (23).
In this section we derive analytic expression for them. In
particular, for an even number of dimensions d, we derive
an exact expression in terms of the parameters entering
in the problem. We compare it with an analytic approxi-
mation based on the saddle point method, valid for both
even and odd dimensions.

We start by writing Eq. (23) in a slightly difFerent form
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Now we make the following change of variables:
hv7M~/M~ = t, ka = rl, and k'a = rl', where a
(h/2M~v) / is the size of the ground state of the trap.
In the limit where the bath follows a Boltzmann distri-
bution, n(k') + 1 1; using (2) and (6), we obtain

for n even and U(n) = 0 for n odd. Here

A(t) = 1+it+ t2/8

Substituting these results in (26), we obtain

M~ 2h'v(2)ra)'

I

The dimensionless quantities I ', are de6ned by
)

(25)
2- d//2

7t

b

X Cml )ml )sl

v. l ——0

(2ql + 1)!!
2ql q

sl ——0

min(nl, nl ) min(ml, ml )

(34)
I

yxn) xn
n, n'

dydee'e

x f„,„(g—rl') f (rl' —rl),

where b = P~hvM~/M~, a' = nM~/M~, and

(26)
if nl + n& + ml + ml is even for all I and zero otherwise.
In (34) ql = (nl + nl + ml + ml —2rl —2sl)/2 and q =
d/2+ pi „ql = d/2+ p& „(nl + ml —rl —sl)
[see Eq. (22)]. The quantity Vz is defined by

f„„(rl)= dx: i))( )x* i„))( )xe (27)

To calculate this quantity, we first perform the change
of variables g" = g' —g in the integral. The quanti-
ties f„„can be easily calculated, taking into account
that the eigenstates of the harmonic oscillator in the tth
dimension Inl) fulfill

(n, Ie'~"{.+")In{)

Il+ —2 l l~ f /~it

rl! (nl —rl)!(n' —rl)!
rl ——0 l

where al (al ) is the annihilation (creation) operator for
the harmonic oscillator (in the first quantization picture).
We obtain

min(nl ~l ) min(ml ml )). ):
0

Vres 2 ) I

q 1+l

( t) q —i—l —cx' [V/b {8+4)—b/2)

(q —1 —l)' [b(b+ 4)l'+"' (36)

On the other hand, one can obtain a very good approx-
imation for Vq using the saddle point method, for both
even and odd d. As shown in the Appendix, we obtain

where q is an integer number plus d/2. The calculation
of the rates I' has thus been reduced to the evaluation of
the above integral. Note that the integrand in Eq. (35)
tends to zero as t increases. The typical width of 1/IA(t) I

is of the order of min[1, ~b], which gives for 7, the result
given in (16).

The integration in (35) can be performed exactly when
the number of dimensions d is even. In this case, using
the residues technique one obtains (see the Appendix)

where

x{,„U(nl + nl + ml + ml —rl —sl),

(29)

~SP
q

(37)

and

U(n) =

(—1)"+"y n!v/n'!

r!(n —r)!(n' —r)! (30)
where t+ are the zeros of A(t)

t~ = -[+gb(b+ 4) —8]

and t' the only saddle point that contributes to the in-
tegral

(n + 1)!!
~$ 2n/2 A(t) {n+i)/2 (32)

In this derivation we have used the fact that
(nl+n' , —ml —m', ) = 2p, .„(nl —m', ) [see

(22)]. The Gaussian integrals in the definition of U(n)
can be performed easily, giving

t' = -[Vb(b+4)+4q'/( ')'-b —2qi ']

In Fig. 1 we have plotted the results given by formulas
(36) and (37). More specifically, we have plotted the error
(in percent) given by the saddle point approximation,
that is, I(V —V' ')/V"'I, as a function of q for several
values of the b and o.'. Apart from the case o.' = 0, which
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FIG. 1. Error given by the saddle point approximation (in
percent) for the value of U~ as a function of q. (a) b = 1; (b)
b = 0.2; (c) 8 = 10. Solid, dashed, dash-dotted, and dotted
lines correspond to o," = 100, 20, 10, and 0, respectively.

gives a maximum error of about 50%, the saddle point
approximation gives the correct result with an accuracy
of less than 8% for any 8, as the figure shows. The error
decreases as q increases, tending to a very small value as
q —+ oo.

This is a very important observation since it strongly
supports the validity of the saddle point approximation
in calculating V~. We conjecture that Eq. (37) can be
used with a great confidence to evaluate the rates I', also
in the case of odd dimension d. The analysis presented in
this section is thus one of the main results of this paper.
The techniques that we have developed here can be used
in other problems involving the derivation of the master
equation for cooled atomic systems.

A. Steady state

As could be expected from thermodynamic consider-
ations, the steady state solution of the master equation
(19) is the BED

PA. A (40)

with P~ = P~. This statement can be proved quite gen-
erally from the following three observations. First, by
direct inspection one can show that CpA ——0, i.e., that
pA is a steady state solution. This is a consequence of
the fact that the Liouvillians 2 ahvays contain prod-
ucts of operators that increase and then decrease the en-
ergy by +ho.v. Second, following the same procedure
as the one used in Sec. II to derive the master equa-
tion, one can easily see that the part of the Hamiltonian
HA A

—HA A that describes shifts induced by interac-
tions with the bath particles commutes with pA. Third,
the collisions between the A atoms described by HA A
can be treated using the standard theory of the quantum
Boltzmann equations [26]. In effect they lead to quan-
tum kinetic equations for which (40) is a steady state
solution (for any P~). Since the steady state solutions
of the quantum kinetic equations must be of the form
(40), this justifies the uniqueness of the solution (40) for
P~ = P~. This last point is well established in quantum
statistical mechanics and is based on ergodicity assump-
tions [26].

Knowing the steady state solution we can analyze un-
der what circumstances quantum statistical e8'ects can
be observed in the system A. Roughly speaking, they
occur when the number of particles in the ground level is
of the order of 1 or greater. We can estimate when this
happens, using, for the system A, the Boltzmann distri-
bution for the harmonic trap in d dimensions. Requiring
that %0 & 1, one can easily show that this occurs when

V. DISCUSSION

N(P~hv) ) 1. (41)

In general, the master equation (19) is rather difficult
to solve. The main problem is that it couples di8'erent
Fock states with the same (bare) energy and therefore
it cannot be reduced to a set of rate equations, i.e., to
a Lindblad form [31]. In other words, due to the de-
generacies of the Fock states there is no clear distinction
between the rates of decay of coherences and diagonal
elements of the reduced density matrix pA. There are,
however, at least two situations in which such a reduction
of the master equation to the Lindblad form is possible:
the case of an anisotropic and anharmonic trap and the
case of rapid thermalization of the system A due to col-
lisions between A atoms. We discuss both of these cases
below. Moreover, in spite of the presence of degenera-
cies, we can obtain the steady state solution of Eq. (19)
in the limit when the A system is not too dense. In this
limit the collisions between the A atoms can be treated
perturbatively, so that the quantum kinetic equations are
valid [26].

We shall use the condition (41) even though it is slightly
exaggerated, since in the case d = 3 it is essentially
stronger than the condition for Bose-Einstein condensa-
tion. On the other hand, our theory is valid in the regime
when the bath does not display quantum statistical ef-
fects, i.e., when the number of particles in the ground
level is much smaller than one. According to (6), we
then have

nay(2vrh t3gy/Mgy)
"i (( 1.

These two conditions can be satis6ed when

N )) (4vr) n~a "(M~/Mii)". (43)

Thus one of the following conditions must hold: (a) For
similar densities of atoms, Mii )) M~, or (b) for similar
atomic masses, the density of A atoms must be larger
than that of R atoms. Let us analyze the condition (43)
more closely for d = 3. For alkali atoms the masses are 7
(lithium), 23 (sodium), 85 (rubidium), and 133 (cesium).
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The mass ratio can change from 0.05 (lithium:cesium) to
0.64 (rubidium:cesium). Assuming that the bath consists
of 10 cesium atoms in a 10-pm trap and taking a = O. l
pm, we obtain from (43) that the number of A atoms
N must be larger than approximately 25 for the case of
lithium and larger than 5 x 10 for the case of rubidium.
Amazingly, these numbers are within the reach of present
day experiments.

B. Anisotropic and anharmonic traps

The main difBculty in analyzing the master equation
(19) lies in the fact that this equation does not have
a Lindblad form and cannot, in general, be reduced to
equations for diagonal density matrix elements. The rea-
son that such reduction is not possible is that the sys-
tem A is highly degenerated. There are two kind of de-
generacies: (a) the degeneracy of energy levels due to
isotropy, that is, for the states for which n + n„+
n' +n'„+, and (b) the dynamt'cal degeneracy, which oc-
curs even in the case of d = 1, for instance, for the states
n = (1, 0, 1, 0, . . .) and n' = (0, 2, 0, . . .). Both kinds of
degeneracies are lifted up if one considers an anisotropic
trap with anharmonic energy levels. If one then assumes
that the resulting energy level shifts are larger than cool-
ing rates, one can evoke standard secular arguments to
reduce the master equation to the diagonal form. More-
over, if one additionally assumes that the resulting level
shifts are small (so that they can be neglected in the
evaluation of the transition rates), the resulting master
equation will take the form

~PA
& p~, (44)

with

r.p„=) F„-"(2a~ a„p ata
n, m

aa a anpA ——pea a~a an), (45)

n —m = o, , and the rates given by the same expressions
as discussed in Sec. IV.

The above master equation can be then easily simu-
lated using the standard Monte Carlo procedures (see
Ref. [24]). It describes Poisson jump process in vrhich
the A atoms may jump from one energy level to another.
Each term in Eq. (44) corresponds to an energy change
by hvo. . We expect that, qualitatively, the dynamics de-
scribed by Eq. (44) vrill be very similar to the one dis-
cussed in Ref. [24] in vrhich vre studied the dynamics of
the laser cooled quantum gas in a tight trap, i.e., in the
so-called Lamb-Dicke limit. In that case the Liouvillian
has a form analogous to Eq. (44), but contains only the
terms corresponding to o. = +1, so that only the jumps
corresponding to the energy change +hv are possible.

For the laser cooled gas of bosons the quantum dynam-
ics exhibits interesting collective behavior. If one starts,
for instance, with all atoms in the nth level, they will, in

1'-
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FIG. 2. V~ as a function of q for b = 1 for (a) integer
values of q and (b) semi-integer values of q. Solid, dashed,
dash-dotted, and dotted lines correspond to n' = 100, 20, 10,
and 0, respectively.

the case of low temperature, jump collectively to subse-
quent levels n —1, n —2, and so on. At a given instant,
most of the population will be concentrated in a single
level of the trap. More strikingly, similar eKects occur
when one starts the dynamics &om the state in which all
bosons are in difFerent trap levels. After some time, be-
cause of their bosonic character, the atoms mill "bunch"
and tend to occupy only a few trap levels. After that
they will again perform subsequent collective jumps to
the lower states. In the case of the laser cooled gas the
dynamics slows down slightly as the lower energy levels
are reached. Obviously similar efFects will occur for the
more general dynamics described by Eq. (44), except
that now collective jumps might take place between the
states that dier in energy by khvo. . The analysis of the
behavior of the rates I' indicates that for high-energy lev-
els there are no preferable values of n, m. , and o. and all
the rates are more or less of the same order. That means
that in the dynamics described by Eq. (19) one should
not expect significant differences in the cooling rates as
the system cools down, whereas one should expect that
the jumps corresponding to all values of o, are, more or
less, equally probable. Only when the system cools down
close to the ground state do the jumps corresponding to
small values of n become dominant.

The behavior of the rates I' with the diKerent param-
eters can be deduced from Eqs. (25) and (37). They are
proportional to the density of bath atoms nI3 and the
square of the scattering length through the factor C .
Their dependence on the bath temperature is displayed
in Figs. 2 and 3. In Fig. 2 we plot V as a function of
q for the same parameters as in Fig. 1(a). Figure 2(a)
corresponds to integer values of q (i.e. , even d), whereas
Fig. 2(b) corresponds to semi-integer values of q (i.e. , odd
d). The difFerences between these figures are nearly neg-
ligible. For n' = 0 (transitions that do not change the
energy) V~ decreases monotonically with q. For n' g 0 it
has a maximum at a given q. The value of q for which
Vq is maximum increases with n . This means that for
o.' small the most important rates are those between the
lowest levels of the harmonic oscillator. However, as o.'

increases, the important rates are those corresponding to
transitions between higher and higher levels.

In Fig. 3 we analyze the behavior of Vq as a function
of b for several values of q and o.' = 25. Note that the
dependence on b of the prefactor of the F's and I in (25)
and (34), respectively, cancels out. As the figure shows,
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V~ decreases as b increases (i.e. , as the temperature of
the bath decreases) and therefore the cooling rate be-
comes faster as the bath temperature decreases (note the
logarithm scale for V~). In this low (ba-th) temperature
regime (8 ~ 0), the function V~ behaves as

100

80-

40

(46)

This expression clearly shows the above statement. It
also displays that the rates are larger for larger q. Then,
in this limit, the terms with rz ——8~ = 0 give the max-
imum contribution to I in Eq. (34). The rates are then
larger for larger values of n, I and, therefore, as the cool-
ing process takes place, it becomes slower and slower.
Note also that formally, in the limit b ~ 0, the rates
are not bounded and therefore the Born approximation
breaks down. Even for b ( 1 and for sufficiently large
values of n, rn, the rates calculated with the expressions
given here become larger than the trap frequency and
therefore the assumptions made in Sec. III do not hold.

C. Rapid thermalization of A

-20

-40

0 1 2 3 4 5 6 7 8 9 10

we can derive, for the total energy of the system E =
hv(m + m& +.. .)%~, the evolution equation

FIG. 3. Logarithm of (V~) as a function of 8 for n' = 25.
Solid, dashed, dash-dotted, and dotted lines correspond to
q = 1, 5, 10, and 20, respectively.

dN d

d,
-=d (-'m)

n+0

—) I'"' „K (N„+ 1)
dN

A-A
(47)

where the last term refers to the contribution due to
atom-atom interactions between system particles. This
contribution has the standard form of quantum kinetic
equations [26] and ensures that within a fast thermaliza-
tion time the system will reach a state of instantenous
equilibrium described by BED with the inverse temper-
ature P~(t). After the thermalization time this contri-
bution simply vanishes and the N 's become uniquely
determined functions of P~(t). The + in the sums
indicate that they extended to values of n for which

(ni —mi) = +o.. To derive (47), we have uti-
lized the master equation (19) and Wick's theorem. Now,
using the fact that at instantenous equilibrium

N -+1
Nm —P~(t)h (n+rva„+»" —m» —m„—") (4S)N +1

Another situation in which the analysis of the dynam-
ics governed by the master equation (19) is particularly
simple occurs when collisions between atoms in A are
more &equent than those between different atoms. This
will be the case when the density of A is larger than that
of B. In this case, the system A thermalizes rapidly and
its state at each moment is given by a BED, with some
tiine-dependent inverse teinperature P~(t). The density
operator is thus always diagonal in the Fock basis. The
mean occupation of the xnth levels evolves as

dE n hv [P~ —P~ (t))
]

cM
a.=1

n, m

Note that at instantaneous equilibrium E is a unique
function of P~(t), so that Eq. (49) can be viewed as
an equation determining slow changes of P~(t) due to
atom-bath interactions. Equation (49) clearly shows that
the steady state is reached when P& = P&, given that
I' ' and N are positive numbers. The rate at which
the energy changes is characterized by the rates I' and
therefore they determine the cooling. This is the main
and very useful result of this subsection, since it allows us
to compute directly the cooling rate using the techniques
developed in Sec. IV.

Finally, we wish to emphasize that the present formu-
lation of the problem of sympathetic cooling, as is the
case of other cooling mechanism based on collisions, is
expressed in terms of physical quantities such as the scat-
tering length a„. These quantities are not well known for
many specific atom-atom collisions (as is the case, e.g. ,
for Li-Cs). Thus it is difficult to estimate the cooling
rates from our formulation until these quantities can be
measured in experiments or calculated numerically. Note
that the shape-independent approximation is valid under
the assumption ko,„« 1, where k 2vr/A is the ther-
mal wave vector of the atoms. Assuming that the atoms
are initially at a temperature equivalent to 100 recoils
(with respect to an internal optical transition), as ob-
tained with optical molasses, this approximation is valid
for a„« 10 A, where A is the optical wavelength. Al-
though the specific value of a„ is not well known, typi-
cal results for other atom-atom interactions [35] indicate
that it fulfills this condition, i.e. , the shape-independent
approximation is well satisfied.
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VI. CONCLUSIONS 1. Residues

In this paper we have studied sympathetic cooling of
one alkali-metal species A by another one B. We have
considered a situation in which the lighter atoms A are
trapped in a tight harmonic trap (such as a FORT) and
interact with heavier atoms B trapped in a loose trap
(such as a MOT). The atoms B are cooled by some other
mechanism. We have derived a master equation describ-
ing sympathetic cooling of a system A, treating the B
particles as a bath at a Axed temperature. The validity
conditions for this master equation are that the cooling
rates appearing in it must be much smaller than the trap
&equency of the harmonic potential. We have derived an
exact analytic expression for these cooling rates in the
case of an even number of dimensions. We have devel-
oped powerful mathematical techniques to calculate these
rates in any dimension using a saddle point method. The
techniques can be generalized to other problems involv-
ing a master equation for cooled atom systems.

We have shown that the steady state solution of the
master equation is described by the BED with the inverse
temperature P~ equal to that of the bath Pz. We have
identified regions of parameters in which the system A ex-
hibits quantum statistical eKects and argued that those
regions lie within the reach of present day experiments.
We have also identi6ed two cases when the master equa-
tion derived here can be solved numerically via Monte
Carlo method: the case of anharmonic and anisotropic
traps and the case of rapid thermalization in the system
A. We have discussed the dynamics in those cases in
qualitative terms and argued that it would present inter-
esting collective behaviors, similar to those found in the
case of many-atom laser cooling [24].
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This residue can be easily calculated, giving (36).

2. Saddle point

Now we evaluate (35) by the saddle point approxima-
tion technique for any d. To do this, we erst express Vq
as

(A2)

where

F(t) = in't —q in[A(t)].

Solving F(t)' = 0, we find two saddle points

t~ = —[+Qh(h + 4) + 4q2/(n') 2 —b —2q/n'].
2

(A4)

On the other hand,

1 1

(t —t+) (t —t+)
(A5)

which is negative at the saddle points. Note that all
t+ and t+ are located at in the imaginary axis. It is
easy to see that t+/i ) t+/i ) t /i ) t' /i. Thus the
integration path from —oo to oo can only be deformed
(without changing the result of the integral) to cross t+,
i.e. , this is the only saddle point that contributes to the
integral. Using the formula

Let us take the case with d even. The poles of the
integrand in the definition of Vq are at t+. Closing the
integration path in the upper half of the complex plane,
we obtain

APPENDIX: CALCULATION OF V Vq ——
2' p(ts )

IF(t' )"
I

(A6)

In this appendix we evaluate (35) by two methods. we find (37).
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