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Multiconfiguration-Hartree-Fock calculations for the electron afBnity of boron
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Systematic multiconfiguration-Hartree-Fock procedures are applied to the study of the electron
affinity of boron. For a valence correlation calculation, an electron affinity of 273.2(2) meV is
obtained, which is reduced by 1.1 mev by a relativistic correction. Core polarization and core
rearrangement were found to increase the electron affinity to 279.5(20) meV. The latter agrees well
with the experimental value of 277(10) meV. Results are compared also with other theories.

PACS number(s): 31.15.Ar, 31.25.—v

I. INTRODUCTION

Ab initio calculations of electron aKnities (EA's, de-
noted as E in this paper) for even small systems have
been a challenge for many atomic and molecular codes.
Quantum chemical calculations strive for "chemical ac-
curacy" of 1 kcalimol (about 40 meV), but in experimen-
tal atomic physics an accuracy of a few meV is desirable.
Though the electron affinity of carbon has been measured
to an accuracy of 0.3 rneV [5], the experimental uncer-
tainty in the electron aKnity of boron is 10 meV [5].

Many calculations for electron affinities have been
performed for the first row elements, including boron.
Most are quantum chemical basis-set methods [1,2] where
basis-set truncation errors are present as well as errors
arising from an unbalanced treatment of correlation in
the atom and anion. Some very accurate valence correla-
tion results have been reported by Noro et al. [3] using an
extensive orbital basis along with single and double (SD)
replacements from a multireference configuration inter-
action (MRCI) calculation with a quadrupole correction
for excitations from the rest of the wave function. The
best results were obtained when the weight of the refer-
ence states was the same in both systems. In boron the
quadrupole correction appeared not to be needed since it
changed their value of 278 meV to 273 meV. The former
compared well with the experimental value of 277(10)
meV [5] but, in fact, both are within experimental un-
certainty. For carbon, their corrected value of 1.264 eV
was the more accurate when compared with the most re-
cent electron affinity of 1.2629(3) eV [5]. Unfortunately,
the authors compared their results with a 1975 tabula-
tion of electron affinities [6] where a value of 1.268 eV
was quoted and so the accuracy of the corrected value
was not evident. The calculations reported by Sund-
holm and Olsen [4] are finite element multiconfiguration
Hartree-Fock (MCHF) calculations which do not suffer
from basis-set limitations. A systematic series of calcu-
lations had been performed and a small relativistic effect
and a core-valence contribution included. They reported
a final value of 266.8+3.0 meV, also within experimen-
tal uncertainty. Unfortunately, the large error bar in the

experimental value has prevented a clear evaluation of
these different theoretical results.

Recently, some large-scale MCHF calculations have
been undertaken. The theoretical electron affinity for I i
was computed: the value of 0.6176(l) eV [7] compared fa-
vorably with the experimental value of 0.6176(2) eV [8].
In order to speed up the execution of computer codes
for the many angular integrations needed for obtaining
energy expressions, the angular codes were modified us-
ing the concepts of quasispin and reduced coefficients of
fractional parentage [9,10]. The programs have also been
modified for parallel execution on a network of computer
workstations using the parallel virtual machine (PVM)
software [11]. The present work was undertaken as a
first application of these improved codes in order to check
their performance and to resolve the difference in the two
theoretical results by attempting to obtain an estimate
of the electron affinity to within a few meV.

II. MCHF CALCULATION FOR THE ELECTRON
AFFINITY

A. Valence correlation calculation

The electron affinity of boron is the difFerence of the
energy of the 2s 2p P state of B and the 2s 2p P
ground state of boron. To a large extent the 1s shell
can be treated as inactive and so our first calculation is
a valence correlation calculation where the negative ion
(or anion) and the neutral atom are treated as four- and
three-electron systems, respectively. Systematic calcula-
tions were undertaken with orbital sets of increasing size,
characterized by the largest principal quantum number.
Thus an n = 4 calculation includes all orbitals with prin-
cipal quantum number n & 4 and L & 3. Configuration
state functions (CSF's) are generated from these orbitals.
For few-electron systems, with 1s inactive, the wave func-
tion expansions may include all configuration states that
can be generated from the orbital set, at least for n = 3
and n = 4: such a calculation is referred to as a complete
active space (CAS) calculation. But for larger n, the ex-
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TABLE I. Models for the generation of configuration state functions for MCHF wave function

expansions.

B P
('i) Valence correlation

B P

3, 4
5, 6, 7
8, 9

1s (2, . . . , n)
ls'(2, 3, 4) (2, . . . , n}'
ls'{2,3}(2,. . . , n)'

ls (2, . . . , n}4
ls (2, 3, 4} (2, . . . , n)
ls'{2,3}'(2,. . . , n)'

3, 4

5, 6, 7
8, 9

(ji) Valence correlation and core polarization
ls(1, 2, . . . , n) ls(1, 2, . . . , n)
ls(1, 2)(2, 3)(2, . . . , n)z 1s(1,2){2,3)(2, 3, 4){2,. . . , n)
is{1,2)(2, 3){2,. . . , n) 1s(1,2)(2, 3) (2, . . . , n j

pansions get rather large and, in fact, many of the CSF's
do not contribute significantly. Some restriction needs to
be applied. The models used are given in Table I. The no-
tation (2, 3, 4)2, for example, implies all possible config-
urations with two electrons that have principal quantum
numbers in the range 2—4. The many-electron configura-
tion may be viewed as consisting of "layers" where, for
valence correlation the first two electrons are always 18,
the next two have a restricted range depending on the
highest principal quantum number, and electrons with
large principal quantum numbers are at most doubly oc-
cupied. When core polarization is included, we start with
a 18 and a CAS for the remaining four or five electrons.
But when configuration states are included with some
principal quantum numbers greater than 4, the choices
for inner electrons are constrained; the erst electron is
18, the second either 18, 28, or 2p, and the third either
2s, 2p, 38, 3p, or 3d, etc. as shown in Table I. For high
n, the angular quantum number was restricted to l & 6

( i orbitals). CSF's with expansion coefficients less than
0.00001 were deleted before the new CSF's from the next
stage were added to the wave function expansion.

Table II reports results for these calculations. Included
in the table are the number of configuration states in the
expansion, the total energies, and the predicted electron
aFinity. The notation n = 8i, for example, is used to in-
dicate that the n = 8 orbital set was restricted to orbitals
with / & 6. Orbitals were separately optimized for the
two states. In fact, the B system needs an extra "layer"

of orbitals to represent the disuse nature of the negative
ion. Let E„be the energy of a system for the n orbital
set. An interesting trend is E (n) = E„ i(B) —E„(B ),
referred to as the Ln = 1 electron aKnity whereas the
usual definition is a An = 0 calculation. The latter EA is

increasing with n and represents a lower bound (within
the model) whereas the former is decreasing and predicts
an upper bound. Both may be extrapolated (roughly);
the average of the extrapolated value is the estimated
limit and half the di8'erence the error estimate for the
model. The latter is reduced 1.1 meV due to relativistic
shift eÃects.

B. Core-polarimation and nonuniqueness of MCHF
expansions

In the case of Ca it was found that core polarization
was extremely important for an accurate calculation of
the electron affinity [13]. In the present case, the 1s
core is more deeply embedded and not as "soft" as the
argonlike core of calcium, but may still play a signifi-
cant role in determining the electron aKnity. Table III
reports results for a calculation where excitations are al-
lowed from the 18 shell, though all CSF's must have at
least one 18 orbital. For n & 4 no restrictions were placed
on the CSF except that the 18 orbital be occupied, but
thereafter more restrictive models were used as shown in
Table I. Even so, many CSF's are generated. To select

TABLE II. Valence correlation MCHF energies (in hartree) for complete active space (CAS)
calculations with an inactive 1s for an increasing active set. For each calculation, n speci-

fies the maximum quantum number; angular quantum numbers were restricted to l & 6; or-

bitals were separately optimized for both states. E (Zn = 0) = E„( P) —E ( P) whereas

E (An = 1) = E i( P) —E„( P), where E is an electron affinity.

Expansion

n=4
n=5
n= 6
n=7
n = 8i
n = 9i
Estimated
Estimated

B P
No. CSF E (hartree)

30 —24.596 215
168 —24.600 745
614 —24.601 855

1329 —24.602 211
2268 —24.602 365
3222 —24.602 420
2965 —24.602 440

nonrelativistic limit
limit with relativistic correction

No. CSF
83

1001
3149
5905
7891
8946
9502

B P
E (hartree)
—24.598 811
—24.608 684
—24.611286
—24.612 045
—24.612 326
—24.612 425
—24.612 465

277.3
275.2
273.7
273.4

E (me V)
an=0 an=1

70.6
166.6
256.6
267.5
271.0
272.3
272.8

273.2(1)
272.1(1)



51 MULTICONFIGURATION-HARTREE-POCK CALCULATIONS FOR. . . 4613

TABLE III. Valence correlation and core-polarization MCHF energies (in hartree) for system-
atic calculations for different stationary solutions (see text). For each calculation, n specifies the
maximum quantum number; angular quantum numbers were restricted to l & 6 or 5, except for 1s
orbitals, which were separately optimized for both states.

Expansion

n=3
n=4
n=5
n=6
n=7
n = 8i
n = 9i
Estimated
Estimated

B P
R (hartree)No. CSF No. CSF

Calculation 1
516

13181
15062
24527
32807
37869
41664

170 —24.596 625
1948 —24.605 039
3491 —24.608 625
6607 —24.609 895
6634 —24.610387
5382 —24.610 586
8434 —24.610679

nonrelativistic limit
limit with relativistic correction

B P
E (hartree)

—24.599 041
—24.610683
—24.617078
—24.619362
—24.620 267
—24.620 614
—24.620 741

E (me V)
~n=o ~n=1

65.72
153.56
230.02 327.60
257.63 292.18
268.83 282.24
272.87 278.27
273.81 276.34

274.2(2)
273.1(2)

170
1948
2936
4756
5819
6511
6932

n=3
n=4
n=5
n=6
n = 7h
n=8h
n =9h
Model limit
Corrections: Type 1
Corrections: Type 2
Predicted electron afBnity

—24.603 861
—24.617 170
—24.621 559
—24.623 355
—24.624 031
—24.624 317
—24.624 450

—24.624 206
—24.624 481

Calculation 2
515

13178
16530
24736
28532
29442
29274

—24.601 342
—24.622 722
—24.629 783
—24.632 727
—24.633 960
—24.634 435
—24.634 643

—24.634 662
—24.634 726

288 ~ 59
283 ~ 10
280.98

—68.55
151.10
223.79
255.02
270.18
275.31
277.39

279.2
279.5
280.6

279.5(20)

from a new set when the orbital set size is increased, a
technique used earlier in the study of the binding en-

ergy of Be and Li was applied [7]. A zero-order wave
function consisting of CSF 's with expansion coeKcients
greater than 0.001 is maintained and. a first-order wave
function calculation performed in which only the inter-
action of the new CSF's with the zero-order function is
included. Then those CSF's with an expansion coeKcient
greater than 0.000005 were retained for inclusion in the
variational (MCHF) calculation of the orbitals, those less
than this cutofF but greater than 0.000 002 were saved for
a final CI correction: all other CSF's were neglected. The
orbital basis now needs to represent intershell correlation
as well as valence correlation and so, for the same size of
the orbital set as before, convergence is a bit slower in
that the n = 9 calculation is not as well converged.

It has generally been assumed that the stationary so-
lution for a given wave function expansion with a specific
dominant component would be unique. In this study it
was found that, with the same wave function expansions,
both the n = 3 and n = 4 expansions had two stationary
solutions when all orbitals were varied. The same may
be true for other expansions but here only the P was
investigated fully. The first solution had 1s and 2s or-
bitals close to their Hartree-Fock values and an outer 3s
orbital whereas in the second, the 1s orbital acquired a
larger mean radius, the 2s contracted. slightly, and the
3s became an inner core-polarization orbital. The to-
tal energy of the latter solution was appreciably lower
though the self-consistent field procedure was less sta-

ble making it more difBcult to obtain a well converged
result. It should be pointed out that for both systems
the Hartree-Fock solutions are unique only through the
application of Koopmann's theorem, that is, by select-
ing the solution for which the Lagrange multiplier ensur-
ing the orthogonality between the two orbitals is set to
zero [12]. Both valence correlation and core-polarization
expansions break the 1s, 2s symmetry —the two orbitals
now play a different role in that it no longer is possi-
ble to interchange 1s and 2s and obtain the same wave
function.

It should also be remembered that, in a CAS calcula-
tion, the orbitals are not uniquely defined. —a transfor-
mation of the orbitals results in a transformation of the
wave function. The latter requires that all the CSF's be
present in the expansion. Such degrees of freedom can be
removed, without affecting the energy, by deleting certain
CSF's, which is referred to as "applying Brillouin's the-
orem, " since the variational procedure then determines
those orbitals for which the expansion coeKcient for the
deleted CSF is zero. Similar situations arise in the core
polarization expansions.

Two sets of calculations were performed with some mi-
nor differences, but based on the two solutions, respec-
tively. We will refer to them as calculations no. 1 and
2.

The first calculation started with the wave functions
from outer correlation at the n = 3 stage, each state sep-
arately optimized. The calculations converged rapidly to
a solution. A large contributor to the wave function for
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8 was ls 2s 2p3p. Since our model for n ) 5 (see Table
I) includes all double excitations from such configuration
states (except from ls ) but not all from, say ls 2s 2p5p,
it was considered prudent to apply Brillouin's theorem
and delete all 1s 2s 2pnp CSF's. The variational 3p or-
bital then includes these configuration states implicitly.
The 1s orbital was obtained from the n = 3 calcula-
tion for the anion and kept fixed in all subsequent cal-
culations: at the n = 3 stage, fixi'ng the 1s orbital in
this manner affected the electron afBnity by less than 0.2
meV.

The second calculation initially was undertaken as a
check on the first and to determine the effect of vary-
ing the 1s orbital at every stage. It is not obvious
how Brillouin's theorem should be applied. Ideally, one
would like the most rapidly converging expansion, with
a single dominant component, and the most stable self-
consistent field procedure. In this calculation it was
decided to break the 2p, 3p, 4p symmetry by deleting
the 1s 2s 2p3p, 1s 2s 2p4p, 1s 2s 3p4p configuration
states as would be done in a natural orbital expansion I12j
for valence correlation and indeed, as will be shown in a
later section, 2p now constituted a larger part of the
wave function. It was at the n = 4 stage of the P cal-
culation that two solutions with different energies were
found with the same wave function expansion, both satis-
fying the virial theorem to seven significant digits. With
some effort, a second solution was also found for the
n = 3 expansion. This solution has a much larger core-
polarization correction with a very contracted 3s orbital.
Orbitals from this lower solution were used at subsequent
stages. The 1s orbital was varied for the P and the
same orbital used in the calculation for the negative ion.
Convergence of the SCF iterations was extremely slow.
Partly because of the difhculty of convergence, the orbital
sets were restricted to l ( 5 (6 orbitals).

Table III reports the results of both these calculations.

III. DISCUSSION OF RESULTS

For the valence correlation calculation reported in Ta-
ble II, the expansions are not extremely large and the
two sets of electron affinities appear to be converging
to similar limits. For the An = 0 values, changes are
decreasing by about a factor 3; assuming a geometric se-
ries for higher n differences, the extrapolation correction
predicts a limit of 273.1 meV. The An = 1 values are
decreasing to a limit no larger than 273.3 meV. From the
average of these two limits, the electron aKnity predicted
by this model is 273.2(1) meV, which is decreased by 1.1
meV for a relativistic correction. Notice that the error
estimate has not included a number of small effects like
the restriction on the / value.

In Table III, the size of the expansions for valence cor-
relation together with core-polarization (sometimes re-
ferred to as core-valence) shows how much more demand-
ing such calculations are even though the effect from the
core is small.

The erst calculation was one where 1s and 2s were
similar to the valence correlation orbitals. This is re-

fiected in the very similar trends in E (An = 0). For the
smaller basis sets, the E 's are somewhat smaller because
the same number of orbitals must now account for more
effects. However, for the large n, the E 's are slightly
larger. The Ln = 0 EA's are converging more rapidly
than the An = 1: assuming ratios of 1/4 and 1/2, re-
spectively, the predicted limits are 274.1 and 274.3 for an
average of 274.2(1). The final correction for the selection-
deletion process did not affect the electron amenity to this
accuracy.

For the second core-polarization calculation, the en-
ergy of the neutral atom is now lower initially than for
the negative anion but as the size of the orbital basis in-
creases, the E trends are similar though they increase
more rapidly with n than in the first calculation. In spite
of the fact that the n = 7 orbital set does not include the
i orbitals, E (n = 7) is larger. The other striking feature
is that the number of CSF's for large n is significantly
smaller. In fact, these numbers are not monotonically
increasing because, in going from 8h, to 96 the expansion
for 8h, is condensed as described earlier, and then selected
new CSF's added to this set. In this case, more CSF's
were deleted than added. In this calculation, the average
of the last three An = 0 and An = 1 EA's is remarkably
constant (279.39, 279.21, 279.19) and so we have taken
the limit to be 279.2(l) meV. To this are added some
contributions from the major CSF s omitted in the vari-
ational process. The first correction arises from CSF's
deleted after having been included in a variational pro-
cess whereas the second correction estimates the effect of
the cutoff for selection from first-order calculations. The
correction from the former is small but the latter is 1.1
meV in this case. When the relativistic correction is in-
cluded the predicted estimate of the electron amenity is
279.5 meV.

This last calculation is considered the most accurate
for several reasons. With respect to computational pro-
cedures where Hartree-Fock orbitals are Fixed through-
out the calculation, this calculation includes some core-
core correlation, though the 1s correlation is limited to
radial correlation. It may be thought of as "core rear-
rangement. " This accounts for the substantially lower
total energies. The wave function expansion for this last
calculation is also more dominant in that 1s 2s 2p has
the much larger weight. This can be seen in Table IV,
where the coefBcients of the major components of the
wave function are tabulated for the two core-polarization
calculations. In calculation no. 1, both 2p and 2p3p are
major contributors, whereas in calculation no. 2, only 2p
is a large contributor. This greater compactness accounts
for the slower growth in the number of CSF's for large
n and the larger effect from the corrections. Table IV
also shows the large core-polarization component in both
states for calculation no. 2 which is small in calculation
no. 1.

In some sense, the neutral atom, five-electron system,
is contained within the negative ion, six-electron system.
As the orbital basis for the latter is expanded one would
expect the latter also to represent the atom with reason-
able accuracy. For outer correlation this can be checked
since the P expansion without deletions can easily be
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TABLE IV. CoefBcients of CSF's that are major contributors in the wave function expansions
for the MCHF core-polarization calculation.

CSF
ls 2s 2p
1s 2p
1s22s2p('P) 3d
ls2s22p( P)3s

2p

2

0.9489
0.1890

—0.1029
—0.1348

Calculation
1

0.9621
0.2067

—0.1074
—0.0013

CSF
1s22s22p2
1s 2s 2p3p
ls 2s2p ( P) 3s
1s 2p
ls 2p ( P)3p
ls 2s2p ( D)3d
ls'2s 3p ( P)
ls2s 2p ( P)3s

P

2

0.9321
0.0

—0.0246
0.1064

—0.0670
0.1086

—0.1398
0.1153

Calculation
1

0.808 1
—0.507 6

—0.120 68
0.11917

—0.11759
0.11172
—0.007 7
—0.002 2

B.
TABLE V. Mean radii (in a.u. ) of the orbitals for B and

generated (the deletions depend on the basis and need
not be the same for both). In the present case an elec-
tron amenity of 273.6 meV is predicted, close to 273.2
meV, which we consider to be the limit. For the erst
core-polarization calculation, Table V attempts to show
the inadequacy of the P basis for a P calculation. For
each symmetry, orbital by orbital, the mean radius of the
P orbital is larger than the corresponding orbital for P.

Most noticeable is the lack of a contracted d orbital.
In the final value for the electron afBnity an uncer-

tainty of 2 meV is given. This has not been arrived at
in a rigorous fashion. The computed E (n = 9) was
extrapolated by 2 meV, but this increase is clearly indi-
cated by the trend. The orbital basis was truncated to 6

orbitals but inclusion of orbitals with higher / would in-
crease the electron afEnity by a fraction of an meV (Sund-
holrn and Olsen [4] estimate this to be 0.5 meV). The
biggest uncertainty comes from the model. Not all core-
core correlation has been included but this effect is not
expected. to be as large as the core rearrangement already
included. The present calculations have not included any
relativistic splitting and represent the weighted average
of the levels of each term. For the P the observed split-
ting is 16 cm: a Breit-Pauli calculation for the valence
correlation calculation yields 14.3 cm which increases
to 15.47 cm for the calculation with core rearrange-
ment. For the P calculation the Breit-Pauli calculation
was performed only for the valence calculation yielding
a splitting of (0, 2.66, 7.93) cm for the three J=(0, 1,
2) levels. Scaling the valence correlation results to agree
with observation for the P, the electron aKnity of Po
relative to Pqy2 would be reduced about 0.6 meV.

nl
1s
2s
3s
4s
5s
6s
7s
8s
9s

2p
3p
4p
5p
6p
7p
8p
9p

3d
4d
5d
6d
7d
8d
9d

B ('P)
0.324 05
1.958 33
3.025 52
2.062 57
1.468 51
2.079 52
2.01163
1.256 00
0.368 15

2.11458
3.737 29
1.426 55
1.046 32
1.61189
2.535 55
1.01707
0.471 45

2.51388
2.240 00
1.19979
2.455 73
1.170 18
0.707 72
0.485 14

B (P)
0.324 05
1.972 91
3.591 12
3.415 06
1.835 78
2.607 70
2.226 50
1.332 80
0.415 19

2.11912
6.626 35
2.644 03
3.10157
3.280 33
2.963 12
1.463 29
0.483 08

2.806 58
3.649 65
2.045 84
2.801 65
1.461 44
1.229 60
2.863 14

nl
4f
5f
6f
7f
8f
gf

5g
6g
7g
8g
9g

6h
7h
8h
9h

7i
8i
9i

B(P)
2.426 18
1.943 03
1.746 01
1.497 49
0.897 93
0.426 72

2.10798
2.195 68
1.366 87
1.501 04
0.860 71

2.104 72
2.19.7 45
1.249 21
1.091 02

2.007 56
2.097 50
1.419 20

B (P)
2.573 93
3.567 10
1.976 05
1.951 85
0.929 36
0.452 26

2.276 56
3.209 54
1.812 69
1.629 41
1.403 56

2.287 94
2.782 18
1.838 84
1.281 93

2.265 87
2.463 22
1.949 33

IV. COMPARISON WITH OTHER THEORY AND
EXPERIMENT

Table VI compares the present results with other the-
ory and experiment.

Most theoretical results are for valence correlation. Let
us consider this limit first, omitting the relativistic cor-
rection.

Because of the greater complexity of correlation in the
anion, some correlation can easily be lost and most of
the theories have predicted electron amenities that are
too small. Raghavachari [2] used a perturbation scheme
with which it is diKcult to compare other than the final
value. Kendell et aL [1] and Noro et al. [3] both used
a multireference single and d.ouble configuration interac-
tion (MR-SDCI) scheme but with different bases. The
latter recognized. the importance of computing energy
differences from calculations where the weight to the ref-
erence con6gurations was the same in both states. They
also used the Davidson correction [14] for estimating the
remaining quadrupole corrections. Plots of the energies
as a function of the weight of the reference state were
Hatter and easier to extrapolate. For boron, their esti-
mate of the EA was 273 meV, though their uncorrected
value of 278 meV appeared to be more accurate in that
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TABLE VI. A comparison of the present nonrelativistic electron affinities (in meV) from difFerent
theories. The observed experimental value has been increased by 1 meV to account for relativistic
effects.

Reference
Present
Sundholm and Olsen [4]
Noro et al. (with correction) [3]
Kendall and Dunning [1]
Raghavachari [2]

Valence corr.
273.2(2)

268.6(17)
273
263
269

With core polarization
279.5(20)
267.8(20)

the agreement with experiment was better. However, we
believe this limit is 273.2 meV, in agreement with their
corrected value.

In many respects, the present calculations are most
like those of Sundholm and Olsen [4]. In fact, for valence
correlation up to n = 5 our total energies are in perfect
agreement. However, thereafter, Sundholm and Olsen es-
timate effects in a differential manner from which they
determine the valence correlation limit to be 269.6(17)
meU. It would appear that the different effects are en-
hanced when they are all considered together. Again,
the effect of core-valence correlation was estimated from
a small expansion including only 8 and p orbitals in the
basis. A reduction in the electron afBnity was predicted
by this process whereas in our calculation a small increase
was predicted for core-valence together with core rear-
rangement (calculation no. 2). Both of us agree on the
reduction of the electron affinity by the relativistic effect
though our estimate of —l.l meV was obtained from the
n = 9 valence correlation calculation using the non-fine-
structure contributions of the Breit-Pauli Hamiltonian

(omitting the orbit-orbit interaction).
The experimental value of 277(10) meV has a rather

large uncertainty. A more accurate value is needed to
evaluate the different theories and the methods employed
in determining the error estimates.
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