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Systematic multiconfiguration-Hartree-Fock procedures are applied to the study of the electron

affinity of boron.

For a valence correlation calculation, an electron affinity of 273.2(2) meV is
obtained, which is reduced by 1.1 meV by a relativistic correction.

Core polarization and core

rearrangement were found to increase the electron affinity to 279.5(20) meV. The latter agrees well
with the experimental value of 277(10) meV. Results are compared also with other theories.

PACS number(s): 31.15.Ar, 31.25.—v

I. INTRODUCTION

Ab initio calculations of electron affinities (EA’s, de-
noted as E, in this paper) for even small systems have
been a challenge for many atomic and molecular codes.
Quantum chemical calculations strive for “chemical ac-
curacy” of 1 kcal/mol (about 40 meV), but in experimen-
tal atomic physics an accuracy of a few meV is desirable.
Though the electron affinity of carbon has been measured
to an accuracy of 0.3 meV [5], the experimental uncer-
tainty in the electron affinity of boron is 10 meV [5].

Many calculations for electron affinities have been
performed for the first row elements, including boron.
Most are quantum chemical basis-set methods [1,2] where
basis-set truncation errors are present as well as errors
arising from an unbalanced treatment of correlation in
the atom and anion. Some very accurate valence correla-
tion results have been reported by Noro et al. [3] using an
extensive orbital basis along with single and double (SD)
replacements from a multireference configuration inter-
action (MRCI) calculation with a quadrupole correction
for excitations from the rest of the wave function. The
best results were obtained when the weight of the refer-
ence states was the same in both systems. In boron the
quadrupole correction appeared not to be needed since it
changed their value of 278 meV to 273 meV. The former
compared well with the experimental value of 277(10)
meV [5] but, in fact, both are within experimental un-
certainty. For carbon, their corrected value of 1.264 eV
was the more accurate when compared with the most re-
cent electron affinity of 1.2629(3) eV [5]. Unfortunately,
the authors compared their results with a 1975 tabula-
tion of electron affinities [6] where a value of 1.268 eV
was quoted and so the accuracy of the corrected value
was not evident. The calculations reported by Sund-
holm and Olsen [4] are finite element multiconfiguration
Hartree-Fock (MCHF) calculations which do not suffer
from basis-set limitations. A systematic series of calcu-
lations had been performed and a small relativistic effect
and a core-valence contribution included. They reported
a final value of 266.8+3.0 meV, also within experimen-
tal uncertainty. Unfortunately, the large error bar in the
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experimental value has prevented a clear evaluation of
these different theoretical results.

Recently, some large-scale MCHF calculations have
been undertaken. The theoretical electron affinity for Li
was computed: the value of 0.6176(1) eV [7] compared fa-
vorably with the experimental value of 0.6176(2) eV [8].
In order to speed up the execution of computer codes
for the many angular integrations needed for obtaining
energy expressions, the angular codes were modified us-
ing the concepts of quasispin and reduced coefficients of
fractional parentage [9,10]. The programs have also been
modified for parallel execution on a network of computer
workstations using the parallel virtual machine (PVM)
software [11]. The present work was undertaken as a
first application of these improved codes in order to check
their performance and to resolve the difference in the two
theoretical results by attempting to obtain an estimate
of the electron affinity to within a few meV.

II. MCHF CALCULATION FOR THE ELECTRON
AFFINITY

A. Valence correlation calculation

The electron affinity of boron is the difference of the
energy of the 2s522p? 3P state of B~ and the 2s%2p 2P
ground state of boron. To a large extent the 1s? shell
can be treated as inactive and so our first calculation is
a valence correlation calculation where the negative ion
(or anion) and the neutral atom are treated as four- and
three-electron systems, respectively. Systematic calcula-
tions were undertaken with orbital sets of increasing size,
characterized by the largest principal quantum number.
Thus an n =4 calculation includes all orbitals with prin-
cipal quantum number n < 4 and ! < 3. Configuration
state functions (CSF’s) are generated from these orbitals.
For few-electron systems, with 1s inactive, the wave func-
tion expansions may include all configuration states that
can be generated from the orbital set, at least for n = 3
and n = 4: such a calculation is referred to as a complete
active space (CAS) calculation. But for larger n, the ex-
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TABLE I. Models for the generation of configuration state functions for MCHF wave function

expansions.
n B 2P B~ 3p
(i) Valence correlation

3,4 1s%{2,...,n}? 1s%{2,...,n}*
5,6,7 1s%{2,3,4}{2,...,n}? 15%{2,3,4}*{2,...,n}?
8,9 15%{2,3}{2,...,n}? 1s%{2,3}*{2,...,n}?

(ii) Valence correlation and core polarization
3,4 1s{1,2,...,n}* 1s{1,2,...,n}®
5,6,7 1s{1,2}{2,3}{2,...,n}? 1s{1,2}{2,3}{2,3,4}{2,...,n}?
8,9 1s{1,2}{2,3}{2,...,n}? 1s{1,2}{2,3}*{2,...,n}?

pansions get rather large and, in fact, many of the CSF’s
do not contribute significantly. Some restriction needs to
be applied. The models used are given in Table I. The no-
tation {2,3,4}2, for example, implies all possible config-
urations with two electrons that have principal quantum
numbers in the range 2—-4. The many-electron configura-
tion may be viewed as consisting of “layers” where, for
valence correlation the first two electrons are always 1s,
the next two have a restricted range depending on the
highest principal quantum number, and electrons with
large principal quantum numbers are at most doubly oc-
cupied. When core polarization is included, we start with
a 1s and a CAS for the remaining four or five electrons.
But when configuration states are included with some
principal quantum numbers greater than 4, the choices
for inner electrons are constrained; the first electron is
1s, the second either 1s, 2s, or 2p, and the third either
2s, 2p, 3s, 3p, or 3d, etc. as shown in Table I. For high
n, the angular quantum number was restricted to l < 6
( 7 orbitals). CSF’s with expansion coefficients less than
0.000 01 were deleted before the new CSF’s from the next
stage were added to the wave function expansion.

Table II reports results for these calculations. Included
in the table are the number of configuration states in the
expansion, the total energies, and the predicted electron
affinity. The notation n = 8¢, for example, is used to in-
dicate that the n = 8 orbital set was restricted to orbitals
with I < 6. Orbitals were separately optimized for the
two states. In fact, the B~ system needs an extra “layer”

of orbitals to represent the diffuse nature of the negative
ion. Let E, be the energy of a system for the n orbital
set. An interesting trend is Eq(n) = E,_1(B) — E.(B7),
referred to as the An = 1 electron affinity whereas the
usual definition is a An = 0 calculation. The latter EA is
increasing with n and represents a lower bound (within
the model) whereas the former is decreasing and predicts
an upper bound. Both may be extrapolated (roughly);
the average of the extrapolated value is the estimated
limit and half the difference the error estimate for the
model. The latter is reduced 1.1 meV due to relativistic
shift effects.

B. Core-polarization and nonuniqueness of MCHF
expansions

In the case of Ca™ it was found that core polarization
was extremely important for an accurate calculation of
the electron affinity [13]. In the present case, the 1s?
core is more deeply embedded and not as “soft” as the
argonlike core of calcium, but may still play a signifi-
cant role in determining the electron affinity. Table III
reports results for a calculation where excitations are al-
lowed from the 1s shell, though all CSF’s must have at
least one 1s orbital. For n < 4 no restrictions were placed
on the CSF except that the 1s orbital be occupied, but
thereafter more restrictive models were used as shown in
Table I. Even so, many CSF’s are generated. To select

TABLE II. Valence correlation MCHF energies (in hartree) for complete active space (CAS)

calculations with an inactive 1s for an increasing active set.

For each calculation, n speci-

fies the maximum quantum number; angular quantum numbers were restricted to I < 6; or-

bitals were separately optimized for both states.

E.(An = 0) = En(?P) — En(°P) whereas

Eo(An = 1) = En-1(?P) — E.(°P), where E, is an electron affinity.

Expansion B 2P B P E, (meV)

No. CSF E (hartree) No. CSF E (hartree) An=0 An=1
n =3 30 —24.596 215 83 —24.598 811 70.6
n=4 168 —24.600745 1001 —24.608 684 166.6
n=2=5 614 —24.601 855 3149 —24.611 286 256.6
n==6 1329 —24.602211 5905 —24.612045 267.5 277.3
n="7 2268 —24.602 365 7891 —24.612 326 271.0 275.2
n = 8 3222 —24.602 420 8946 —24.612425 272.3 273.7
n = 9t 2965 —24.602 440 9502 —24.612 465 272.8 273.4
Estimated nonrelativistic limit 273.2(1)

Estimated limit with relativistic correction

272.1(1)
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TABLE III. Valence correlation and core-polarization MCHF energies (in hartree) for system-
atic calculations for different stationary solutions (see text). For each calculation, n specifies the
maximum quantum number; angular quantum numbers were restricted to I < 6 or 5, except for 1s
orbitals, which were separately optimized for both states.

Expansion B %P B °P E, (meV)

No. CSF E (hartree) No. CSF E (hartree) An=0 An=1

Calculation 1
n =3 170 —24.596 625 516 —24.599 041 65.72
n=4 1948 —24.605039 13181 —24.610683 153.56
n=>=5 3491 —24.608 625 15062 —24.617078 230.02 327.60
n==6 6607 —24.609 895 24527 —24.619 362 257.63 292.18
n="7 6634 —24.610 387 32807 —24.620267 268.83 282.24
n =8 5382 —24.610 586 37869 —24.620614 272.87 278.27
n =91 8434 —24.610679 41664 —24.620 741 273.81 276.34
Estimated nonrelativistic limit 274.2(2)
Estimated limit with relativistic correction 273.1(2)
Calculation 2

n =3 170 —24.603 861 515 —24.601 342 —68.55
n =4 1948 —24.617170 13178 —24.622722 151.10
n=>5 2936  —24.621559 16530  —24.629783 223.79
n==6 4756 —24.623 355 24736 —24.632727 255.02
n="Th 5819 —24.624 031 28532 —24.633 960 270.18 288.59
n = 8h 6511 —24.624317 29442 —24.634 435 275.31 283.10
n =9h 6932 —24.624 450 29274 —24.634643 277.39 280.98
Model limit 279.2
Corrections: Type 1 —24.624 206 —24.634662 279.5
Corrections: Type 2 —24.624 481 —24.634726 280.6
Predicted electron affinity 279.5(20)

from a new set when the orbital set size is increased, a
technique used earlier in the study of the binding en-
ergy of Be and Li~ was applied [7]. A zero-order wave
function comnsisting of CSF’s with expansion coefficients
greater than 0.001 is maintained and a first-order wave
function calculation performed in which only the inter-
action of the new CSF’s with the zero-order function is
included. Then those CSF’s with an expansion coefficient
greater than 0.000 005 were retained for inclusion in the
variational (MCHF) calculation of the orbitals, those less
than this cutoff but greater than 0.000 002 were saved for
a final CI correction: all other CSF’s were neglected. The
orbital basis now needs to represent intershell correlation
as well as valence correlation and so, for the same size of
the orbital set as before, convergence is a bit slower in
that the n = 9 calculation is not as well converged.

It has generally been assumed that the stationary so-
lution for a given wave function expansion with a specific
dominant component would be unique. In this study it
was found that, with the same wave function expansions,
both the n = 3 and n = 4 expansions had two stationary
solutions when all orbitals were varied. The same may
be true for other expansions but here only the 2P was
investigated fully. The first solution had 1s and 2s or-
bitals close to their Hartree-Fock values and an outer 3s
orbital whereas in the second, the 1s orbital acquired a
larger mean radius, the 2s contracted slightly, and the
3s became an inner core-polarization orbital. The to-
tal energy of the latter solution was appreciably lower
though the self-consistent field procedure was less sta-

ble making it more difficult to obtain a well converged
result. It should be pointed out that for both systems
the Hartree-Fock solutions are unique only through the
application of Koopmann’s theorem, that is, by select-
ing the solution for which the Lagrange multiplier ensur-
ing the orthogonality between the two orbitals is set to
zero [12]. Both valence correlation and core-polarization
expansions break the 1s,2s symmetry—the two orbitals
now play a different role in that it no longer is possi-
ble to interchange 1s and 2s and obtain the same wave
function.

It should also be remembered that, in a CAS calcula-
tion, the orbitals are not uniquely defined—a transfor-
mation of the orbitals results in a transformation of the
wave function. The latter requires that all the CSF’s be
present in the expansion. Such degrees of freedom can be
removed, without affecting the energy, by deleting certain
CSF'’s, which is referred to as “applying Brillouin’s the-
orem,” since the variational procedure then determines
those orbitals for which the expansion coefficient for the
deleted CSF is zero. Similar situations arise in the core
polarization expansions.

Two sets of calculations were performed with some mi-
nor differences, but based on the two solutions, respec-
tively. We will refer to them as calculations no. 1 and
2.

The first calculation started with the wave functions
from outer correlation at the n = 3 stage, each state sep-
arately optimized. The calculations converged rapidly to
a solution. A large contributor to the wave function for
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B~ was 1522522p3p. Since our model for n > 5 (see Table
I) includes all double excitations from such configuration
states (except from 1s?) but not all from, say 1s22s22p5p,
it was considered prudent to apply Brillouin’s theorem
and delete all 1s22s22pnp CSF’s. The variational 3p or-
bital then includes these configuration states implicitly.
The 1s orbital was obtained from the n = 3 calcula-
tion for the anion and kept fixed in all subsequent cal-
culations: at the n = 3 stage, fixing the 1s orbital in
this manner affected the electron affinity by less than 0.2
meV.

The second calculation initially was undertaken as a
check on the first and to determine the effect of vary-
ing the 1s orbital at every stage. It is not obvious
how Brillouin’s theorem should be applied. Ideally, one
would like the most rapidly converging expansion, with
a single dominant component, and the most stable self-
consistent field procedure. In this calculation it was
decided to break the 2p,3p,4p symmetry by deleting
the 1522s522p3p, 1522s522pdp, 15225%3pdp configuration
states as would be done in a natural orbital expansion [12]
for valence correlation and indeed, as will be shown in a
later section, 2p? now constituted a larger part of the
wave function. It was at the n = 4 stage of the 2P cal-
culation that two solutions with different energies were
found with the same wave function expansion, both satis-
fying the virial theorem to seven significant digits. With
some effort, a second solution was also found for the
n = 3 expansion. This solution has a much larger core-
polarization correction with a very contracted 3s orbital.
Orbitals from this lower solution were used at subsequent
stages. The 1s orbital was varied for the 2P and the
same orbital used in the calculation for the negative ion.
Convergence of the SCF iterations was extremely slow.
Partly because of the difficulty of convergence, the orbital
sets were restricted to [ < 5 (h orbitals).

Table III reports the results of both these calculations.

III. DISCUSSION OF RESULTS

For the valence correlation calculation reported in Ta-
ble II, the expansions are not extremely large and the
two sets of electron affinities appear to be converging
to similar limits. For the An = 0 values, changes are
decreasing by about a factor 3; assuming a geometric se-
ries for higher n differences, the extrapolation correction
predicts a limit of 273.1 meV. The An = 1 values are
decreasing to a limit no larger than 273.3 meV. From the
average of these two limits, the electron affinity predicted
by this model is 273.2(1) meV, which is decreased by 1.1
meV for a relativistic correction. Notice that the error
estimate has not included a number of small effects like
the restriction on the [ value.

In Table III, the size of the expansions for valence cor-
relation together with core-polarization (sometimes re-
ferred to as core-valence) shows how much more demand-
ing such calculations are even though the effect from the
core is small.

The first calculation was one where 1s and 2s were
similar to the valence correlation orbitals. This is re-
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flected in the very similar trends in E,(An = 0). For the
smaller basis sets, the E,’s are somewhat smaller because
the same number of orbitals must now account for more
effects. However, for the large n, the E,’s are slightly
larger. The An = 0 EA’s are converging more rapidly
than the An = 1: assuming ratios of 1/4 and 1/2, re-
spectively, the predicted limits are 274.1 and 274.3 for an
average of 274.2(1). The final correction for the selection-
deletion process did not affect the electron affinity to this
accuracy.

For the second core-polarization calculation, the en-
ergy of the neutral atom is now lower initially than for
the negative anion but as the size of the orbital basis in-
creases, the E, trends are similar though they increase
more rapidly with n than in the first calculation. In spite
of the fact that the n = 7 orbital set does not include the
1 orbitals, E,(n = 7) is larger. The other striking feature
is that the number of CSF’s for large n is significantly
smaller. In fact, these numbers are not monotonically
increasing because, in going from 8h to 9k the expansion
for 8h is condensed as described earlier, and then selected
new CSF’s added to this set. In this case, more CSF’s
were deleted than added. In this calculation, the average
of the last three An = 0 and An = 1 EA’s is remarkably
constant (279.39, 279.21, 279.19) and so we have taken
the limit to be 279.2(1) meV. To this are added some
contributions from the major CSF’s omitted in the vari-
ational process. The first correction arises from CSF’s
deleted after having been included in a variational pro-
cess whereas the second correction estimates the effect of
the cutoff for selection from first-order calculations. The
correction from the former is small but the latter is 1.1
meV in this case. When the relativistic correction is in-
cluded the predicted estimate of the electron affinity is
279.5 meV.

This last calculation is considered the most accurate
for several reasons. With respect to computational pro-
cedures where Hartree-Fock orbitals are fixed through-
out the calculation, this calculation includes some core-
core correlation, though the 152 correlation is limited to
radial correlation. It may be thought of as “core rear-
rangement.” This accounts for the substantially lower
total energies. The wave function expansion for this last
calculation is also more dominant in that 1522s522p? has
the much larger weight. This can be seen in Table IV,
where the coefficients of the major components of the
wave function are tabulated for the two core-polarization
calculations. In calculation no. 1, both 2p? and 2p3p are
major contributors, whereas in calculation no. 2, only 2p?
is a large contributor. This greater compactness accounts
for the slower growth in the number of CSF’s for large
n and the larger effect from the corrections. Table IV
also shows the large core-polarization component in both
states for calculation no. 2 which is small in calculation
no. 1.

In some sense, the neutral atom, five-electron system,
is contained within the negative ion, six-electron system.
As the orbital basis for the latter is expanded one would
expect the latter also to represent the atom with reason-
able accuracy. For outer correlation this can be checked
since the 2P expansion without deletions can easily be
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TABLE IV. Coeflicients of CSF’s that are major contributors in the wave function expansions

for the MCHF core-polarization calculation.

p 5p
Calculation Calculation

CSF 1 2 CSF 1 2

1s%2s%2p 0.9621 0.9489 15%25%2p? 0.8081 0.9321

1s22p® 0.2067 0.1890 1522522p3p —0.5076 0.0

1s%2s2p(*P)3d —0.1074 —-0.1029 15%252p*(°P)3s —0.12068 —0.0246

1525%2p(°P)3s —0.0013 —0.1348 15%2p* 0.11917 0.1064
1s%2p(?P)3p —0.11759 —0.0670
1522s2p°(*D)3d 0.11172 0.1086
1522523p*(°P) —0.0077 —0.1398
1s25%2p*(*P)3s —0.0022 0.1153

generated (the deletions depend on the basis and need
not be the same for both). In the present case an elec-
tron affinity of 273.6 meV is predicted, close to 273.2
meV, which we consider to be the limit. For the first
core-polarization calculation, Table V attempts to show
the inadequacy of the 3P basis for a 2P calculation. For
each symmetry, orbital by orbital, the mean radius of the
3P orbital is larger than the corresponding orbital for 2P.
Most noticeable is the lack of a contracted d orbital.

In the final value for the electron affinity an uncer-
tainty of 2 meV is given. This has not been arrived at
in a rigorous fashion. The computed E,(n = 9) was
extrapolated by 2 meV, but this increase is clearly indi-
cated by the trend. The orbital basis was truncated to h

TABLE V. Mean radii (in a.u.) of the orbitals for B~ and
B.

nl  B(?P) B~ (°P) nl B (?P) B~ (°P)
Is  0.32405  0.32405 4f 242618  2.57393
2s 195833  1.97291 5f 1.94303  3.56710
3s  3.02552  3.59112 6f 1.74601  1.97605
4s  2.06257  3.41506 7f  1.49749  1.95185
55 1.46851  1.83578 8f 0.89793  0.92936
6s 207952  2.60770 9f 042672  0.45226
7s  2.01163  2.22650
8s 1.25600  1.33280 59 210798  2.27656
9s 036815  0.41519 6g 219568  3.20954
79 1.36687  1.81269
2p 211458  2.11912 8¢ 1.50104  1.62941
3p 3.73729  6.62635 9g 0.86071  1.40356
4p  1.42655  2.64403
5p 1.04632  3.10157 6h  2.10472  2.28794
6p 1.61189  3.28033 Th 219745  2.78218
Tp  2.53555  2.96312 8h  1.24921  1.83884
8p  1.01707  1.46329 9h  1.09102  1.28193
9p  0.47145  0.48308
7i  2.00756  2.26587
3d 2.51388  2.80658 8  2.09750  2.46322
4d 224000  3.64965 9  1.41920  1.94933
5d 119979  2.04584
6d 245573  2.80165
7d 117018  1.46144
8d 070772  1.22960
9d 0.48514 2.86314

orbitals but inclusion of orbitals with higher { would in-
crease the electron affinity by a fraction of an meV (Sund-
holm and Olsen [4] estimate this to be 0.5 meV). The
biggest uncertainty comes from the model. Not all core-
core correlation has been included but this effect is not
expected to be as large as the core rearrangement already
included. The present calculations have not included any
relativistic splitting and represent the weighted average
of the levels of each term. For the 2P the observed split-
ting is 16 cm™!: a Breit-Pauli calculation for the valence
correlation calculation yields 14.3 cm™! which increases
to 15.47 cm~?! for the calculation with core rearrange-
ment. For the 3P calculation the Breit-Pauli calculation
was performed only for the valence calculation yielding
a splitting of (0, 2.66, 7.93) cm™? for the three J=(0, 1,
2) levels. Scaling the valence correlation results to agree
with observation for the 2P, the electron affinity of 3P,
relative to 2P, /2 would be reduced about 0.6 meV.

IV. COMPARISON WITH OTHER THEORY AND
EXPERIMENT

Table VI compares the present results with other the-
ory and experiment.

Most theoretical results are for valence correlation. Let
us consider this limit first, omitting the relativistic cor-
rection.

Because of the greater complexity of correlation in the
anion, some correlation can easily be lost and most of
the theories have predicted electron affinities that are
too small. Raghavachari [2] used a perturbation scheme
with which it is difficult to compare other than the final
value. Kendell et al. [1] and Noro et al. [3] both used
a multireference single and double configuration interac-
tion (MR-SDCI) scheme but with different bases. The
latter recognized the importance of computing energy
differences from calculations where the weight to the ref-
erence configurations was the same in both states. They
also used the Davidson correction [14] for estimating the
remaining quadrupole corrections. Plots of the energies
as a function of the weight of the reference state were
flatter and easier to extrapolate. For boron, their esti-
mate of the EA was 273 meV, though their uncorrected
value of 278 meV appeared to be more accurate in that
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TABLE VI. A comparison of the present nonrelativistic electron affinities (in meV) from different
theories. The observed experimental value has been increased by 1 meV to account for relativistic

effects.

Reference Valence corr. With core polarization
Present 273.2(2) 279.5(20)
Sundholm and Olsen [4] 268.6(17) 267.8(20)

Noro et al. (with correction) [3] 273

Kendall and Dunning [1] 263

Raghavachari [2] 269

the agreement with experiment was better. However, we
believe this limit is 273.2 meV, in agreement with their
corrected value.

In many respects, the present calculations are most
like those of Sundholm and Olsen [4]. In fact, for valence
correlation up to n = 5 our total energies are in perfect
agreement. However, thereafter, Sundholm and Olsen es-
timate effects in a differential manner from which they
determine the valence correlation limit to be 269.6(17)
meV. It would appear that the different effects are en-
hanced when they are all considered together. Again,
the effect of core-valence correlation was estimated from
a small expansion including only s and p orbitals in the
basis. A reduction in the electron affinity was predicted
by this process whereas in our calculation a small increase
was predicted for core-valence together with core rear-
rangement (calculation no. 2). Both of us agree on the
reduction of the electron affinity by the relativistic effect
though our estimate of —1.1 meV was obtained from the
n = 9 valence correlation calculation using the non-fine-
structure contributions of the Breit-Pauli Hamiltonian

(omitting the orbit-orbit interaction).

The experimental value of 277(10) meV has a rather
large uncertainty. A more accurate value is needed to
evaluate the different theories and the methods employed
in determining the error estimates.
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