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Dynamic proton model for the hyperfine structure of the hydrogenlike ion ~soa9Bi +
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The hyper6ne structure of the one-electron ion 83 Bi + is evaluated within the framework of a
dynamical model in which the electron is assumed to interact with the valence proton through the
exchange of a photon.
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I. INTRODUCTION

Measurements of the hyperfine structure (hfs) of highly
charged one-electron ions can provide tests of QED in
strong fields. To this end, a precise measurement of
E = 5 to E = 4 hyperfine interval in the ground state
of ss Bi + has been carried out recently [1]. This mea-
surement can be compared with recent calculations of
the 83 Bi + hfs based on the external-field approxima-
tion that have been carried out within the framework of
QED [2—6]. In these calculations, two principal correc-
tions to the basic Fermi-Breit formula were taken into
account: the magnetic moment distribution within the
nucleus [2,3,6] and radiative corrections [4,5]. Both of
these corrections are of comparable size.

Here we develop a dynamic model for the hfs of
83 Bi + that takes into account explicitly the proton
motion inside the nucleus and, therefore, includes the
efFects of a distributed nuclear magnetic moment auto-
matically. The model treats the motion of the proton and
of the electron relativistically. In the point-nucleus limit,
the model reduces to the usual static model, but with
a relativistic independent-particle value for the nuclear
moment. The relativistic moment is found to be about
3% smaller than the observed moment of ss Bi. In the
nonrelativistic proton limit, the correction for the finite
distribution of magnetization obtained &om the model,
the Bohr-Weisskopf (BW) correction, reduces to that ob-
tained previously in the nonrelativistic single-particle ap-
proximation [7—9].

The dynamical model allows for calculations of radia-
tive corrections using the standard rules of QED. It can
also be generalized to permit a many-body description of
the nucleus, including the core polarization corrections
and the collective effects which are responsible for the
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deviation of the observed magnetic moment of 83 Bi from
the single-particle limit.

In our applications, we ignore both radiative correc-
tions and nuclear many-body corrections. To compare
with experiment and with earlier calculations, we replace
the magnetic moment given by the model with the mea-
sured magnetic moment. In the point-nucleus approxi-
mation, the present calculations then coincide with those
from Ref. [3]. The value of the BW correction depends
on the details of the nuclear potential. We assume that
the nuclear potential is a Woods-Saxon potential with
parameters chosen to reproduce the experimental proton
binding energy and to give a magnetization distribution
function with the same root-mean-square radius as the
distribution function used in [3]. With that choice, the
finite nuclear magnetization correction found here difFers
with that found in Ref. [3] by about 10%. The principal
reason for this difFerence is that the expression for the
BW correction used in [3] assumes that the nuclear spin
distribution is spherically symmetric, while the present
model predicts an asymmetric spin distribution.

II. MODEL

We treat the valence proton and the electron in

83 Bi + as a system of two interacting particles. Both
particles move in the field of the nucleus and interact
with one another by exchange of photons. We use the
Furry picture in QED and describe the proton as a Dirac
particle moving in a central potential U(r) determined
by the strong interactions. The electron is also described
as a Dirac particle, but moving in the Coulomb potential
Vi )(r) = —(Z —1)n(r)/r, corrected by the function
n(r) for the finite nuclear charge distribution. We do not
include the proton's anomalous moment in our model
since our aim is to describe the interaction of the elec-
tron with a proton in a high orbital angular momentum
state, I = 5, where the nuclear gyromagnetic ratio is
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FIG. 3. Feynman graphs corresponding to the radiative
corrections to hfs in the dynamic proton model.

FIG. 1. Feynman graph describing the Breit interaction
between proton in state IO) and electron in state IA). The
thick line designates the proton, the double line designates the
electron in the 6eld of the core, and the wavy line designates
the transverse photon.

dominated by orbital contributions.
The principal contribution to hfs is given by the Feyn-

man graph of Fig. 1, describing the Breit interaction be-
tween two particles. This contribution can be evaluated
in the Furry picture to give

+Ehfs = (vBr) p„p„
CXp'C1~

OA, OA

Here Vc(r) = —1/r is the Coulomb interaction between
the proton and electron. The proton and electron ener-
gies are denoted by EN and e . Generally, this correction
is small; however, when EN = Ep, it is of order AEhf /Z
and represents the erst-order Coulomb correction to the
wave f'unction IA):

Here cx„and n are Dirac matrices for the proton and
electron, respectively, and rq2 ——Ir„—r, l. We consider
the proton as a particle with a normal Dirac magnetic
moment. The two-particle wave functions IOA) are prod-
uct wave functions coupled to a Axed value of total angu-
lar momentum. In Eq. (1), and throughout the remainder
of the paper, we use atomic units.

Consider now the second-order graph in Fig. 2. This
graph gives the Coulomb correction to the hfs:

(i) ) (0AI vB
I
~n) (~nl vc loA)

Ep —EN + &A &nNn

zE&» ~ . (0AIVn, lon) (onlVcloA)
hfs

Nn

III. ANGULAR INTEGRATION

To carry out the angular integrations in Eq. (1), we use
the formula given in [13] for two-particle matrix element
of the unretarded Breit operator. Since we use only di-
agonal matrix elements, there is no distinction between
the retarded and unretarded Breit interaction. With the
notation

mILM', jim' ILM,j Im
ILM',j Imr; ILM,j lm

where the angular momentum quantum numbers IIM
and jim refer to the proton and electron, respectively,
the result in Ref. [13] can be written

The Feynrnan graph that difFers from Fig. 2 by the in-
terchange of photon lines gives the first-order Coulomb
correction to the adjoint wave function (A . The sum of
the ladder graphs with many photon lines in all orders of
perturbation theory leads to the replacement of the elec-
tron wave function for the potential Vl ) in Eq. (1) by
the wave function for the electron in the corresponding
potential V~ ~. Below, we assume that this substitu-
tion has been made. We would like to mention that, in
the dynamic proton model, radiative corrections to the
hfs correspond to the Feynman graphs of Fig. 3. These
graphs are similar to those for the screening of the Lamb
shift considered recently for the He-like and Li-like ions
[10—12]. It follows that the evaluation of radiative cor-
rections in the dynamic proton model is straightforward
and. can be generalized naturally to higher orders.

mrr ~,,E~;rr.M,,~~ = ) J~ (ILM',j lm'; ILM,j lm)
A=O

i+ ———-4

x&p(K, K).

Here we use the following notation:

Jr, (ILM', jim'; ILM,j lm) = ) (—1) +'+

FIG. 2. Feynman graph describing the erst-order Coulomb
corrections to hfs. The dashed line corresponds to a Coulomb
photon. The symbols N and n denote sums over the Dirac
spectrum for the proton and electron, respectively.
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Np(K, r) = (—1)"
+ 1

x Cp (—K, K) Cp( r—, ~) Qg (K, ~),

and

OO OO

Qp(K, K) = dx dx' „', [2grc(z) fry(z)]
0 0 X)

x [2g„(x')f„(x')]. (8)

In the above formulas, we use K = g(I + 1/2) for I =
I kl/2 and r = p(j+1/2) for j = l+1/2. The quantities
C~(r', r) are given by

IV. EXTERNAL FIELD LIMIT

It is of interest to examine the limiting case of Eq. (14)
when the size of the proton orbit is vanishingly small
with respect to the radius of the electronic orbit. In this
case, the integral Qq(K, K) separates into a product of
two integrals

Qg(K, v) m dxx[2grc(x) fry(x)]
0

OO

x dx —[2g„(x)f„(x)].
0 X

with

C), (K', v) = (-1) + g(2j' + l)(2j + 1)

"I 1/2 0 1/2 I&(l l' ~)

Using the fact that the nuclear gyromagnetic ratio of the
proton, treated as a Dirac particle with no anomalous
moment, is given by

OO

g, = —Mc dxx[2gK(x) fry(x)],+ 1 p

H(t t, A)
1 if l+ 1'+ A even
0 if l+ l'+ A odd (10)

where M is the proton mass; we obtain for a the limiting
expression

The functions grc(r) and fJc(r) are the large and small
components of the proton wave function, respectively;
whereas, g„(r) and f„(r) are the large and small com-
ponents of the electron wave function. It is important
to note that the selection rules in Eq. (10) imply that
C~(—v, v) = 0 unless A is odd, so the sum in Eq. (S)
extends over odd integers only. Coupling the wave func-
tions for the electron and proton in Eq. (4) to angular
momentum EM~, leads to the expression

) ).(IM' jm'II"M&)( M jmlI"M+)
M'm' Mm

& FILM', jim';ILM, j Lm.

1 K 1
a ~ a,t~t,, ——— g, dx —[2g„(x)f„(x)].2Mc j j+1 p x2

(17)

Equation (17) is the standard expression (in atomic
units) relating the hyperfine constant a to the nuclear
gyromagnetic ratio in the external field approximation

Let us examine the expression (16) for g, using the
Pauli approximation,

fd Ki
fsc(r) = —

I

—+ —
I grc(r)2Mc ),dr r p

Summation over M'm', Mm leads to
for the proton wave function. In this approximation, we
obtain

OO

EE .= ) (
—1) +'+ + .

& & ) N (IC ~). (12)I
A=1

The selection rules in the 6j-symbol imply that 0 & A &
min (2I, 2j). Formula (12) contains the interaction with
all higher magnetic moments of the nucleus; the usual
magnetic hyperfine interaction corresponds to A = 1.
Since the electronic ground state of ss Bi + has j = 1/2,
the only contribution is from the term with A = 1. For
this case, Eq. (12) reduces to

K (d
g I(I+ 1)

dxz g~(z) I

—+ —
I gJc(x)(dx x)

K(K —1/2)
I(I + 1)

(18)

Here we assumed that, in the Pauli approximation, the
large component of the proton wave function is itself nor-
malized. The expression (18) is identical to the nonrela-
tivistic Schmidt formula [14] for the g factor

1
AEQf = [E(F+ 1) —I(I +—1) —j (j + 1)]a,

2

where the hyperfine constant a is given by

2L+2
gL~]gL 2J+1gs

1
2L+1gL + 2L+1gs f r K & 0,

(19)
(20)

(14)

For j = 1/2, the separation between the states with I" =
I + 1/2 and I" = I —1/2 is just (I + 1/2)a. Equation
(14) is used below to evaluate the hfs of ss Bi

with gI. = 1 and gs = 2. Thus, the present model reduces
to the external-field approximation for the hyperfine con-
stant a with a relativistic single-particle nuclear moment
in the limit that the finite size of the proton orbit is ig-
nored.



LABZO%'SKY, JOHNSON, SOFF, AND SCHNEIDER

V. BOHR-WEIS SKOP F EFFECT

In Ref. [3], the effects of a finite distribution of nu-

clear magnetism is examined within the framework of
the Bohr-Weisskopf model using a probability distribu-
tion function for the odd proton deduced from a nuclear
mean-field. calculation. Here, the eQ'ects of a finite dis-
tribution of magnetism are included automatically in the
basic equation (14). Let us write Qi(K, K) in the form

The treatment of the Bohr-Weisskopf correction in
Refs. [8,9] using g~ = 2 and gL, = 1 leads to precisely
this expression. In summary, in the nonrelativistic limit,
the dynamic proton model predicts a value of g, corre-
sponding to the Schmidt limit and. includes the Bohr-
Weisskopf corrections with a magnetization distribution
function glc(r)/Nlc.

VI. NUMERICAL CALCULATIONS

Qi(K, r) = 1
d* , [2~—-(x)f-(x)] I(*) (21) As a first step in calculating the hfs of 83 Bi +, we

solve the radial Dirac equation for the proton, which is
assumed to be moving in a Woods-Saxon central poten-
tial)

I(x) = dx'x'[2S~ (x') f~ (x')]
OO

d*' „[2glc(x')fsc(x')]
U(&) =-

exp [(r —c)/a] + 1 ' (2S)

We use the Pauli approximation to reduce the expression
in braces to

K -1/2
Mc

%+1
Mc

dx'glc (x')

OO

dx', g~(x'). (23)

With the aid of this result, we may rewrite Eq. (21) in
the form

Qi(K, r) =—K —1/2
Me p
oo 1

d* , [2g-(*)f—-.(x)] [1 —e(x)] (24)

where

~~&(x) = K+ 1
dx'g~ (x')—

(3O 3
dx' „g~(x'),

(25)

with

dxglc(*).

1 K

2Mc j(j + 1)
1dx, [»-(x)f-(*)][1—e( )]

The correction for the finite distribution of rnagnetiza-
tion found in the Pauli approximation can be evaluated,
therefore, by introducing the factor e(x) into the inte-
grand of the external-field equation (17):

with c = coA ~ fm and a = 0.5 fm [14]. The depth of the
potential well Vp and ep are allowed to vary. The valence
proton in 83 Bi has angular quantum number K = 5, cor-
responding to an 69g2 state. In Table I, we give values
of the eigenvalue Ez of the Dirac equation, which in the
independent-particle approximation is the proton bind-
ing energy, for various values of Vp and cp. Also shown
in Table I are the root-mean-square radii of the proton
orbits, B, , We adjust the parameters Vp and ep to
give the measured binding energy Ez ———3.7977 MeV
[15] and to give R, , = 6.1769 frn. This latter value is
the root-mean-square radius of the magnetization distri-
bution from a nuclear mean-field calculation obtained in
[3]. We also give, in Table I, the relativistic gyromagnetic
ratio g,"' obtained by evaluating Eq. (15) using the cal-
culated proton wave function. The relativistic g factor is
seen to be smaller than the nonrelativistic independent-
particle limit g = 10/11 = 0.909091 (Schmidt) by about
3'%%uo throughout the parameter range considered. The ad-
justed values of the parameters in the Woods-Saxon po-
tential are Vp = 33.879677 MeV and ep ——1.206470 fm.
The relativistic gyromagnetic ratio is g,' ' = 0.885221, a
factor of 1.031908 smaller than the experimental value

g,
'"~ = 0.91347 [16].
In the lower panel of Fig. 4, we plot the resulting

Woods-Saxon potential U(r) and the efFective potential
obtained by including the centrifugal barrier. In the up-

TABLE I. Proton binding energy E„( eMV), root-
mean-square radius R, , (fm), and relativistic proton gyro-
magnetic ratio g~

' obtained by solving the Dirac equation in
a Woods-Saxon potential with central radius c = coA ~ (fm),
thickness a = 0.5 (fm), and depth Vo (MeV).

K

2Mc j(j + 1)

OD 1
dx e(x) —[2g„(x)f„(x)) .

(27)

This leads to a modification of Eq. (17), a, t~q;, ~ a, t~t;;, —
baB~, where the correction to the hyperfine constant
baB~ is given by

Vp

29
30
31
32
34
35

cp

1.30
1.30
1.25
1.25
1.20
1.20

g
3.2713

—4.0710
—3.1695
—3.9605
—3.6333
—4.4214

&rms
6.65
6.60
6.42
6.37
6.15
6.12

rel
gr

0.8883
0.8881
0.8869
0.8866
0.8850
0.8848
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FIG. 5. Comparison of the magnetization distribution
function iii(r) from a nuclear mean field calculation [3] and
that from the present dynamic proton model.
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per panel of this figure, we plot the corresponding large
and small components of the proton Dirac wave function
obtained by solving the Dirac equation in this potential.

The electron Dirac wave function is evaluated in the
Geld of a Gnite charge distribution deGned by the charge
density function,

~(r) =
exp [(r —ci)/ai] + 1

(29)

with ci ——6.75 fm and ai ——0.468 fm [17]. These param-
eters are identical to those used in Ref. [3]. The eigenen-
ergy for the 18~F2 electron in this potential is found to
be E~, ———3833.6378 a.u. With the wave function ob-
tained in this potential, we evaluate the hyperGne struc-
ture exactly, using Eq. (14), and in the static limit, using
Eq. (17). In both cases, we scale our results by the ratio
of the observed magnetic moment to the calculated mo-
ment. Thus, in the static limit, our value of the hyperGne
interval reduces to the corresponding value obtained in
[3].

FIG. 4. Lower panel: nuclear Woods-Saxon potential with
Vo ——33.879677 MeV& c = 1.206470A fm, and a = 0.5 fm
is plotted together with the corresponding effective potential
for a state with L = 5. The 1hg/2 eigenvalue is designated
by E„.Upper panel: large and small component radial Dirac
wave functions for the 169/2 proton.

corresponding to a Bohr-Weisskopf shift of 3.163 nm.
It is of interest to compare the magnetization distri-

bution function iv(r) used in [3] with that used in the
present study, g~~(r)/K~. For this purpose, we plot the
two distribution functions in Fig. 5. Using the distri-
bution iii(r), a value of 3.45 nrn was found for the BW
correction [3]. If we replace the present magnetic distri-
bution function gIc (r)/N~ by io(r) in Eq. (25), we obtain
a value of 3.11 nm for the correction. Thus, the BW cor-
rection is sensitive to both the radial shape of the radial
distribution function and to assumptions concerning the
angular symmetry of the spin.

The value from the dynamic model may be compared
with the experimental value reported in [1]

dl F,„ f ——243.87(4) Ilm,

to infer that the residual corrections are about 2 nm.
These corrections consist of nuclear many-body correc-
tions of the type considered in [6] and the @ED correc-
tions given in Fig. 3. The calculations of Ref. [6] indicate
that the nuclear many-body corrections alone will give a
value of the energy separation 243.54 nm, within 0.33 nm
of the experimental value, indicating that the net @ED
correction is very small. Work is now in progress eval-
uating @ED and nuclear corrections starting from the
dynamic proton model.
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