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Scaled-energy spectra and closed classical orbits of the hydrogen atom
in parallel electric and magnetic fields
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Rydberg atoms in strong fields have scaling properties that allow detailed interpretation of pho-
toabsorption spectra in terms of classical trajectories. The classical dynamics remains invariant if
a spectrum is obtained at constant scaled energy. Since each orbit which is closed at the nucleus
produces a sinusoidal modulation in the absorption spectrum, its signature is a peak in the Fourier
transform of a scaled-energy spectrum. This paper identifies the eFect of closed orbits in the com-
puted spectrum of the hydrogen atom in parallel electric and magnetic fields in a region where chaos
is just beginning to develop.
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I. INTRODUCTION

Rydberg atoms in strong Gelds have attracted great
interest as experimentally accessible quantum systems
where the external perturbations can be comparable to
the unperturbed energy [1]. The case of diamagnetism
has been thoroughly explored both as a testing ground
for quantum methods and as a laboratory for the study
of quantum chaos [2]. The Stark effect is separable for
hydrogen, but not for other atoins. Both quantum [3,
4] and semiclassical approaches [5] have been fruitful in
describing phenomena in Stark systems. The problem
of Rydberg atoms in parallel electric and magnetic fields
adds a level of complexity because two external pertur-
bations can be comparable to the unperturbed energy.
Cacciani et al. [6] have fully explored the region where
both Gelds are suKciently small that levels &om adjacent
n manifolds do not overlap.

The spectra of Rydberg atoms under large perturba-
tions can be complex and difBcult to interpret. Scaled-
energy spectroscopy [7, 8] has emerged as a valuable tool
for interpreting these spectra in terms of classical trajec-
tories which begin and end at the nucleus. According to
closed-orbit theory [9], each closed orbit produces a si-
nusoidal modulation in the absorption spectrum. Early
experiments observed the lowest period modulations by
measuring photoabsorption spectra at fixed field [10].
Later experiments identified several of the lowest period
orbits in the Fourier transform of a spectrum obtained
at fixed field [11]. This approach is limited because the
periods of closed orbits change over the energy range of
the scan. However, classical scaling rules [12, 13] permit
the energy and applied fields to be varied simultaneously
to measure a spectrum in such a way that the classi-
cal dynamics of the system is invariant over the scan
range. The Fourier transform of a scaled-energy spec-
trum is called a recurrence spectrum, because each peak
corresponds to an orbit returning to the origin.

The eÃect of closed orbits has been identified in the
continuum spectra of barium in parallel electric and
magnetic fields [14], but the lack of scaled-energy spec-

troscopy limited the ability to resolve orbits, and the ex-
perimental resolution limited the study to short-period
orbits. A separate study [15] has shown that qualitative
spectral features in the continuum regime can be pre-
dicted &om a purely classical analysis. Scaled-energy
spectra of hydrogen in parallel fields have been com-
puted previously in the quasidiscrete region [16],but the
analysis identified recurrences associated with only a few
short-period orbits. This paper presents a study of recur-
rence spectra in the discrete region where the fields are
sufFiciently strong that levels from many n's are mixed
and where classical chaos is just beginning to develop.
Computing scaled-energy spectra over a much larger field
range than previous work gives highly resolved recurrence
spectra. This permits identification of many recurrences
and detailed interpretation of the spectra in terms of clas-
sical orbits.

II. SCALING RULES AND SYMMETRIES

According to closed-orbit theory [9], the photoabsorp-
tion cross section is given by a slowly varying background
plus an oscillatory sum of the form

Df (E) = ) ) D„I, sin(nSi, —4„1,),
n=1

where k runs over all primitive closed orbits (orbits which
are not repetitions), and n runs over repetitions of the
primitive orbits. SI, is the action of the first repetition of
a closed orbit. D I, is the recurrence amplitude of each
closed orbit. It contains information about the stability
of the orbit, the initial and Anal angles of the orbit, and
the matrix element of the dipole operator between the
initial state and zero-energy Coulomb wave. 4 A, is an ad-
ditional phase which is computed from the Maslov index
and related geometrical considerations. The square of
the recurrence amplitude D I, is the recurrence strength.

The Hamiltonians of Rydberg atoms in strong fields
can be scaled so that the classical dynamics depends only
on a scaled energy, not on the energy and field separately.
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In the case of diamagnetism [12], the scaled energy is
= EB ~, where E is the energy and B is the mag-

netic field. In the case of the Stark eff'ect [13], the scaled
energy is e~ ——EE ~, where E is the electric field.
The classical actions scale as S = 2vrmS, where m is the
scaled Geld: m~ ——E ~ in the electric field case, and
au~ ——B ~ for d.iamagnetism.

These scaling rules facilitate the study of recurrence
spectra because the oscillatory component that each
closed orbit contributes to the spectrum has a frequency
S if the photoabsorption spectrum is obtained as a func-
tion of m at constant scaled energy. The height of each
peak in a recurrence spectrum is proportional to that
orbit's recurrence strength. Consequently, in addition
to providing a tool for computing spectra, closed-orbit
theory is useful for interpreting spectra. In principle,
one can identify the existence of classical orbits from the
spectrum. From this point of view, closed-orbit theory
constitutes a potentially powerful tool for predicting clas-
sical behavior from quantum structure.

Scaled-energy spectroscopy of the hydrogen atom in
parallel electric and magnetic Gelds requires that two
scaled energies be held constant. The Hamiltonian of
hydrogen in parallel fields in the z direction is

II= ———+Fz+ —L B+ —B p.=p' 1 122
2 r 2 8 (2)

Applying the magnetic field scaling (r = B ~ r, p =
B ~ p) to the parallel field Hamiltonian gives

-2
——+ —L + —p + FB z.

2 r 2 8

Ap = 4A —5A, + 10PA„ (4)

where A is the Runge-I enz vector and

12F
5B2n2 (5)

P is related to the magnetic and electric field scaled en-
ergies as

(6)

where the substitution E = —1j2n has been made.
In the low Geld region, spectra of hydrogen in parallel

fields display very small anticrossings [16] as a conse-
quence of the Ap symmetry. Furthermore, the symmetry
allows the spectrum to be described in terms of three
classes of eigenstates which correspond to the semiclas-

The dynamics depends on e~ ——EB ~ and EB
Notice that I"B = (e~/e~), so using e~ and e~ is an
equivalent way to parametrize the parallel field system.

This parametrization in terms of electric and magnetic
scaled energies can be related to the parameter P used by
Cacciani et al. to approach the parallel field system using
tori quantization [6]. For small field values, hydrogen in
parallel fields has an approximate symmetry which is a
generalization of the A symmetry in diamagnetic hydro-
gen. The constant of motion can be written

sical quantization of three classes of trajectories. |lassi-
fying these eigenstates and the boundaries dividing the
different classes allows for a complete description of the
low field spectrum.

This paper considers spectra in regions where the fields
are strong enough for there to be significant mixing
among different n's. Computing scaled-energy spectra at
egg = —0.6 with —oo ( e~ ( —2 (the classical ionization
limit is eF = —2) allows study of the spectral evolution
in terms of classical orbits in the regime where classical
chaos is just beginning to develop. (For pure diamag-
netism, the system is near integrable for e~ ( —0.54.)
As e~ is raised, the classical dynamics changes in a sim-
ple way which is easily seen in the recurrence spectra.

III. B.ECUB.B.ENCE SPECTB.A

In the region of energies and fields considered here, it is
suKcient to compute the spectrum by diagonalizing the
Hamiltonian matrix in the spherical basis of hydrogenic
eigenstates [18]. Eigenvalues and oscillator strengths are
computed in a region around the desired scaled energy,
and a spectrum at constant scaled energy is obtained by
interpolation. In principle, the scaled-energy spectrum
could be considered either a function of m~ ——E ~ or
m~ ——B ~, the Fourier transform of which gives peaks
at the scaled actions S~ or S~, respectively. The two
possible recurrence spectra are equivalent and related by
stretching the action axis. Here, the recurrence spectra
are presented as a function of S~ because of the close con-
nections with diamagnetism. Before taking the Fourier
transform of the oscillator strength spectrum to obtain a
recurrence spectrum, the oscillator strength spectrum is
multiplied by m& to remove the global variation of oscil-
lator strength over the range of fields.

To interpret recurrence spectra, it is helpful to recall
the basic structure of closed orbits in pure diamagnetic
hydrogen. At large negative scaled energies, there are
three primitive short-period closed orbits: one moves on
the p axis, and two inove on the +z axis [12]. Most
longer-period primitive closed orbits are created by bi-
furcations of these orbits and their repetitions as ~~ is
increased. The orbits on the p axis and those which bi-
furcate from them are called rotators. Recurrences cor-
respond. ing to these orbits will be labeled B, where n
denotes the repetition of the orbit on the p axis from
which the orbit bifurcated, and b distinguishes between
different orbits which bifurcated from the same parent.
The orbits on the z axis and. those which bifurcated from
them are called vibrator8. Recurrences corresponding to
these orbits are labeled V, where n and b have the same
meaning as for the rotators.

Turning on a small electric field breaks the symmetry
between the vibrators on each side of the z axis. The
vibrators on the "uphill" side of the electric potential
correspond to the class II motion described by Cacciani et
al. [6]. The vibrators on the "downhill" side correspond
to class I motion, and the rotators correspond to class III
motion. All three classes of motion exist for suKciently
small electric fields. As the scaled electric field is raised,
the region of phase space supporting the uphill vibrators
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shrinks. At P = 1/5, class II motion ceases to exist,
except for the orbit on the z axis in the uphill direction,
which has become unstable. As e~ is raised further, the
region of phase space supporting class III motion shrinks.
At P = 1, class III motion ceases to exist, and the uphill
parallel orbit becomes stable again.

Recurrence spectra for e~ ———0.6 and c~ ———3.0 are
shown in Fig. 1. (To enhance visibility of the smaller
peaks, the square root of the power spectrum, or recur-
rence amplitude, is plotted. ) Letters identify peaks as
corresponding to the closed orbits listed in Table I and
shown in Fig. 2. Repetitions have the number of repeti-
tions as a pre6x. The upper case letters U and D denote
the uphill and downhill orbits on the z axis. In Fig. 2
orbits a—c are uphill vibrators (class II). Orbits d nare-
rotators (class III), with / being a continuous deformation
of the perpendicular orbit of pure diamagnetism. Orbits
o—z and A Eare d—ownhill vibrators (class I).
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FIG. 1. Recurrence spectrum for e~ ———0.6, e~ ———3.0,
m, = 0, 3s initial state. Labeled peaks correspond to the
closed orbits shown in Fig. 2 and Table I.

TABLE I. Closed orbits in parallel fields for e~ = —0.6
and ep ———3. The labels are used in Figs. 1 and 2.

Orbit 8,
(degrees)

0
6.99
9.15
10.27
14.58
15.88
17.84
20.91
25.99
29.93
35 ~ 74
45.67
80.87
111.88
128.92
130.03
130.45
131.07
132.07
133.69
136.31
138.19
140.63
143.82
145.05
148.16
152.12
154.46
157.37
158.89
165.62

180

0.880
7.921
8.803
9.678
8.501
7.627
6.754
5.880
5.013
9.160
4.151
7.446
0.831
7.445
9.381
9.063
8.198
7.311
6.430
5.549
4.656
8.419
3.764
6.618
9.465
2.855
7.633
4.778
6.696
8.631
1.921
0.959
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The presence of the electric 6.eld causes the dynam-
ics to dier dramatically from the case of pure diamag-
netism. In pure diamagnetism at e~ ———0.6, the uphill
and downhill vibrators are identical. Furthermore, the
first three repetitions of the parallel orbit (Vi, V2, and
V3) have not bifurcated. V4 and higher have bifurcated at
least once, but only Vs and higher have bifurcated twice.
If an electric field is applied so that c~ ———3.0, the bi-
furcations of the vibrators on the uphill side are greatly
suppressed, and only V9 and higher have bifurcated. In
contrast, the applied electric field causes many more bi-
furcations to occur for the vibrators on the downhi11 side.
V2 and V3 have both bifurcated giving V2 and V3 which
correspond to the orbits E and y, respectively. These
bifurcations do not occur in pure diamagnetism until the
scaled energy is raised to approximately e~ ———0.45.

The rotators are also a8'ected by the electric field.
Many of them are skewed compared to their diamagnetic
analogs, and orbits which were related to each other by
re8ection symmetry in pure diamagnetism are no longer
symmetric (for example, A: and m). In addition, for pure
diamagnetism, B4 had just been born by bifurcation at
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FIG. 3. Map of recurrence spectra for e~ = —0.6, —oc (
e~ ( —2, m = 0, 38 initial state. The recurrence amplitude
is plotted on the e~/e~ axis. The long and short dashed lines
are the actions of repetitions of the uphill and downhill orbits,
respectively.
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FIG. 2. Closed orbits for e~ ———0.6, e~ ———3.G, 1., = 0.
Orbits are presented in order of increasing initial angle and
are described in Table I.

e~ ———0.6. It does not exist for e~ ———3.0, but there
is a strong focusing of the orbits close to 4l (whose dia-
magnetic analog is R4) indicating that it is close to a
bifurcation. The increase in recurrence strength which
is typical near a bifurcation [12, 17] is present in 4l, as
shown in Fig. 1.

Figure 3 shows the evolution of recurrence spectra at
—0.6 as ~~ is raised &om —oo to —2. To com-

pare recurrence amplitudes at different scaled energy ra-
tios, the recurrence amplitude is plotted on the e~/ey
axis. The general pattern is for more peaks to appear in
the recurrence spectrum as e~/e~ is raised. (Computa-

tional difBculties near the ionization limit produce a lot
of "noise" in the recurrence spectrum for e~/e~ = —0.3.)

The refIection symmetry which exists for E = 0 is bro-
ken and the orbits on each side of the z = 0 plane differ
in character, as discussed above. The splitting of the ac-
tion of the parallel orbits is shown by the dashed lines
in Fig. 3, and this splitting is also evident in the recur-
rence spectrum. New orbits are born by bifurcations of
the downhill orbit. For example, the orbit labeled v in
Figs. 1 and 2 is seen splitting ofI' of the fourth repetition
of the downhill parallel orbit as e~ is increased. Recur-
rences labeled y, t,, r, and S are also seen splitting off of
repetitions of the downhill orbit as e~ is raised.

IV. SUMMABY

In summary, analysis at constant scaled energy allows
spectra of the hydrogen atom in parallel electric and mag-
netic fields to be interpreted in terms of classical orbits
which are closed at the nucleus. The addition of an elec-
tric Geld to diamagnetic hydrogen tilts the potential sur-
face so that orbits on the uphill side disappear and new
orbits are created on the downhill side. These efI'ects are
clearly seen in the Fourier transform of spectra computed
at constant scaled energy.
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