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Electronic bond structure of the H2+ ion in a strong magnetic field:
A study of the parallel configuration

U. Kappes and P. Schmelcher*

D-69I20 Heidelberg, Germany
(Received 15 November 1994; revised manuscript received 3 February 1995)

A large number of magnetically dressed states of the hydrogen molecular ion for parallel internuclear
and magnetic field axes are investigated. The numerical calculations of the molecular states and
potential-energy curves in the fixed-nuclei approximation are based on a recently established and opti-
mized atomic orbital basis set. We study electronic states within the range 0( ~m~ (10 of magnetic
quantum numbers and for several field strengths. In particular, we also investigate many excited states
within a subspace for fixed magnetic quantum number and parity. In order to understand the inhuence
of the magnetic field on the chemical bond of excited molecular states, we perform a detailed comparison
of the electronic probability distributions and potential-energy curves in the field-free space with those in
the presence of a magnetic field. As a major result we observe the existence of two difterent classes of
strongly bound, i.e., stable, magnetically dressed states whose corresponding counterparts in the field-
free space exhibit purely repulsive potential-energy curves, i.e., are unstable. Corrections which are go-
ing beyond the fixed-nuclei approach, i.e., the coupling of the center of mass to the electronic motion, as
well as the mass corrections are investigated in order to ensure the physical validity of our results.

PACS number(s): 31.10.+z, 32.60.+ i

I. INTRODUCTION

During the past 20 years the inhuence of a strong mag-
netic field on the properties of molecular systems has
been studied in a number of articles. Most of these inves-
tigations were on the hydrogen molecular ion [1—18] and
only a few works of predominantly qualitative character
dealt with few-electron molecules [19—24]. In addition a
study of light diatomic molecules in the extreme high
field regime, where the so-called adiabatic approximation
is applicable, has been performed very recently [25].

A detailed understanding of the behavior of the H2+
ion in a strong magnetic field is of fundamental interest:
It will give us a general idea of the effects of an external
field on the chemical bond. As examples of such effects,
which were already observed for the ground state of the
H2+ ion, we mention the contraction of the bond length,
the increase of the dissociation energies with increasing
magnetic field strength, and the changes in the topology
of the electronic potential-energy surfaces. In the case of
a diatomic molecule in a strong magnetic field, and in
particular for the Hz+ ion, the electronic energies are
two-dimensional surfaces: They depend on the internu-
clear distance R as well as the angle 8 between the inter-
nuclear and magnetic field axes. The major part of the
existing literature on the Hz ion in a magnetic field fo-
cused only on the lowest excited states for parallel inter-
nuclear and magnetic field axes: By different numerical
approaches it was possible to investigate the lowest elec-
tronic states with orbital angular momentum projections
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m =0, —1, . . . , —5 for different magnetic field strengths
[14, 16—18]. In the case where the internuclear axis is in-
clined with respect to the magnetic field direction by an
arbitrary, nonzero angle 8, our knowledge is restricted to
the three lowest states with gerade and ungerade parity
[9,12,15,16].

All the above-mentioned investigations on the H2 ion
in strong magnetic fields are based on special choices of
variational electronic wave functions which take into ac-
count the symmetry lowering due to the presence of the
external magnetic field. They are only applicable to the
one-electron problem and in each case are restricted to a
certain range of field strengths. The only basis set
method was given in Ref. [16]. However, this method is
also confined to the one-electron problem. In view of the
lack of a general method for the calculation of molecular
properties in strong magnetic fields, a basis set of atomic
orbitals has been established in Ref. [26]. These atomic
orbitals are well suited to describe electronic molecular
wave functions and spectra for arbitrary magnetic field
strengths and for an arbitrary orientation of the molecule
with respect to the direction of the magnetic field. In or-
der to apply this basis set in ab initio calculations of elec-
tronic molecular spectra and wave functions the varia-
tional parameters of the underlying atomic orbitals have
to be optimized. This has been done recently for the case
of the hydrogen atom [27]. In a first application of this
optimized atomic orbital basis set the lowest electronic
states of the H2+ ion with the magnetic quantum num-
bers m=0, —1, . . . , —10 were investigated for a fixed
field strength of 8 =1.0 a.u. The results of these calcula-
tions were very promising and, in particular, it was
shown that the lq„(m = —5), . . . 1p (m = —10) states
become bound by the inhuence of the external magnetic
field [28]. In the absence of a magnetic field the
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potential-energy curves of the corresponding counter-
parts of these electronic states exhibit a purely repulsive
behavior and the electronic states in field-free space are
therefore unstable with respect to dissociation, i.e., un-
bound.

The aim of the present article is to investigate a large
number of magnetically dressed excited states of the H2+
ion for several magnetic field strengths. We hereby re-
strict our investigation to the case of parallel internuclear
and magnetic field axes. The numerical calculations of
the potential-energy curves are performed with the aid of
the above-mentioned optimized atomic orbital basis set.
We will study excited electronic states for a variety of
diA'erent magnetic quantum numbers and field strengths
and, in particular, also many excited states within a man-
ifold of states of fixed magnetic quantum number. The
latter class of excited magnetically dressed states of the
H2+ ion has not been considered in the literature so far.
One further major goal of the present paper is to contrib-
ute to the understanding of the formation of a chemical
bond in the presence of a strong magnetic field.

Our investigation of the electronic structure of the H2+
ion is based on the fixed-nuclei approach. However, be-
cause of the finite mass of the nuclei, the full three-body
problem of the charged H2+ system in an external mag-
netic field contains mass correction terms as well as an in-
trinsic coupling of the motion of the center of mass to the
electronic motion. In order to ensure that our fixed-
nuclei approach is valid for the magnetically dressed elec-
tronic states investigated, we will calculate the corre-
sponding coupling terms and will estimate the order of
magnitude of the mass correction terms.

The paper is organized as follows. In Sec. II we intro-
duce and discuss the transformed full three-body Hamil-
tonian of the H2+ ion in a magnetic field. In Sec. III we

briefly describe our method for the calculation of the
molecular wave functions and electronic potential-energy
surfaces. Since we investigate the inAuence of a strong
magnetic field on the electronic structure of the Hz+ ion
we have to compare the magnetically dressed states with
their corresponding counterparts in the absence of a mag-
netic field. Section IV, therefore, contains a discussion of
the correlation of the electronic states of the H2+ ion in
field-free space and their corresponding magnetically
dressed counterparts. In Sec. V we present and analyze
the results of our large scale computations on the H2+
ion in a strong magnetic field. We remark that atomic
units will be used throughout the article.

II. THE HAMILTONIAN OF THE H2+ ION

The general problem we are concerned with is the
motion of an electron and two protons under the
influence of their mutual Coulomb interaction in the
presence of an external homogeneous magnetic field.
Due to the nonzero net charge of the H2+ system, the
two components of the so-called pseudomomentum per-
pendicular to the magnetic field vector do not commute
[29]. Therefore it is in principle not possible to perform a
complete pseudoseparation of the center of mass motion,
which means that the center of mass coordinates cannot

K, P, ——[BXR, ]

2
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where M and Mo denote the total mass of the ion and the
total mass of nuclei, respectively. The vectors R,
P, are the center of mass coordinate and its conjugated
momentum, respectively. r and R are the relative coordi-
nates of the electron and the distance vector of the nuclei,
respectively, and p, P are their corresponding conjugated
momenta. As the origin of the internal coordinate sys-
tem we have chosen the center of mass of nuclei. Q
denotes the net charge of the ion, i.e., in our case of the
H2+ ion Q = 1. For the vector potential we have adopted
the symmetric gauge A(r) =

—,
' [BXr]. V(r, R) contains

all Coulomb interaction terms of the electron and the nu-
clei.

The Hamiltonian H, in Eq. (la) contains only the
center of mass degrees of freedom and describes the col-
lective motion of the ion by the approximation of a free
pseudoparticle with the charge Q=l and mass M in a
homogeneous magnetic field. The operator H, couples
the collective motion with the electronic degrees of free-
dom. It represents a motional Stark term with a rapidly
changing electric field of intrinsic dynamical origin. This
coupling term H, can, in principal, mix up heavily the
center of mass and electronic motion [31]. Therefore the
center of mass motion of the molecular ion can deviate
strongly from the zeroth-order Landau orbital motion
given by H, . In particular, it is possible that the ion
changes its state of collective and electronic motion via
the coupling term H, . Since an ion in a homogeneous
magnetic field possesses a zero-point Landau energy the
coupling term is an inherent property of the center of

be completely eliminated from the Hamiltonian. Never-
theless, it was shown in the literature [30—32] that the
total Hamiltonian can be transformed to a particularly
appealing form: the resulting Hamiltonian reAects the
physically intuitive idea of the cyclotron motion of the
center of mass which is perturbed by the coupling to the
electronic degrees of freedom. For our case of the H2+
ion the above-mentioned nonrelativistic Ham. iltonian
takes on the following appearance:

H=H, +H, +H, +H„+V(r, R),
with
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mass motion of the ion in a magnetic field. This is in con-
trast to the case of a neutral molecule where the inAuence
of the collective motion on the internal motion is given
by a motional Stark effect with a constant electric field
which vanishes in the special case of zero pseudomomen-
tum [32—34]. We remark that the Hamiltonian H, cou-
ples in the general case of a heteronuclear molecular ion
the center of mass motion to all internal degrees of free-
dom, i.e., to the electronic as well as the nuclear degrees
of freedom. Only for the special case of a homonuclear
molecular ion, in particular the H2 ion, do the coupling
terms involve merely the electronic degrees of freedom
[321.

The operator H, in Eq. (lc) describes the motion of the
single electron. Due to the finite nuclear mass this Ham-
iltonian contains a series of mass correction terms. They
are proportional to powers of the mass ratio of the elec-
tron to nuclear mass. Finally, the Hamiltonian H„
represents the kinetic energy of the nuclear relative
motion.

Since we want to study the electronic structure of the
H2+ ion we have to separate the electronic and nuclear
motion by an adiabatic approximation. The Born-
Qppenheimer approximation in the presence of a magnet-
ic field has, including all mass correction terms due to the
finite mass of the nuclei, been investigated for neutral sys-
tems in detail in Refs. [32,35] and for molecular ions in
Ref. [36]. For the present investigation we choose as a
zeroth-order approach for the electronic Hamiltonian the
fixed-nuclei Hamiltonian, i.e., we assume infinitely heavy
nuclei. Theoretical considerations going beyond the
fixed-nuclei approach, i.e., including mass correction
terms or effects due to the Hamiltonian H„are given
below. The justification of our assumption of infinitely
heavy nuclei is given in Sec. V A 5 where we present the
results of an explicit numerical evaluation of the corre-
sponding correction terms for the electronic states and
field strengths considered.

The fixed-nuclei electronic Hamiltonian (Hs„) we use
in the present investigation can be obtained by locating
the two protons at the fixed positions +R/2 on the z axis,
which is taken to point along the direction of the magnet-
ic field. For the explicit form as well as the symmetries of
this well-known Hamiltonian we refer the reader to Refs.
[27,28] and in particular to Ref. [40]. The eigenfunctions
of the resulting electronic fixed-nuclei Schrodinger equa-
tion will be labeled no (0 for m =0), n 7r (ir for m = —1),
etc. The label n indicates the degree of excitation within
the manifold of states of a given magnetic quantum num-
ber. An additional subscript g or u characterizes the par-
ity of the orbitals.

The eigenvalues E(R)=e" (R) of the fixed-nuclei
Hamiltonian H&, do include the nucleus-nucleus
Coulomb repulsion but not the threshold energy c,b
which is for an arbitrary negative magnetic quantum
number m given by the lowest energy of a free electron in
a magnetic field, i.e., E,i, =8/2. In order to shift the ion-
ization threshold to zero energy we have to subtract the
threshold energy c.,i, from the eigenvalues E" (R), i.e.,
we define e"r (R)=c," (R)—

E„i,.
In the remaining part of this section we give some

theoretical considerations going beyond the fixed-nuclei
approach. The results will be the basis for our later
justification (see Sec. V A 5) and improvement of the ap-
proximation of infinitely heavy nuclei. Let us first inves-
tigate the importance of the coupling term H, between
the collective motion of the ion and the electronic degrees
of freedom. To this end we expand the total wave func-
tion in a series of products of Landau orbitals, which are
eigenfunctions of the Hamiltonian H, , and the elec-
tronic wave functions, which are eigenfunctions of H, .
The corresponding total electronic Hamiltonian which
takes into account the collective and electronic motion is
the sum of the operators H, , H„and H, . The off-
diagonal matrix elements of the resulting Hamiltonian
matrix take on the following structure:

1 + 1
Np C. IIl (2)

where (Np) and (N'p') denote the quantum numbers of the Landau orbitals and (nmP), (n'm'P') are the quantum
numbers of the electronic magnetically dressed states. These matrix elements couple different states consisting of a
product of certain Landau orbitals of the center of mass motion and electronic eigenstates to H, . It has been shown in
the literature [31] that the matrix elements (2) can be reduced to a product of dipole matrix elements between different
Landau orbitals and dipole matrix elements between different electronic eigenstates. For the estimations of the impor-
tance of the coupling term H, we focus on a coupled two-state problem. The quantity ~, which is the relevant measure
for the strength of the coupling, is the square of the ratio of the absolute value of the coupling matrix elements and the
energy gap between the considered states (this can be seen by second-order perturbation theory):

v=4 1+1

M

NN„P,
2

——[BXR, ] @r-
~

g~ [BXr] +
(3)
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where E&„and E&.„.are the energies of the Landau states
4&„and 4&„, respectively. If ~ is much smaller than
unity the coupling between diA'erent states of the collec-
tive and electronic motion is negligible and no relevant
mixing occurs. In Sec. V A 5 we will present numerically
calculated values of ~ for low-lying Landau orbitals and
our investigated magnetically dressed states of the H2+
ion.

Finally we brieAy comment on the mass correction
terms of the electronic Hamiltonian 0, . To the lowest
order of the electron to the nuclear mass ratio (1/M) the
mass corrections of H, can be included in the fixed-nuclei
Hamiltonian by simply replacing the mass of the electron
by the reduced masses p and p', i.e., the electronic Ham-
iltonian of the H2 ion including first-order mass correc-
tion terms reads as follows:

H, = p +,BL,+ B (x +y )+V(r, R),1 p 1 1

2p 2p 8p
(4)

where p, =Mo /( Mo + 1 ) and p' =Mo /(Mo —1 ).
Let us now proceed to solve the fixed-nuclei electronic

Schrodinger equation. For that purpose we have to build
up the electronic magnetically dressed molecular wave
functions from the optimized atomic orbitals, thereby
respecting the symmetries in the presence of the external
magnetic field. In Sec. III we describe the construction
of the molecular orbitals as well as the ab initio method
for the calculation of the potential-energy surfaces of the
H~+ ion.

III. NUMERICAL METHOD
FOR THE CALCULATION OF THK ELECTRONIC

FIXED-NUCLEI SPECTRUM OF THE H2+ ION

P„(r,a, R, &z) =x "y '(z + R /2) '
X exp I

—a(x +y )
—P(z +R /2)~ I,

where a, P represent the optimized variational parame-
ters and R, = —R2=R/2 with R=R (0,0, 1) .

In order to solve the electronic fixed-nuclei
Schrodinger equation H&„%' =E 4 we expand the
electronic wave function 4 in terms of nonorthogonal
molecular orbitals.

The molecular orbitals N; are built up by the corre-
sponding optimized atomic orbitals (5). They reAect the
symmetries of the underlying system, i.e., they are eigen-
functions of the parity operator P and the z component of

The basis set of atomic orbitals which are a key in-
gredient for our numerical calculation of the spectrum
and wave functions of the hydrogen molecular ion were
established in Ref. [26]. For a detailed description of
these atomic orbital basis functions as well as the optimi-
zation procedure of the nonlinear variational parameters
of these orbitals we refer the reader to Ref. [27]. The
final form of our atomic orbitals takes on the following
appearance:

the angular momentum operator I, . The method of con-
struction of the molecular eigenfunctions 4,. to the pari-
ty as well as angular momentum operator by using the
linear combination of atomic orbitals (LCAO) method is
briefly described in the Appendix.

The resulting generalized eigenvalue problem reads as
follows:

(H„„—ES)c=0, (7)

where the Hamiltonian matrix Hz, is real and symmetric
and the overlap matrix S is real, symmetric, and positive
definite. The vector c comprises the expansion
coefficients c, . The matrix elements (H„„),. and (S),. are
linear combinations of matrix elements with respect to
the optimized atomic orbitals. The latter matrix ele-
ments have been calculated in Ref. [26]. Closed form
analytical expression could be obtained for all matrix ele-
ments except the electron-nucleus attraction integrals.
These three center integrals could be reduced to a smooth
one-dimensional integration which was computed numer-
ically by using a Tschebysche6'-polynomial quadrature.
For the numerical solution of the eigenvalue problem (7)
we used standard methods.

IV. CORRELATION OF THE FIELD-FREE
AND MAGNETICALLY DRESSED STATES

In order to analyze the inAuence of the external mag-
netic field on the molecular electronic states of the H2+
ion we have to compare the potential-energy curves of
the considered states in a magnetic field with their corre-
sponding counterparts in the absence of the field. We
thereby have to ensure that the magnetically dressed
molecular states can be related to the corresponding
field-free states in a unique way. For parallel internuclear
and magnetic field axes, which is the case we exclusively
consider in the present paper, the lowest state of a given
manifold m can be associated with the likewise lowest
state with the same magnetic quantum number m and
parity I' in the field-free case [27,28]. For example,
the magnetically dressed states of the H2+ ion
1o. , lm„, 15, . . . evolve from the 1so.g, 2@m„,3d5g, . . .
field-free states in a definite way. For excited states of a
given subspace m such a one-to-one correlation between
the magnetically dressed molecular states and the states
in the field-free case does not exist. The reason for this
fact is the breakdown of the noncrossing rule for the case
of the Hz+ ion in the absence of a magnetic field [37,38]:
Since there exists in addition to the spatial symmetries
also a phase-space symmetry for the H2+ ion in the field-
free space, crossings of potential-energy curves with the
same spatial symmetries are allowed. If we switch on a
magnetic field the phase-space symmetry is destroyed and
the noncrossing rule holds. As a consequence we are, in
general, not able to relate an excited magnetically dressed
molecular state of a given subspace m to only one
molecular state in the field-free case. However, for the
manifolds m considered in the present paper, the
potential-energy curves of the first two excited states of
each manifold exhibit in the absence of a magnetic field
only one crossing. They cross each other for small values
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ifold m =0 whose dissociation energies are 6.552X10
2.209 X 10, and 2.203 X 10, respectively. For a given
magnetic quantum number m the width of the potential
well increases with increasing degree of excitation of the
electronic state considered. In addition a strong increase
of the equilibrium distances of the magnetically dressed
states of a given manifold m with increasing excitation
can be observed. I et us again consider as an example the

cr~ subspace. For the lowest state 1cr~ of this manifold
(which is the global ground state of the Hz+ ion) we find
an equilibrium distance of 1.76. For the excited states
20. , 3o.g, and 4o.

g the t.'qUilibrium distances are 6.64,
13.37, and 21.56, respectively. A complete list of the
equilibrium distances as well as the dissociation energies
of the above-mentioned states of the H2+ ion in a mag-
netic field of B= 1.0 is given in Table I(b).

TABLE I. The equilibrium internuclear distances R,q, the electronic energy at the equilibrium dis-
tance cT(R,q), and the dissociation energies cD of the bonding o., m, . . . , Z states (m =0, . . . , —4) of
the hydrogen molecular ion (a) in the absence of a magnetic field and (b) in the presence of a magnetic
field with B= 1.0. In the field-free case the potential-energy curves of the corresponding states exhibit
small humps. The values of these local energy maxima c,„are also given.

(a)
State

1$0'g

3d CTg

2$0 g
5go g

R,q

2.03
8.80

23.90

cT(R,q
—5.9876 X 10
—1.7468 X 10

—7.8129x 10
purely repulsive

~max

1.012X 10
4.978 x10-'

2.258 X 10

2p 7T„

4f~„
3p K„
6hz.„

8.00
19.00

39.00

—1.3424 X 10
—7. 1128X10 ' -1.2469x 10-'

purely repulsive
—4. 1558x 10-'

9.550X 10
1.558 x10-'

1.031 x 10-'

3d5g
5g5g
4d5g
7i5g

4f4.
6hg„

5gyg
7l fg

18.00
32.00

58.00

33.00
49.00

53.00
68.00

—5.6877 x 10-'
—3.7844X 10

—2.5517X 10

—3.1191x 10-'
—2.3219x 10-'

—l.9656x 10-'
—1.5576x 10-'

—5.6262 X 10

purely repulsive

—3.0913X 10

—1.9633x10 '

1.614x 10-'
6.593 x10-'

5.517X 10

2.783X 10
3.219x 10-'

2.278 x 10-'
1.687X 10

State

log
2CT g
30'g

4og

lm„
2&.
3'.
4m„

R,q

1.76
6.64

13.37
21.56

3.68
8.82

16.38
25.85

(b)

~,(R„)
—9.7321 X 10
—3.2536 X 10
—1.8232 X 10
—1.1221 X 10

—5. 1007x 10-'
—2.4795 X 10
—1.4621x 10-'
—9.4781x 10-'

1.437 x 10-'
6.552X 10
2.209X 10 '
2.203X 10

5.354 x 10-'
4. 139X10
2.075X 10 '
1.545X 10

15g
25g
35g
45

4.87
10.29
18.31
28.39

—3.8944 X 10
—2. 1272 X 10
—1.3027 X 10
—8.6559 x 10-'

3.641 X 10
3.276 x 10-'
l.873 x 10-'
1.330X 10

5.79
11.45

—3.2847 X 10
—1.9095 X 10

2.851 X 10
2.796X 10

6.55
12.43

—2.8995 X 10
—1.7559X 10

2.377 x 10-'
2.476 X 10
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[Figs. 2(a) —2(c)] are opposed to their corresponding coun-
terparts in the presence of a magnetic field B = 1.0 [Figs.
2(d) —2(f)]. All density distributions n(x, z) = ~%(x,z)

~
of

Fig. 2 are plotted in the x-z plane. Let us first discuss the
probability distribution of the well-known 1so. state
which is illustrated in Fig. 2(a) for the equilibrium dis-
tance of 2.03. The distribution exhibits two maxima
which are located at the positions of the nuclei. Their ab-
solute values are approximately 0.16. Between the two
maxima the density decreases, i.e., the density distribu-
tion exhibits a saddle point with an absolute value of
roughly 0.085 at the position x=z=0. This relatively
large probability of finding the electron between both nu-
clei leads to a screening of the nuclear charges by the
electronic cloud and to the existence of a well-
pronounced potential well in the potential-energy curve
of the 1so. state. If we switch on a magnetic field of
B =1.0 the density distribution of the lo& state [see Fig.
2(d)], which is the magnetically dressed counterpart of
the 1so. state, shows an enhancement of the absolute
values of the maxima (0.21), which are still located at the
positions of the nuclei, and an increase of the density be-
tween both nuclei. The value at the saddle point is now
about 0.16. The overall increase of the density distribu-
tion close to and in particular between both nuclei in the
presence of a magnetic field leads to a more complete
screening of the nuclear charges and in particular to a
lowering of the potential energy. As a consequence the
depth of the potential well in the corresponding
potential-energy curve increases.

Next let us consider the density distribution for the
3do~ state (B=0) and its counterpart the 20. state for
B=1.0. The density distribution of the 3do. state in
field-free space is illustrated in Fig. 2(b) for the equilibri-
um distance of 8.80. The probability distribution exhibits
three maxima along the internuclear line which are
separated by nodes. The outer maxima (n,„,=9X10 )

are peaked at the positions of the individual nuclei. The
density around the inner maximum, which is located at
the origin of the x-z plane, is more widely distributed and
the inner maximum value itself is only about half of the
absolute values of the outer maxima. The existence of a
local maximum for the density between both nuclei leads
to the existence of a potential well in the energy curve of
the 3do state. In Fig. 2(e) the density distribution of the
corresponding magnetically dressed state 2o. is present-
ed for B=1.0 and the corresponding equilibrium dis-
tance of 6.64. The values of the outer maxima, which are
still located at the position of the nuclei, are now a little
larger (n,„,=0.015) but they no longer represent the glo-
bal maxima of the density distribution. Instead we ob-
serve a strong increase of the density between the nuclei
and the global maximum of the density (n;„=0.036) is
located at the origin. In addition the density distribution
of the 2o.s state for B =1.0 [see Fig. 2(e)] is much more
strongly localized in the vicinity of the internuclear axis
than the density of the 3do state in field-free space [see
Fig. 2(b)], i.e., the magnetic field also causes a contrac-
tion of the electronic cloud perpendicular to the internu-
clear axis.

The strong increase of the density distribution between

the nuclei for the 2o. state compared to the 3do. state
in the field-free space leads, however, only to a moderate
increase of the corresponding dissociation energies of
about 31.6%. The decrease of the bond length is of the
same order of magnitude (24.5%). This picture changes
if we consider the first excited states of the subspaces
with nonvanishing magnetic quantum numbers (

~
m

~

~ 1).
In the latter case we obtain much more drastic relative
changes of the dissociation energies as well as bond
lengths if we pass from the field-free situation to the case
of the presence of a magnetic field (see Tables I(a) and I(b)
for a comparison of the corresponding data). The relative
changes are bigger the larger the absolute value of the
magnetic quantum number ~m

~

is. This fact is not very
surprising since the binding energy of the underlying sys-
tem decreases with increasing degree of excitation and
the increasing magnetic interaction energies, therefore,
dominate more and more. With the exception of a node
line along the z axis which has its origin in the polynomi-
al part (x+iy ) of the electronic wave function [see Eq.
(A7)], the density distributions of the first excited states
of the manifolds ~„,5,$„,y, . . . take on an appearance
similar to the above-discussed distributions of the 3dog
and 2o. states. This statement holds for the case of the
absence as well as presence of the magnetic field.

Let us finally consider how the probability density dis-
tribution of the second excited state of the o., manifold in
the field-free case changes if we switch on a magnetic field
B =1.0. In Fig. 2(c) the probability distribution of the
2so. state is illustrated for an internuclear distance of
8.80. We observe two sharp peaks, which are located at
the positions of the nuclei and represent the global maxi-
ma (n;„=6.8X 10 ). In addition, the density distribu-
tion shows two further outer maxima which are separat-
ed by nodes from the global maxima. The density distri-
bution around these outer maxima (n,„,=1.2X10 ) is
rather broad compared to the peaks at the positions of
the nuclei. Similar to the 1so.

g state, the probability dis-
tribution of the 2so state exhibits between the nuclei a
saddle point (n„d =4X 10 ). However, the relative
dift'erence between the values of the global maxima and
the value at the saddle point is very large. This strong
decrease of the density distribution between the two nu-
clei is the reason for the purely repulsive potential-energy
curve of the 2so.

g state, i.e., the very low probability of
finding the electron between both nuclei does not allow
for the formation of a chemical bond. In the presence of
a magnetic field of B=1.0 the density distribution of the
corresponding 30. state, given in Fig. 2(f) for the equilib-
rium distance of 13.37, takes on a very diA'erent appear-
ance. The existence of an additional maximum located
between both nuclei is most remarkable. Remember, in
the field-free case [see Fig. 2(c)] we observe in this area a
low-lying saddle point. This newly formed maximum,
which is located at the origin, is also the global maximum
of the density distribution. The peaks of the density dis-
tribution in the absence of a magnetic field, which were
located at the positions of the nuclei, are still present and
the two outer maxima, which were smooth and widely
distributed in the field-free case, are now much more pro-
nounced and peaked. In addition we observe a strong lo-
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calization of the density distribution in the plane perpen-
dicular to the magnetic field. The enhanced density be-
tween both nuclei leads to the existence of an attractive
part in the potential-energy curve of the 3a state. This
behavior is, within our investigation of the electronic
structure of the H2+ ion, generic for all second excited
states with different magnetic quantum numbers m,
whose field-free counterparts are the so-called "bonding"
states. This means that not only the 2so. state but also
the 3@~„and 4d6 electronic states in the field-free space
exhibit purely repulsive potential-energy curves [see
Table I(a)] whereas their corresponding counterparts in
the presence of a magnetic field of B=1.0, i.e., the
3o. , 3~„,36 states, show an attractive behavior of the
potential-energy curves [see Table I(b)], i.e., a well-
pronounced potential well. In particular the changes in
the electronic probability density distribution due to the
presence of a magnetic field are, with the exception of the
occurrence of a node line along the magnetic field axis,
for the 3~„,36 states similar to that observed for the
30. state.

3. The ground states of the manifolds 4~ ~m ~
(10

After having studied the inhuence of the magnetic field
on the properties of the so-called "bonding" excited
states in the manifolds o. ,ia„,6 we will in the following
investigate the changes in the properties of the lowest
states with increasing magnetic quantum number in the
absence and presence of a magnetic field. According to
our above discussion, the density distribution of the
ground state of the H2+ ion exhibits in the absence of a
magnetic field a saddle point between both nuclei [see
Fig. 2(a)]. The density distributions of all other lowest
states of the manifolds m possess, due to the polynomial
structure (x+iy ) of the orbitals [see Eq. (A7)], a node
line along the z axis. The following features are common
to all ground states of the manifolds .os~„,6 sP„,y ,s. . .
in field-free space: The maxima of the electronic proba-
bility density occur roughly for values of the z coordinate
which correspond to the positions of the nuclei whereas
their distance from the z axis increases with increasing
absolute value of the magnetic quantum number. Be-
tween the two maxima we observe a saddle point at z =0.
However, with increasing magnetic quantum number the
electronic probability density becomes more and more
widely distributed. In particular, the values of the proba-
bility density close to the internuclear axis between the
two nuclei become very small. Since the distribution of
the probability density close to the internuclear axis be-
tween the nuclei is an indication of whether a potential
well may exist for a certain state or not, it could be ex-
pected that the potential-energy curves of the lowest
states with the quantum numbers m in field-free space
exhibit, from a certain magnetic quantum number

~
m

~

on, a purely repulsive behavior. And indeed, only the
electronic potential energy curves of the-above mentioned-
states with magnetic quantum numbers

~
m

~

~ 4 are attrac
tive, i.e., possess a potential well while the potential-
energy curves of the ground states with magnetic quan-
tum numbers ~m

~

+ 5 exhibit purely repulsive behavior,

i.e., they are unstable with respect to the dissociation
H~+ ~H+p [28].

In the following we will investigate how the shapes of
the potential-energy curves of these so-called "bonding"
states change if we switch on a homogeneous magnetic
field. For that purpose we consider the ground states
1p g 1p 1 /tg 1cp 1K 1k 1pg with the magnetic quan-
tum numbers 4 ~

~
mI ~ 10. For a field strength of 0.01 we

obtain for all of the above-mentioned states shallow wells
in their potential-energy curves. With increasing mag-
netic field strength the potential wells become more and
more pronounced and the corresponding equilibrium dis-
tances decrease rapidly. For a strong magnetic field with
a field strength of B=1.0 we obtain for all states con-
sidered dissociation energies of the order of magnitude of
10 a.u. and equilibrium distances ranging from 6.55 for
the ly state ( m =4) to 9.80 for the Ip state
(~m ~=10) (a complete list of equilibrium distances as
well as dissociation energies for the states with the mag-
netic quantum numbers 4 ~

~
m

~

~ 10 is given for the field
strengths 0.01, 0.1, and 1.0 in Table II).

In order to understand the drastic changes of the shape
of the potential-energy curves of the considered so-called
"bonding" ground states from the field-free case to the
case of the presence of a magnetic field we representative-
ly consider the electronic probability density distribution
of the g„state ( m

~

=5) in both cases. In Figs. 3(a) and
3(b) the density distribution of the 6hti„state in the ab-
sence of a magnetic field and of the 1g„state in the pres-
ence of a magnetic field with B =1.0 are illustrated, re-
spectively. The probability density of the 6hq„state in
Fig. 3(a) is presented for an internuclear distance of 80.0.
The maxima (n,„=3X10 ) of the density distribution
occur for values of the z coordinate which correspond to
the positions of the nuclei and are located roughly 30 a.u.
away from the z axis. The saddle point of the density
(n„d=7X10 ) occurs at z=O and has a distance of
roughly 40.0 a.u. from the internuclear axis. The purely
repulsive behavior of the electronic potential curve for
the 6h g„state in the field-free case has, as we mentioned
above, its origin in the low and widely distributed proba-
bility density. In the presence of a magnetic field the
structure of the probability distribution of the lg„state,
illustrated in Fig. 3(b) for the equilibrium distance 7.22, is
completely different from that of the 6h g„state in field-
free space. The maxima of the density occur close to the
internuclear axis at approximately x =+3 and at z=0.
In the region defined by —1.0~z ~ 1.0 and x =+3 the
density shows, starting from its maximal value at z=O,
only a very minor decrease. Apart from the decrease of
the overall size of the molecule we also observe that the
density is very much peaked in the direction of the x axis,
which corresponds to the direction perpendicular to the
magnetic field. The enhanced probability of finding the
electron in the region close to the internuclear axis for z
values between both nuclei leads, compared to the field-
free situation, to a more complete screening of the nu-
clear charges and allows consequently for the formation
of the observed well-pronounced potential well.

The above-discussed inhuence of a strong magnetic
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field on the ground state of the g„manifold is representa-
tive for all magnetically dressed ground states considered
in the present paper (see Table II), i.e., the changes of the
properties of the potential-energy curves as well as the
changes of the corresponding probability density distri-
butions of the ground states of the y, . . . , p manifolds
from field-free space to the presence of a magnetic field
are analogous to those of the above-described q„ground-
state.

4. Existence of vibrational levels

So far we have investigated the properties of a large
number of the so-called "bonding" adiabatic electronic
states of the H2+ ion in the presence of a strong magnetic
field. We, thereby, have shown that the adiabatic
potential-energy curves of all magnetically dressed
"bonding" states considered exhibit well-pronounced po-
tential wells for a field strength of B=1.0, in particular
also those whose corresponding counterparts exhibit in
field-free space a purely repulsive behavior. However,
the existence of a potential well in the adiabatic
potential-energy curves is a necessary but not sufFicient
condition for the formation of a stable molecular bond.
In order to find out whether a certain magnetically
dressed "bonding" state of the H2+ ion is stable with

respect to dissociation H2+~H+p, we have to ensure
the existence of vibrational states in the corresponding
potential wells. To this end we approximate the potential
wells by a harmonic potential and estimate the ground-
state energy of the nuclear motion in this harmonic po-
tential weil under the influence of the external magnetic
field. In a rough approximation an upper limit of the vi-
brational ground-state energy is then given by the sum
of the ground-state energy in the harmonic potential
and the corresponding zero-point cyclotron energy. The
zero-point cyclotron energy is approximately
7.4X10 for B=1.0. For the considered electronic
ground states of the manifolds o, . . . , p for B=1.0
we obtain harmonic potential energies of the order
of magnitude of 10 . For the excited magnetically
dressed states of the manifolds o, . . . , y, i.e., the
20 g 3 ' g 40

g
277 2p g states, we obtain harmonic

ground-state energies ranging from 10 to 10 ". The
estimated vibrational ground-state energies for each adia-
batic electronic potential-energy curve of the considered
"bonding" states of the manifolds 0, , p are there-
fore much smaller than the depth of the corresponding
wells. Hence many vibrational states can exist in these
wells, i.e., the so-called "bonding" states of the H2 ion
in a strong magnetic field B=1.0 are, within the adiabat-
ic picture, stable.

TABLE II. The equilibrium internuclear distances R,q, the electronic energy at the equilibrium dis-
tance cT(R,q), and the dissociation energies cD of the bonding y, g, . . . , p states (m = —4, . . . , —10) in
the presence of a magnetic field with B=0.01,0. 1, 1.0.

State

lyly
lg„
1&g

1+u
1K'
1X„
1pg

Magnetic
quantum
number

—5
—6
—7
—8
—9

—10

R,q

B=0.01
40.4
49.5
57.4
64.1

70.3
75.9
81.1

—0.037 952
—0.032 369
—0.028 757
—0.026 167
—0.024 203
—0.022 643
—0.031 259

2.828 x 10
1.796x 10-'
1.318X10
0.963x 10-'
0.766x 10-'
0.653x 10-'
0.529X 10

—7
—8
—9

—10

B=0.10
17.59
19.66
21.51
23.21
25.22
26.81
28.26

—0.100 359
—0.089 757
—0.082 018
—0.076 035
—0.071 227
—0.067 248
—0.063 883

3.548X 10
2.423 x 10-'
2.018x 10 '
1.679X 10
1.599x 10-'
1.472X 10
1.372 x 10-'

lyly
lg„
leg

1+u
1K'
lk„
lp~

—5
—6
—7
—8
—9

—10

B=1.00
6.55
7.22
7.82
8.35
8.86
9.35
9.80

—0.289 95
—0.262 50
—0.241 97
—0.225 58
—0.212 45
—0.201 32
—0.191 82

2.376x 10-'
2.031x 10
1.800x10 '
1.611x 10
1.480x 10-'
1.362x 10-'
1.266x 10-'
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2. 171X10-'
3.528 X 10
4. 341 X 10-'
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9.037X 10
1.492X 10-'
1.807X 10 '

5.624X 10
1.124X 10 '
1.888X 10
2.249X 10
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pling is negligible for the lowest Landau levels with
%~2,p~2. These Landau levels of the center of mass
motion correspond to a temperature of the order of mag-
nitude of 100 K. It is, of course, also possible to obtain
for the low-lying electronic states a strong interaction be-
tween the electronic and center of mass motion by fur-
ther increasing the quantum numbers X and/or p, i.e., by
choosing highly excited Landau levels of the center of
mass motion of the ion, and/or by further increasing the
field strength.

B. The magnetically dressed antibonding states

Let us now consider the inAuence of a strong magnetic
field on the so-called "antibonding" states. In the sense
of the above-discussed correlation (see Sec. IV) between
the molecular states of the H2+ ion in the field-free space
and those in the presence of a magnetic field, we again
compare the lowest three states of each considered "anti-
bonding" manifold in the absence of a magnetic field, i.e.,
the states 2po „,4fo „,3pcr, 3dm, . . . , with their corre-
sponding counterparts la„,2o.„,3o.„,1m, . . . in the
presence of a magnetic field. In field-free space the
potential-energy curves of the ground states of the "anti-
bonding" manifolds with the magnetic quantum numbers
~m =0, . . . , 10, i.e., the 2pcr„, 3dmg, . . . , 12np„states,
exhibit a purely repulsive behavior [see Table IV(a)]. In
previous investigations (see Refs. [17,18] and [27,28]) it
was shown that the potential-energy curves of the corre-
sponding magnetically dressed counterparts, i.e.,
1o.„,1~~, . . . , 1p„states, show above some critical field
strength shallow minima. For a field strength of 8 =1.0
the depth of the shallow potential wells of these "anti-
bonding" ground states ranges from 5.4X10 a.u. for
the lcr„state to 3 X 10 for the lp„state [see Table
IV(b)]. All these energies are smaller than the cyclotron
energy of the nuclear relative motion and therefore these
"antibonding" ground states are supposed to be unbound.
The potential-energy curves of the first excited states of
the manifolds o.„,m, . . . , y„exhibit also in the absence
of a magnetic field potential-energy wells. The depths of
these potential wells are of the order of magnitude of
10 [see Table IV(a) for a complete list of the dissocia-
tion energies and equilibrium distances of these "anti-
bonding" states of the H2+ ion in field-free space]. If we
switch on a magnetic field B= 1.0 we obtain for the cor-
responding magnetically dressed states an overall de-
crease of the equilibrium distances and a decrease of the
dissociation energies for the 2o.„,2m. ,25„states while the
dissociation energies of the 2$ and 2y„states increase.
For example, the 4fo „state in the field-free space has an
equilibrium distance of 21.0 and a dissociation energy of
5.40X10 . For the corresponding counterpart in the
presence of a magnetic field 8 = 1.0 we obtain a dissocia-
tion energy of 1.94X 10 and an equilibrium distance of
16.5 [see Table IV(b) for a complete list of the calculated
dissociation energies and equilibrium distances of the
"antibonding" states of the H2 ion in a magnetic field
8 =1.0]. The depths of the potential wells of the energy
curves of these magnetically dressed first excited states
are of the order of magnitude of 10

TABLE IV. The equilibrium internuclear distances R,q, the
electronic energy at the equilibrium distance cz.(R,q), and the
dissociation energies c.D of the antibonding v, m, . . . , p states
(m =0, . . . , —10) (a) in the absence of a magnetic field and (b)
in the presence of a magnetic field 8 = 1.0.

State

&P~u
4fo.„
&P~u
6h o.„

21.0

41.5

cT(R, )

(a)
purely repulsive

—1.304 x 10
purely repulsive

—6.056 x 10-'

5.40 x 10-'

5.00 x 10-'

3Q Kg

5g kg
4d mg

7l kg

35.5

60.0

purely repulsive
—5.822 x 10

purely repulsive
—3.418x 10

2.66 x 10-'

2.93 x 10

5„
6h 6„
Sf5„
Sj5„

54.0

83.0

purely repulsive
—3.269 x 10

purely repulsive
—2. 183x 10

1.44x 10

1.83 x10-'

5gp
7ig 76.0

purely repulsive
—2.083 x 10-' 8.30x 10

6hy„
Sjy„ 104.0

purely repulsive
—1.436X10 ' 4.80x 10

lo„
2u
3ou

1~
2m.

31T

4~g

16„
25„
36„

ling

2P

ly.
2y.
13
1&u

1@
1Ku

lk
lou

9.6
16.5
24.0
35.0
13.5
19.5
28.0
39.4
16.0
21.5
30.5

18.0
23.0
19.5
24.0
20.5
22.0
23.0
24.5
23.0
26.0

(b)
—8.300 x 10
—2.618x 10-'
—1.619x 10
—9.257 x 10-'
—4.567x10 '

—2.082 x 10-'
—1.272 x10-'
—8. 128 x 10-'
—3.532 x 10
—1.815 x 10
—I.132x 10

—3.001x10-'
—1.644 x 10-'
—2.663 x 10-'
—1.522 X 10
—2.423 x 10
—2.240x 10
—2.095 x10-'
—1.977x10-'
—1.878 x 10
—1.792x 10

5.40x10 '
1.94 x 10-'
1.64 x 10-'
2.39x 10-'
2.21 x 10
1.62 x 10-'
1.69x 10
1 ~ 94x10-'
1.79 x 10-'
1.50x10 '
1.69 x 10-'

1.46x 10 4

1.42X lO

1.17x 10-'
1.35x 10
0.90x 10
0.80x 10
0.60x lo-'
0.50x 10
0. 13x 10-"
0.03 x 10-'

The potential-energy curves of the second excited mag-
netically dressed states, i.e., the 3o.„,3m, 36„states, also
exhibit potential wells. The depths of these wells are of
the same order of magnitude as those of the first excited
states. The potential-energy curves of their correspond-
ing field-free counterparts, i.e., the 3pcr„,4drr~, sf o„
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and magnetic field axes. The key ingredient for our ex-
tensive numerical calculations of the molecular electronic
states and potential-energy curves in the fixed-nuclei ap-
proximation was a recently established and optimized
basis set of generalized atomic orbitals. In order to un-
derstand the inhuence of the magnetic field on the chemi-
cal bond of excited molecular states we performed a de-
tailed comparison of the electronic probability distribu-
tions and potential-energy curves in field-free space with
those in the presence of the external field. First we inves-
tigated the so-called "bonding" states. In the absence of
a magnetic field the potential-energy curves of the second
excited states of the manifolds o. , m„, 5 as well as the
ground states of the manifolds g„, . . . , p exhibit a pure-
ly repulsive behavior. If we switch on a typical strong
field of B= 1.0 a.u. all potential-energy curves of the con-
sidered "bonding" states and, in particular, the second
excited states of the manifolds 0. , ~„,6 as well as the
ground states of the manifolds g„, . . . , pg exhibit well-
pronounced potential wells. The reason for the drastic
changes in the latter potential-energy curves in the pres-
ence of a magnetic field is, apart from the overall
enhancement of the absolute values of the electronic den-
sity in the plane perpendicular to the magnetic field axis,
the appearance of a global maximum of the probability
density on or close to the internuclear axis and between
both nuclei. These density maxima do not occur in the
field-free case. By a harmonic approximation of the wells
we could show that in all cases considered the vibrational
ground-state energy is much smaller than the depth of
the corresponding well and therefore many vibrational
states exist in these wells.

Since the above-discussed eAects of the H2+ ion are
based on the fixed-nuclei approximation we have to esti-
mate whether the corrections beyond this approximation,
i.e., the coupling between the collective and electronic
motion of the H2+ ion and the mass corrections, are
small. We showed that the quantity ~, which is a mea-
sure for the strength of the coupling for the lowest Lan-
dau levels of the center of mass motion is much smaller
than unity. Exceptions are the electronic 1A,„and 1p
states for which ~ is of the order of magnitude of a few
times 10, i.e., for these states the coupling to the center
of mass is no longer a tiny correction and increases rapid-
ly with increasing excitation of the Landau levels.

The main result of our investigation of the so-called
"bonding" states is therefore the fact that all considered
states of the manifolds o, . . . , K and, in particular, also
those whose corresponding counterparts are unbound in
the absence of a magnetic field, become stable with
respect to dissociation H2+ ~H+p through the presence
of a strong field.

In contrast to the potential-energy curves of the bond-
ing states the potential-energy curves of the so-called an-
tibonding states of the manifolds o.„, . . . , p„exhibit in
the presence of a strong field B=1.0 only shallow mini-
ma. The depths of the potential wells of the ground
states of the considered manifolds are in each case small-
er than the corresponding zero-point cyclotron energy of
the nuclear motion. Hence these magnetically dressed
states are physically unbound. The depth of the con-
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APPENDIX

In order to describe the construction of our molecular
orbitals with the optimized basis functions given in Ref.
[27], some preliminary remarks concerning these opti-
mized atomic orbitals are necessary.

For vanishing pseudomomentum which implies a con-
stant angular momentum L, the dynamics of the hydro-
gen atom in a strong homogeneous magnetic field de-
pends only on the transversal coordinate p=(x +y )'~
and the z coordinate parallel to the magnetic field. For
this reason the atomic orbitals which were used to per-
form the optimization are given in cylindrical coordinates
and contain only two variational parameters, a and P.
They take on the following appearance:

m P ma +2S0, ; '(p, z, y, a)=p ' z'expI —ap —Pz I

X exp I im, g I, (A 1)

m
where m, and P, = ( —) '( —)' denote the magnetic
quantum number and parity of the atom, respectively. s
and t are positive integers and characterize the type of
atomic orbitals in a given subspace m, '.

Since we use Cartesian atomic orbitals for the con-
struction of our molecular orbitals, we have to transform
the atomic orbitals (Al) into the corresponding Cartesian
basis functions. This follows via the simple identity

sidered excited states of the manifolds o.„, . . . , y„are
roughly two times larger than the corresponding zero-
point cyclotron energy of the nuclear motion. Within a
simple approximation of the potential wells by a harmon-
ic potential and an estimation of the vibrational ground-
state energy in this harmonic potential under the
inhuence of the external magnetic field it is not possible
to decide whether vibrational states can exist in the po-
tential wells of the excited antibonding states considered.

Finally we showed the existence of a large number of
crossings for the potential-energy curves for 6=0' which
turn into avoided crossings if the internuclear axis is in-
clined with respect to the magnetic field axis. This fact
indicates the complexity of the topology of the full elec-
tronic potential surfaces E=E(R,e) which becomes par-
ticularly relevant for higher excited states. An investiga-
tion of the topology of the potential surfaces of the excit-
ed states in a magnetic field is a challenging task from
both the numerical as well as the physical point of view
and is left to future investigations.
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m +2s . ma S
Im, l

p
' expIim, yI = g g

CT 7

Im I

—o +2{s —7.)Xx

X ( & + )vy a+ 2) (A2)

nuclei, read in the molecular coordinate system, which
has its origin in the center of mass of nuclei, as follows:

0"7 (T7 CT7

(r, a;, +R/2)=x "'y "(z+R/2) *'
CT7) l

XexpI —a;(x +y )

Hence we obtain by the transformation (A2), in general, a
set of Cartesian atomic orbitals characterized by the in-
dex i with the same variational parameters a and P but
difFerent triads n, ; = ( n„;,n,', n, ,'):

P n CT7 n era n a7
0„' (r, a;)=x "'y "z "

CT7) l

—
13, (z+R /2)'I, (A4)

where R is the internuclear distance.
The molecular orbitals P„which are eigenfunctions

CT7) l

of the molecular parity operator P can be constructed
from the functions (A4) by defining

with

Xexp[ —a, (x +y )
—P, z I, (A3) C)„(r,a, ,R ) =P (r, a;,R /2)

+PP,P„(r, a;, —R /2 ) . (A5)

The Cartesian atomic orbitals are still eigenfunctions to
n~7+n ~7. +n~7.

the atomic parity operator P, =( —)
"' " ",but ob-

viously not to the atomic angular momentum operator
I,.

For the case of the H2+ ion in a homogeneous magnet-
ic field with parallel internuclear and magnetic field axes
the atomic orbitals (A3), centered at the positions of the

~m ~+2k =n ;'+n~,', (A6)

where k is a positive integer. Analogous to the "atomic"
equation (A2) we may construct the molecular eigenfunc-
tions of the operator I., by combining

Molecular orbitals which are also eigenfunctions to the z
component I., of the molecular angular momentum
operator can be obtained by linear combination of the
molecular orbitals (A5) belonging to a set i. For a given
molecular magnetic quantum number m, the components
n ;'and n; of the triad n; have to satisfy the condi-
tion

Iml k

(r, a;,R)=g g
p v

Iml k

/m

p

'/m
f

p

k (+i )"N„(r,a;,R )
)MV) 1

(+i )"[$„(r,a, ,R /2)+PP'P„(r, a;, —R /2)], (A7)

where p, v are the molecular summation indices (they are, in general, not equal to the atomic indices o, 7) Each ele-.
ment of the calculated Hamiltonian matrix is the expectation value of the fixed-nuclei Hamiltonian (2) with respect to a
molecular orbital of the form (A7).
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