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A large number of magnetically dressed states of the hydrogen molecular ion for parallel internuclear
and magnetic field axes are investigated. The numerical calculations of the molecular states and
potential-energy curves in the fixed-nuclei approximation are based on a recently established and opti-
mized atomic orbital basis set. We study electronic states within the range 0<|m| <10 of magnetic
quantum numbers and for several field strengths. In particular, we also investigate many excited states
within a subspace for fixed magnetic quantum number and parity. In order to understand the influence
of the magnetic field on the chemical bond of excited molecular states, we perform a detailed comparison
of the electronic probability distributions and potential-energy curves in the field-free space with those in
the presence of a magnetic field. As a major result we observe the existence of two different classes of
strongly bound, i.e., stable, magnetically dressed states whose corresponding counterparts in the field-
free space exhibit purely repulsive potential-energy curves, i.e., are unstable. Corrections which are go-
ing beyond the fixed-nuclei approach, i.e., the coupling of the center of mass to the electronic motion, as
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well as the mass corrections are investigated in order to ensure the physical validity of our results.

PACS number(s): 31.10.+z, 32.60.+1

I. INTRODUCTION

During the past 20 years the influence of a strong mag-
netic field on the properties of molecular systems has
been studied in a number of articles. Most of these inves-
tigations were on the hydrogen molecular ion [1-18] and
only a few works of predominantly qualitative character
dealt with few-electron molecules [19-24]. In addition a
study of light diatomic molecules in the extreme high
field regime, where the so-called adiabatic approximation
is applicable, has been performed very recently [25].

A detailed understanding of the behavior of the H,™"
ion in a strong magnetic field is of fundamental interest:
It will give us a general idea of the effects of an external
field on the chemical bond. As examples of such effects,
which were already observed for the ground state of the
H2+ ion, we mention the contraction of the bond length,
the increase of the dissociation energies with increasing
magnetic field strength, and the changes in the topology
of the electronic potential-energy surfaces. In the case of
a diatomic molecule in a strong magnetic field, and in
particular for the H," ion, the electronic energies are
two-dimensional surfaces: They depend on the internu-
clear distance R as well as the angle © between the inter-
nuclear and magnetic field axes. The major part of the
existing literature on the H," ion in a magnetic field fo-
cused only on the lowest excited states for parallel inter-
nuclear and magnetic field axes: By different numerical
approaches it was possible to investigate the lowest elec-
tronic states with orbital angular momentum projections
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m=0,—1, ..., —5 for different magnetic field strengths
[14,16-18]. In the case where the internuclear axis is in-
clined with respect to the magnetic field direction by an
arbitrary, nonzero angle ©, our knowledge is restricted to
the three lowest states with gerade and ungerade parity
[9,12,15,16].

All the above-mentioned investigations on the H," ion
in strong magnetic fields are based on special choices of
variational electronic wave functions which take into ac-
count the symmetry lowering due to the presence of the
external magnetic field. They are only applicable to the
one-electron problem and in each case are restricted to a
certain range of field strengths. The only basis set
method was given in Ref. [16]. However, this method is
also confined to the one-electron problem. In view of the
lack of a general method for the calculation of molecular
properties in strong magnetic fields, a basis set of atomic
orbitals has been established in Ref. [26]. These atomic
orbitals are well suited to describe electronic molecular
wave functions and spectra for arbitrary magnetic field
strengths and for an arbitrary orientation of the molecule
with respect to the direction of the magnetic field. In or-
der to apply this basis set in ab initio calculations of elec-
tronic molecular spectra and wave functions the varia-
tional parameters of the underlying atomic orbitals have
to be optimized. This has been done recently for the case
of the hydrogen atom [27]. In a first application of this
optimized atomic orbital basis set the lowest electronic
states of the H," ion with the magnetic quantum num-
bers m=0,—1,..., —10 were investigated for a fixed
field strength of B=1.0 a.u. The results of these calcula-
tions were very promising and, in particular, it was
shown that the 1n,(m=—5),...1u,(m=—10) states
become bound by the influence of the external magnetic
field [28]. In the absence of a magnetic field the
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potential-energy curves of the corresponding counter-
parts of these electronic states exhibit a purely repulsive
behavior and the electronic states in field-free space are
therefore unstable with respect to dissociation, i.e., un-
bound.

The aim of the present article is to investigate a large
number of magnetically dressed excited states of the H,"
ion for several magnetic field strengths. We hereby re-
strict our investigation to the case of parallel internuclear
and magnetic field axes. The numerical calculations of
the potential-energy curves are performed with the aid of
the above-mentioned optimized atomic orbital basis set.
We will study excited electronic states for a variety of
different magnetic quantum numbers and field strengths
and, in particular, also many excited states within a man-
ifold of states of fixed magnetic quantum number. The
latter class of excited magnetically dressed states of the
H," ion has not been considered in the literature so far.
One further major goal of the present paper is to contrib-
ute to the understanding of the formation of a chemical
bond in the presence of a strong magnetic field.

Our investigation of the electronic structure of the H,"
ion is based on the fixed-nuclei approach. However, be-
cause of the finite mass of the nuclei, the full three-body
problem of the charged H," system in an external mag-
netic field contains mass correction terms as well as an in-
trinsic coupling of the motion of the center of mass to the
electronic motion. In order to ensure that our fixed-
nuclei approach is valid for the magnetically dressed elec-
tronic states investigated, we will calculate the corre-
sponding coupling terms and will estimate the order of
magnitude of the mass correction terms.

The paper is organized as follows. In Sec. II we intro-
duce and discuss the transformed full three-body Hamil-
tonian of the H," ion in a magnetic field. In Sec. ITI we
briefly describe our method for the calculation of the
molecular wave functions and electronic potential-energy
surfaces. Since we investigate the influence of a strong
magnetic field on the electronic structure of the H," ion
we have to compare the magnetically dressed states with
their corresponding counterparts in the absence of a mag-
netic field. Section IV, therefore, contains a discussion of
the correlation of the electronic states of the H,™ ion in
field-free space and their corresponding magnetically
dressed counterparts. In Sec. V we present and analyze
the results of our large scale computations on the H,"
ion in a strong magnetic field. We remark that atomic
units will be used throughout the article.

II. THE HAMILTONIAN OF THE H,* ION

The general problem we are concerned with is the
motion of an electron and two protons under the
influence of their mutual Coulomb interaction in the
presence of an external homogeneous magnetic field.
Due to the nonzero net charge of the H2+ system, the
two components of the so-called pseudomomentum per-
pendicular to the magnetic field vector do not commute
[29]. Therefore it is in principle not possible to perform a
complete pseudoseparation of the center of mass motion,
which means that the center of mass coordinates cannot
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be completely eliminated from the Hamiltonian. Never-
theless, it was shown in the literature [30-32] that the
total Hamiltonian can be transformed to a particularly
appealing form: the resulting Hamiltonian reflects the
physically intuitive idea of the cyclotron motion of the
center of mass which is perturbed by the coupling to the
electronic degrees of freedom. For our case of the H, ™"
ion the above-mentioned nonrelativistic Hamiltonian
takes on the following appearance:

H=H A6 +H +H,+H,+V(,R), (1)
with
1 2
Hc.m.zm Pc.m._—z_[BXRc‘m.]‘ ’ (1a)
1 1
chﬁ 1+—M Pc,m._%[BXRc.m.] '[er],
(1b)
1 1 Q 1
== |p+=[BXr]+=—[BX
H,=7 |p+5[Bxrl+ S 5 [Bxr]
2
1 1 QM+M0
—— |[1+=——|[BX 1
YoM, P72 M |[BXrlp . o
2
H,=-2 [P—1BxR] (1d)
n MO 4 ’

where M and M, denote the total mass of the ion and the
total mass of nuclei, respectively. The vectors R_ .,
P_ .. are the center of mass coordinate and its conjugated
momentum, respectively. r and R are the relative coordi-
nates of the electron and the distance vector of the nuclei,
respectively, and p, P are their corresponding conjugated
momenta. As the origin of the internal coordinate sys-
tem we have chosen the center of mass of nuclei. Q
denotes the net charge of the ion, i.e., in our case of the
H," ion Q =1. For the vector potential we have adopted
the symmetric gauge A(r)=1[BXr]. V(r,R) contains
all Coulomb interaction terms of the electron and the nu-
clei.

The Hamiltonian H_, in Eq. (l1a) contains only the
center of mass degrees of freedom and describes the col-
lective motion of the ion by the approximation of a free
pseudoparticle with the charge Q=1 and mass M in a
homogeneous magnetic field. The operator H, couples
the collective motion with the electronic degrees of free-
dom. It represents a motional Stark term with a rapidly
changing electric field of intrinsic dynamical origin. This
coupling term H,_ can, in principal, mix up heavily the
center of mass and electronic motion [31]. Therefore the
center of mass motion of the molecular ion can deviate
strongly from the zeroth-order Landau orbital motion
given by H_ . . In particular, it is possible that the ion
changes its state of collective and electronic motion via
the coupling term H,.. Since an ion in a homogeneous
magnetic field possesses a zero-point Landau energy the
coupling term is an inherent property of the center of
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mass motion of the ion in a magnetic field. This is in con-
trast to the case of a neutral molecule where the influence
of the collective motion on the internal motion is given
by a motional Stark effect with a constant electric field
which vanishes in the special case of zero pseudomomen-
tum [32-34]. We remark that the Hamiltonian H, cou-
ples in the general case of a heteronuclear molecular ion
the center of mass motion to all internal degrees of free-
dom, i.e., to the electronic as well as the nuclear degrees
of freedom. Only for the special case of a homonuclear
molecular ion, in particular the H," ion, do the coupling
terms involve merely the electronic degrees of freedom
[32].

The operator H, in Eq. (1c) describes the motion of the
single electron. Due to the finite nuclear mass this Ham-
iltonian contains a series of mass correction terms. They
are proportional to powers of the mass ratio of the elec-
tron to nuclear mass. Finally, the Hamiltonian H,
represents the kinetic energy of the nuclear relative
motion.

Since we want to study the electronic structure of the
H," ion we have to separate the electronic and nuclear
motion by an adiabatic approximation. The Born-
Oppenheimer approximation in the presence of a magnet-
ic field has, including all mass correction terms due to the
finite mass of the nuclei, been investigated for neutral sys-
tems in detail in Refs. [32,35] and for molecular ions in
Ref. [36]. For the present investigation we choose as a
zeroth-order approach for the electronic Hamiltonian the
fixed-nuclei Hamiltonian, i.e., we assume infinitely heavy
nuclei. Theoretical considerations going beyond the
fixed-nuclei approach, i.e., including mass correction
terms or effects due to the Hamiltonian H,, are given
below. The justification of our assumption of infinitely
heavy nuclei is given in Sec. V A 5 where we present the
results of an explicit numerical evaluation of the corre-
sponding correction terms for the electronic states and
field strengths considered.

1 1
H ‘1+ﬁ (I){‘Vp Pc.m._%[BXRc.m.]

D )} ¥ [BXr]
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The fixed-nuclei electronic Hamiltonian (Hg,) we use
in the present investigation can be obtained by locating
the two protons at the fixed positions =R /2 on the z axis,
which is taken to point along the direction of the magnet-
ic field. For the explicit form as well as the symmetries of
this well-known Hamiltonian we refer the reader to Refs.
[27,28] and in particular to Ref. [40]. The eigenfunctions
of the resulting electronic fixed-nuclei Schrodinger equa-
tion will be labeled no (o for m =0), n (7 for m = —1),
etc. The label n indicates the degree of excitation within
the manifold of states of a given magnetic quantum num-
ber. An additional subscript g or u characterizes the par-
ity of the orbitals.

The eigenvalues e(R)=¢""?(R) of the fixed-nuclei
Hamiltonian Hg, do include the nucleus-nucleus
Coulomb repulsion but not the threshold energy g
which is for an arbitrary negative magnetic quantum
number m given by the lowest energy of a free electron in
a magnetic field, i.e., £, =B /2. In order to shift the ion-
ization threshold to zero energy we have to subtract the
threshold energy e, from the eigenvalues £""F(R), i.e.,
we define e7"F(R)=e""F(R)—gy,.

In the remaining part of this section we give some
theoretical considerations going beyond the fixed-nuclei
approach. The results will be the basis for our later
justification (see Sec. V A 5) and improvement of the ap-
proximation of infinitely heavy nuclei. Let us first inves-
tigate the importance of the coupling term H_, between
the collective motion of the ion and the electronic degrees
of freedom. To this end we expand the total wave func-
tion in a series of products of Landau orbitals, which are
eigenfunctions of the Hamiltonian H__ , and the elec-
tronic wave functions, which are eigenfunctions of H,.
The corresponding total electronic Hamiltonian which
takes into account the collective and electronic motion is
the sum of the operators H_ , H,, and H,. The off-
diagonal matrix elements of the resulting Hamiltonian
matrix take on the following structure:

\I/n'm'P' , 2)

where (Np) and (N'u’) denote the quantum numbers of the Landau orbitals and (nmP), (n’'m’P’) are the quantum
numbers of the electronic magnetically dressed states. These matrix elements couple different states consisting of a
product of certain Landau orbitals of the center of mass motion and electronic eigenstates to H,. It has been shown in
the literature [31] that the matrix elements (2) can be reduced to a product of dipole matrix elements between different
Landau orbitals and dipole matrix elements between different electronic eigenstates. For the estimations of the impor-
tance of the coupling term H, we focus on a coupled two-state problem. The quantity «, which is the relevant measure
for the strength of the coupling, is the square of the ratio of the absolute value of the coupling matrix elements and the
energy gap between the considered states (this can be seen by second-order perturbation theory):

<q)ku ¢§’#l>.<\ynm1’ \I,n’m’P‘>

[Ey,+ef"P(R)—Ey, — 5™ F(R)]?

2

Pc.m._—Q’Q_[BXRQm.] [BXr]




where Ey, and Ey, are the energies of the Landau states
@ﬁu and <I>f‘v,#,, respectively. If x is much smaller than
unity the coupling between different states of the collec-
tive and electronic motion is negligible and no relevant
mixing occurs. In Sec. VA5 we will present numerically
calculated values of k for low-lying Landau orbitals and
our investigated magnetically dressed states of the H,"
ion.

Finally we briefly comment on the mass correction
terms of the electronic Hamiltonian H,. To the lowest
order of the electron to the nuclear mass ratio (1/M) the
mass corrections of H, can be included in the fixed-nuclei
Hamiltonian by simply replacing the mass of the electron
by the reduced masses i and y’, i.e., the electronic Ham-
iltonian of the H, " ion including first-order mass correc-
tion terms reads as follows:

H;=—2-1;p2+ E:TBLZ-FiBZ(xZ-i-yz)-F V(,R), @
where u=M,/(My+1)and u'=M,/(My—1).

Let us now proceed to solve the fixed-nuclei electronic
Schrodinger equation. For that purpose we have to build
up the electronic magnetically dressed molecular wave
functions from the optimized atomic orbitals, thereby
respecting the symmetries in the presence of the external
magnetic field. In Sec. III we describe the construction
of the molecular orbitals as well as the ab initio method
for the calculation of the potential-energy surfaces of the
H," ion.

III. NUMERICAL METHOD
FOR THE CALCULATION OF THE ELECTRONIC
FIXED-NUCLEI SPECTRUM OF THE H,* ION

The basis set of atomic orbitals which are a key in-
gredient for our numerical calculation of the spectrum
and wave functions of the hydrogen molecular ion were
established in Ref. [26]. For a detailed description of
these atomic orbital basis functions as well as the optimi-
zation procedure of the nonlinear variational parameters
of these orbitals we refer the reader to Ref. [27]. The
final form of our atomic orbitals takes on the following
appearance:

¢n(l‘,Q,R1/2)=xn"y ny(Z +R /2)nz
Xexp{ —a(x*+y?)—B(zFR /2)*},

(5)

where a, B represent the optimized variational parame-
ters and R;=—R,=R /2 with R=R(0,0,1)7.

In order to solve the electronic fixed-nuclei
Schrédinger equation Hg W™P=¢mP¥mP we expand the
electronic wave function ¥™F in terms of nonorthogonal
molecular orbitals.

Y= c,orf . (6)

The molecular orbitals ®"F are built up by the corre-
sponding optimized atomic orbitals (5). They reflect the
symmetries of the underlying system, i.e., they are eigen-
functions of the parity operator P and the z component of
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the angular momentum operator L,. The method of con-
struction of the molecular eigenfunctions ®7"F to the pari-
ty as well as angular momentum operator by using the
linear combination of atomic orbitals (LCAO) method is
briefly described in the Appendix.

The resulting generalized eigenvalue problem reads as
follows:

(Hg, —€S)c=0, (7)

where the Hamiltonian matrix Hy, is real and symmetric
and the overlap matrix S is real, symmetric, and positive
definite. The vector c¢ comprises the expansion
coefficients ¢;. The matrix elements (Hy,);; and (S);; are
linear combinations of matrix elements with respect to
the optimized atomic orbitals. The latter matrix ele-
ments have been calculated in Ref. [26]. Closed form
analytical expression could be obtained for all matrix ele-
ments except the electron-nucleus attraction integrals.
These three center integrals could be reduced to a smooth
one-dimensional integration which was computed numer-
ically by using a Tschebyscheff-polynomial quadrature.
For the numerical solution of the eigenvalue problem (7)
we used standard methods.

IV. CORRELATION OF THE FIELD-FREE
AND MAGNETICALLY DRESSED STATES

In order to analyze the influence of the external mag-
netic field on the molecular electronic states of the H,"
ion we have to compare the potential-energy curves of
the considered states in a magnetic field with their corre-
sponding counterparts in the absence of the field. We
thereby have to ensure that the magnetically dressed
molecular states can be related to the corresponding
field-free states in a unique way. For parallel internuclear
and magnetic field axes, which is the case we exclusively
consider in the present paper, the lowest state of a given
manifold m¥ can be associated with the likewise lowest
state with the same magnetic quantum number m and
parity P in the field-free case [27,28]. For example,
the magnetically dressed states of the H,' ion
lag,lfru,lﬁg, ... evolve from the lsag,varu,3d8g, e
field-free states in a definite way. For excited states of a
given subspace m* such a one-to-one correlation between
the magnetically dressed molecular states and the states
in the field-free case does not exist. The reason for this
fact is the breakdown of the noncrossing rule for the case
of the H," ion in the absence of a magnetic field [37,38]:
Since there exists in addition to the spatial symmetries
also a phase-space symmetry for the H," ion in the field-
free space, crossings of potential-energy curves with the
same spatial symmetries are allowed. If we switch on a
magnetic field the phase-space symmetry is destroyed and
the noncrossing rule holds. As a consequence we are, in
general, not able to relate an excited magnetically dressed
molecular state of a given subspace m’ to only one
molecular state in the field-free case. However, for the
manifolds m? considered in the present paper, the
potential-energy curves of the first two excited states of
each manifold exhibit in the absence of a magnetic field
only one crossing. They cross each other for small values
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of the internuclear distance, i.e., in the strongly repulsive
regions which correspond to nuclear configurations close
to the united atom limit. Apart from this crossing the
first two excited states of each manifold m? are energeti-
cally well separated. This energetic separation is main-
tained if we switch on a magnetic field. It is therefore
reasonable to compare the properties of the first two ex-
cited states of the H?" ion in the field-free case in each
subspace m” with those of the first and second magneti-
cally dressed states of the H,™ ion with the same magnet-
ic quantum number m and parity P. For example, the
molecular states 3do, and 250, in the absence of a mag-
netic field correspond to the magnetically dressed states
20, and 30, respectively. For higher excited states the
large number of crossings, in particular also close to the
equilibrium internuclear distances, does not allow for an
identification of the individual states as a function of the
field strength.

V. RESULTS AND DISCUSSION

In the following we present and discuss the results of
our extensive numerical calculations which have been ob-
tained by using the above-described ab initio method.
First of all we will investigate different electronic states of
the H," ion in a strong magnetic field with the same
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magnetic quantum number but with increasing degree of
excitation. We will study the potential-energy curves of
the magnetically dressed states and, if possible, compare
them to their corresponding counterparts in the absence
of a magnetic field. In Figs. 1(a)-1(c) the potential-
energy curves of the four lowest so-called ‘“‘bonding” as
well as “antibonding”states of the H, " ion in a magnetic
field of the strength 1.0 are shown for the manifolds with
the magnetic quantum numbers m =0, —1, —2, respec-
tively. Since the two lowest states of the manifold m =0,
i.e., the lo,,, states, are energetically well separated
from all other states in the subspace m =0, they have
been omitted in Fig. 1(a).

A. The magnetically dressed bonding states

Let us first consider the properties of the bonding
states, i.e., of the 204,305, ..., 17,27, ...,
18g,28g, ..., states. Analogous to the ground state lag
of the H," ion, all potential-energy curves of these elec-
tronic states exhibit an attractive behavior with a well-
pronounced potential well. The depths of these potential
wells, i.e., the dissociation energies of the considered
states, are roughly of the order of magnitude of 1072, As
examples we mention the 2ag, 3c7g,40'g states of the man-

0.0 0.0
5 01—
£ 01
s
] |
o}
% —]
o -0.2 —
4 .
< -0.2 —
o ]
=
g
k> 0.3 —|
[}
0.3 1\ B
18
g
I I T [ T I T T I [ T I T -0-4 T | T Ifﬁv I I T
0 10 20 30 0 10 20 30 0 10 20 30 40

internuclear distance R (a.u.)

FIG. 1. Total electronic energies (including the nuclear repulsion energy) of excited “bonding” and “antibonding” states of the
H," ion in a strong magnetic field B =1.0 illustrated as functions of the internuclear distance R. (a) The electronic potential curves
of the first six excited states of the o manifold (m =0), (b) and (c) show the eight lowest states of the 7(m = —1) and 8§(m = —2) man-

ifold, respectively.
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ifold m =0 whose dissociation energies are 6.552X 1072,
2.209X 1072, and 2.203 X 1072, respectively. For a given
magnetic quantum number m the width of the potential
well increases with increasing degree of excitation of the
electronic state considered. In addition a strong increase
of the equilibrium distances of the magnetically dressed
states of a given manifold m with increasing excitation
can be observed. Let us again consider as an example the
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o, subspace. For the lowest state 1o, of this manifold
(which is the global ground state of the H,™ ion) we find
an equilibrium distance of 1.76. For the excited states
20,,30,, and 40, the equilibrium distances are 6.64,
13.37, and 21.56, respectively. A complete list of the
equilibrium distances as well as the dissociation energies
of the above-mentioned states of the H," ion in a mag-
netic field of B=1.0 is given in Table I(b).

TABLE I. The equilibrium internuclear distances R, the electronic energy at the equilibrium dis-

tance er(R.q), and the dissociation energies €, of the bonding o,7, ...

,y states (m=0,...,—4) of

the hydrogen molecular ion (a) in the absence of a magnetic field and (b) in the presence of a magnetic
field with B=1.0. In the field-free case the potential-energy curves of the corresponding states exhibit
small humps. The values of these local energy maxima ¢, are also given.

(a)

State R er(Rq €max €p
1so, 2.03 —5.9876X 107! 1.012%x107!
3do, 8.80 —1.7468X 107! 4.978X 1072
250, purely repulsive

5go, 23.90 —17.8129X 1072 2.258X 1072
2pm, 8.00 —1.3424X 107! —1.2469X 107! 9.550%x 1073
Afm, 19.00 —7.1128X 1072 1.558X 1072
3pm, purely repulsive
6h, 39.00 —4.1558X 1072 1.031X 1072
3d3, 18.00 —5.6877X1072 —5.6262X1072 1.614X1073
5¢8, 32.00 —3.7844X1072 6.593x107?
4d3d, purely repulsive

7i8, 58.00 —2.5517X1072 5.517x 1073
afe, 33.00 —3.1191X 1072 —3.0913X 1072 2.783X10™*
6ho, 49.00 —2.3219X 1072 3.219%x 1073
587, 53.00 —1.9656 X 1072 —1.9633X 1072 2.278X 1073
Tiy, 68.00 —1.5576 1072 1.687X107°

(b)

State R er(Req) €p

lo, 1.76 —9.7321X 107! 1.437Xx107!

20, 6.64 —3.2536Xx107! 6.552X 1072

30, 13.37 —1.8232X107! 2.209X 1072

40, 21.56 —1.1221X 107! 2.203X 1072

1m, 3.68 —5.1007X 107! 5.354X 1072

2, 8.82 —2.4795% 107! 4.139X 1072

3w, 16.38 —1.4621X 107! 2.075X 1072

4, 25.85 —9.4781X1072 1.545X 1072

18, 4.87 —3.8944%x 107! 3.641X1072

25, 10.29 —2.1272%x 107! 3.276 X 1072

35, 18.31 —1.3027X 107! 1.873X 1072

45, 28.39 —8.6559X 1072 1.330X 1072

14, 5.79 —3.2847X107! 2.851X1072

2¢,, 11.45 —1.9095x 107! 2.796X 1072

ly, 6.55 —2.8995X 107! 2.377X 1072

27, 12.43 —1.7559X107! 2.476 X 1072
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1. The potential-energy curves
of the manifolds |m| <2

In order to analyze the influence of the external mag-
netic field on the potential-energy curves of the H," ion
we representatively compare the three lowest so-called
“bonding” states of the subspace m =0 in the absence of
a magnetic field with those in the presence of a magnetic
field with B=1.0.

Let us first consider the potential-energy curves of the
o, states in the absence of a magnetic field. The energy
curves of the lowest states with the magnetic quantum
numbers |m | <4 are well known since the early investiga-
tions of Bates and co-workers [39]. However, for a con-
sistent comparison of the corresponding states with their
counterparts in the presence of a magnetic field, we have
recalculated the wave functions and spectra in field-free
space with our optimized atomic orbital basis set. The
data on the H," ion in field-free space given in the
present paper are therefore results of our own basis set
calculations. The eigenenergies obtained show an overall
accuracy of about 0.1% compared to the corresponding
very accurate values of Bates and co-workers [39]. The
ground state 1so, and the first excited state 3d o', exhibit
well-pronounced potential wells located around 2.03 and
8.80, respectively. The corresponding dissociation ener-
gies are 1.012X 107! and 4.978 X102, respectively. In
contrast to the first excited state the second excited state

probability density

0.008 § [ C
0.006

0.004
0.002

.000 ¢
0 10

5 0 5
Z axis (a.u,)

X axis (av)
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250, exhibits a purely repulsive behavior [a complete list
of equilibrium distances and dissociation energies for the
electronic states in field-free space for all subspaces m”
considered in the present paper is given in Table I(a)].
The absence of an attractive part in the potential-energy
curve of the 2so, state simply means that it is unstable
with respect to the dissociation H, " —H+p.

In the case of the presence of a magnetic field of
B =1.0 the corresponding potential-energy curves of the
lo,, 20,, and 30, states exhibit, as we mentioned above,
well-pronounced potential wells. For the first two states
lo, and 20, we obtain compared to the field-free quanti-
ties a decrease of the bond lengths of about 13.3% and
24.5% and an increase of the dissociation energies of ap-
proximately 42% and 31.6%, respectively. The 3o,
state, whose counterpart 250, in the field-free case exhib-
its a purely repulsive energy curve, shows now, in the
presence of a magnetic field, an attractive potential-
energy curve. In order to understand these drastic
changes of the potential-energy curves let us consider the
electronic probability density distributions of the lowest
three states of the o, manifold in the absence and pres-
ence of a magnetic field.

2. Electronic probability density distributions

In Fig. 2 the electronic probability density distribu-
tions of the lowest three o, states in the field-free case
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FIG. 2. The electronic probability density distributions of the three lowest “bonding” states of the o, manifold (m =0) of the H,™
ion in the absence of a magnetic field are shown in (a)—(c). (d)-(f) show the corresponding states in the presence of a magnetic field.
The electronic density distributions of the “field-free states” 150, (a) and 3do, (b) and of the magnetically dressed states 1o, (d), 20,
(e), and 30, (f) are plotted for the corresponding equilibrium distances. The density of the “field-free state” 250, (c), which exhibits a
purely repulsive potential-energy curve, is shown for an internuclear distance 8.80.



[Figs. 2(a)-2(c)] are opposed to their corresponding coun-
terparts in the presence of a magnetic field B=1.0 [Figs.
2(d)-2(N]. All density distributions n(x,z)=|W¥(x,z)|? of
Fig. 2 are plotted in the x-z plane. Let us first discuss the
probability distribution of the well-known lso, state
which is illustrated in Fig. 2(a) for the equilibrium dis-
tance of 2.03. The distribution exhibits two maxima
which are located at the positions of the nuclei. Their ab-
solute values are approximately 0.16. Between the two
maxima the density decreases, i.e., the density distribu-
tion exhibits a saddle point with an absolute value of
roughly 0.085 at the position x =z=0. This relatively
large probability of finding the electron between both nu-
clei leads to a screening of the nuclear charges by the
electronic cloud and to the existence of a well-
pronounced potential well in the potential-energy curve
of the 1so, state. If we switch on a magnetic field of
B =1.0 the density distribution of the 1o, state [see Fig.
2(d)], which is the magnetically dressed counterpart of
the lsag state, shows an enhancement of the absolute
values of the maxima (0.21), which are still located at the
positions of the nuclei, and an increase of the density be-
tween both nuclei. The value at the saddle point is now
about 0.16. The overall increase of the density distribu-
tion close to and in particular between both nuclei in the
presence of a magnetic field leads to a more complete
screening of the nuclear charges and in particular to a
lowering of the potential energy. As a consequence the
depth of the potential well in the corresponding
potential-energy curve increases.

Next let us consider the density distribution for the
3do, state (B=0) and its counterpart the 20, state for
B=1.0. The density distribution of the 3do, state in
field-free space is illustrated in Fig. 2(b) for the equilibri-
um distance of 8.80. The probability distribution exhibits
three maxima along the internuclear line which are
separated by nodes. The outer maxima (7., ~9X1073)
are peaked at the positions of the individual nuclei. The
density around the inner maximum, which is located at
the origin of the x-z plane, is more widely distributed and
the inner maximum value itself is only about half of the
absolute values of the outer maxima. The existence of a
local maximum for the density between both nuclei leads
to the existence of a potential well in the energy curve of
the 3do, state. In Fig. 2(e) the density distribution of the
corresponding magnetically dressed state 20, is present-
ed for B=1.0 and the corresponding equilibrium dis-
tance of 6.64. The values of the outer maxima, which are
still located at the position of the nuclei, are now a little
larger (n.,, =~0.015) but they no longer represent the glo-
bal maxima of the density distribution. Instead we ob-
serve a strong increase of the density between the nuclei
and the global maximum of the density (n;, =0.036) is
located at the origin. In addition the density distribution
of the 20, state for B=1.0 [see Fig. 2(e)] is much more
strongly localized in the vicinity of the internuclear axis
than the density of the 3do, state in field-free space [see
Fig. 2(b)], i.e., the magnetic field also causes a contrac-
tion of the electronic cloud perpendicular to the internu-
clear axis.

The strong increase of the density distribution between
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the nuclei for the 20, state compared to the 3do, state
in the field-free space leads, however, only to a moderate
increase of the corresponding dissociation energies of
about 31.6%. The decrease of the bond length is of the
same order of magnitude (24.5%). This picture changes
if we consider the first excited states of the subspaces
with nonvanishing magnetic quantum numbers (|m|>1).
In the latter case we obtain much more drastic relative
changes of the dissociation energies as well as bond
lengths if we pass from the field-free situation to the case
of the presence of a magnetic field (see Tables I(a) and I(b)
for a comparison of the corresponding data). The relative
changes are bigger the larger the absolute value of the
magnetic quantum number |m | is. This fact is not very
surprising since the binding energy of the underlying sys-
tem decreases with increasing degree of excitation and
the increasing magnetic interaction energies, therefore,
dominate more and more. With the exception of a node
line along the z axis which has its origin in the polynomi-
al part (x *iy )Im! of the electronic wave function [see Eq.
(A7)], the density distributions of the first excited states
of the manifolds 7,,8,,4,,7,, - - . take on an appearance
similar to the above-discussed distributions of the 3do,
and 20, states. This statement holds for the case of the
absence as well as presence of the magnetic field.

Let us finally consider how the probability density dis-
tribution of the second excited state of the o, manifold in
the field-free case changes if we switch on a magnetic field
B=1.0. In Fig. 2(c) the probability distribution of the
250, state is illustrated for an internuclear distance of
8.80. We observe two sharp peaks, which are located at
the positions of the nuclei and represent the global maxi-
ma (n,,~6.8X107%). In addition, the density distribu-
tion shows two further outer maxima which are separat-
ed by nodes from the global maxima. The density distri-
bution around these outer maxima (n.,~1.2X107?) is
rather broad compared to the peaks at the positions of
the nuclei. Similar to the 1so, state, the probability dis-
tribution of the 250, state exhibits between the nuclei a
saddle point (n,,~4X10"*). However, the relative
difference between the values of the global maxima and
the value at the saddle point is very large. This strong
decrease of the density distribution between the two nu-
clei is the reason for the purely repulsive potential-energy
curve of the 2so, state, i.e., the very low probability of
finding the electron between both nuclei does not allow
for the formation of a chemical bond. In the presence of
a magnetic field of B=1.0 the density distribution of the
corresponding 30, state, given in Fig. 2(f) for the equilib-
rium distance of 13.37, takes on a very different appear-
ance. The existence of an additional maximum located
between both nuclei is most remarkable. Remember, in
the field-free case [see Fig. 2(c)] we observe in this area a
low-lying saddle point. This newly formed maximum,
which is located at the origin, is also the global maximum
of the density distribution. The peaks of the density dis-
tribution in the absence of a magnetic field, which were
located at the positions of the nuclei, are still present and
the two outer maxima, which were smooth and widely
distributed in the field-free case, are now much more pro-
nounced and peaked. In addition we observe a strong lo-
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calization of the density distribution in the plane perpen-
dicular to the magnetic field. The enhanced density be-
tween both nuclei leads to the existence of an attractive
part in the potential-energy curve of the 3o, state. This
behavior is, within our investigation of the electronic
structure of the H," ion, generic for all second excited
states with different magnetic quantum numbers m,
whose field-free counterparts are the so-called ‘“bonding™
states. This means that not only the 2so, state but also
the 3p7, and 4d 3, electronic states in the field-free space
exhibit purely repulsive potential-energy curves [see
Table I(a)] whereas their corresponding counterparts in
the presence of a magnetic field of B=1.0, i.e., the
30,,3m,,38, states, show an attractive behavior of the
potential-energy curves [see Table I(b)], i.e., a well-
pronounced potential well. In particular the changes in
the electronic probability density distribution due to the
presence of a magnetic field are, with the exception of the
occurrence of a node line along the magnetic field axis,
for the 37,38, states similar to that observed for the
3o, state.

3. The ground states of the manifolds 4<|m| <10

After having studied the influence of the magnetic field
on the properties of the! so-called ‘“bonding” excited
states in the manifolds (Ig,’;}’lTu ,8, we will in the following
investigate the changes in the properties of the lowest
states with increasing magnetic quantum number in the
absence and presence of a magnetic field. According to
our above discussion, the density distribution of the
ground state of the H," ion exhibits in the absence of a
magnetic field a saddle point between both nuclei [see
Fig. 2(a)]. The density distributions of all other lowest
states of the manifolds m ¥ possess, due to the polynomial
structure (x+iy)/™! of the orbitals [see Eq. (A7)], a node
line along the z axis. The following features are common
to all ground states of the manifolds o,,7,,8,,6,,7,; - - -
in field-free space: The maxima of the electronic proba-
bility density occur roughly for values of the z coordinate
which correspond to the positions of the nuclei whereas
their distance from the z axis increases with increasing
absolute value of the magnetic quantum number. Be-
tween the two maxima we observe a saddle point at z=0.
However, with increasing magnetic quantum number the
electronic probability density becomes more and more
widely distributed. In particular, the values of the proba-
bility density close to the internuclear axis between the
two nuclei become very small. Since the distribution of
the probability density close to the internuclear axis be-
tween the nuclei is an indication of whether a potential
well may exist for a certain state or not, it could be ex-
pected that the potential-energy curves of the lowest
states with the quantum numbers m? in field-free space
exhibit, from a certain magnetic quantum number |m |
on, a purely repulsive behavior. And indeed, only the
electronic potential-energy curves of the above-mentioned
states with magnetic quantum numbers |m | <4 are attrac-
tive, i.e., possess a potential well while the potential-
energy curves of the ground states with magnetic quan-
tum numbers |m|>35 exhibit purely repulsive behavior,

i.e., they are unstable with respect to the dissociation
H," >H+p [28].

In the following we will investigate how the shapes of
the potential-energy curves of these so-called “bonding”
states change if we switch on a homogeneous magnetic
field. For that purpose we consider the ground states
1y g, 1, Leg, 1@y, 1k, 1A, 1, with the magnetic quan-
tum numbers 4 < ImT <10. For a field strength of 0.01 we
obtain for all of the above-mentioned states shallow wells
in their potential-energy curves. With increasing mag-
netic field strength the potential wells become more and
more pronounced and the corresponding equilibrium dis-
tances decrease rapidly. For a strong magnetic field with
a field strength of B=1.0 we obtain for all states con-
sidered dissociation energies of the order of magnitude of
1072 a.u. and equilibrium distances ranging from 6.55 for
the 1y, state (|m|=4) to 9.80 for the lu, state
(|lm]=10) (a complete list of equilibrium distances as
well as dissociation energies for the states with the mag-
netic quantum numbers 4 <|m | <10 is given for the field
strengths 0.01, 0.1, and 1.0 in Table II).

In order to understand the drastic changes of the shape
of the potential-energy curves of the considered so-called
“bonding” ground states from the field-free case to the
case of the presence of a magnetic field we representative-
ly consider the electronic probability density distribution
of the 7, state (|m|=35) in both cases. In Figs. 3(a) and
3(b) the density distribution of the 6An, state in the ab-
sence of a magnetic field and of the 17, state in the pres-
ence of a magnetic field with B =1.0 are illustrated, re-
spectively. The probability density of the 6k, state in
Fig. 3(a) is presented for an internuclear distance of 80.0.
The maxima (n,,, ~3X107%) of the density distribution
occur for values of the z coordinate which correspond to
the positions of the nuclei and are located roughly 30 a.u.
away from the z axis. The saddle point of the density
(neuq=~T7X1077) occurs at z=0 and has a distance of
roughly 40.0 a.u. from the internuclear axis. The purely
repulsive behavior of the electronic potential curve for
the 6k 7, state in the field-free case has, as we mentioned
above, its origin in the low and widely distributed proba-
bility density. In the presence of a magnetic field the
structure of the probability distribution of the 17, state,
illustrated in Fig. 3(b) for the equilibrium distance 7.22, is
completely different from that of the 6A7, state in field-
free space. The maxima of the density occur close to the
internuclear axis at approximately x ==+3 and at z=0.
In the region defined by —1.0<z =<1.0 and x ==+3 the
density shows, starting from its maximal value at z=0,
only a very minor decrease. Apart from the decrease of
the overall size of the molecule we also observe that the
density is very much peaked in the direction of the x axis,
which corresponds to the direction perpendicular to the
magnetic field. The enhanced probability of finding the
electron in the region close to the internuclear axis for z
values between both nuclei leads, compared to the field-
free situation, to a more complete screening of the nu-
clear charges and allows consequently for the formation
of the observed well-pronounced potential well.

The above-discussed influence of a strong magnetic



field on the ground state of the 7, manifold is representa-
tive for all magnetically dressed ground states considered
in the present paper (see Table II), i.e., the changes of the
properties of the potential-energy curves as well as the
changes of the corresponding probability density distri-
butions of the ground states of the y,, .. .,u, manifolds
from field-free space to the presence of a magnetic field
are analogous to those of the above-described 7, ground-
state.

4. Existence of vibrational levels

So far we have investigated the properties of a large
number of the so-called “bonding” adiabatic electronic
states of the H," ion in the presence of a strong magnetic
field. We, thereby, have shown that the adiabatic
potential-energy curves of all magnetically dressed
“bonding” states considered exhibit well-pronounced po-
tential wells for a field strength of B=1.0, in particular
also those whose corresponding counterparts exhibit in
field-free space a purely repulsive behavior. However,
the existence of a potential well in the adiabatic
potential-energy curves is a necessary but not sufficient
condition for the formation of a stable molecular bond.
In order to find out whether a certain magnetically
dressed “bonding” state of the H," ion is stable with
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respect to dissociation H,™ —H+p, we have to ensure
the existence of vibrational states in the corresponding
potential wells. To this end we approximate the potential
wells by a harmonic potential and estimate the ground-
state energy of the nuclear motion in this harmonic po-
tential well under the influence of the external magnetic
field. In a rough approximation an upper limit of the vi-
brational ground-state energy is then given by the sum
of the ground-state energy in the harmonic potential
and the corresponding zero-point cyclotron energy. The
zero-point  cyclotron energy is  approximately
7.4X107* for B=1.0. For the considered electronic
ground states of the manifolds Ogs-- My for B=1.0
we obtain harmonic potential energies of the order
of magnitude of 1073. For the excited magnetically
dressed states of the manifolds o, ..., Y¢» 1€, the
204,30,,40,,2m,,...,2y, states, we obtain harmonic
ground-state energies ranging from 1073 to 10™% The
estimated vibrational ground-state energies for each adia-
batic electronic potential-energy curve of the considered
“bonding” states of the manifolds o, . .. Mg are there-
fore much smaller than the depth of the corresponding
wells. Hence many vibrational states can exist in these
wells, i.e., the so-called “bonding” states of the H,™ ion
in a strong magnetic field B =1.0 are, within the adiabat-
ic picture, stable.

TABLE II. The equilibrium internuclear distances R.,, the electronic energy at the equilibrium dis-

tance e7(R.q), and the dissociation energies €, of the bonding 7,7, . . ., u states (m=—4, ..., —10) in
the presence of a magnetic field with B=0.01,0.1,1.0.
Magnetic
quantum
State number R €1 €p
B=0.01
ly, —4 40.4 —0.037952 2.828X 1074
11, -5 49.5 —0.032 369 1.796 X 1074
le, —6 574 —0.028 757 1.318x107*
1, -7 64.1 —0.026 167 0.963x107*
1k, —8 70.3 —0.024 203 0.766 X104
1A, -9 75.9 —0.022 643 0.653X107*
lug —10 81.1 —0.031259 0.529x107*
B=0.10
1y, —4 17.59 —0.100359 3.548X1073
1n, -5 19.66 —0.089757 2.423X1073
1e, -6 21.51 —0.082018 2.018X1073
1, -7 23.21 —0.076 035 1.679X 1073
1k, —8 25.22 —0.071227 1.599x107?
1A, -9 26.81 —0.067 248 1.472X 1073
1u, —10 28.26 —0.063 883 1.372x1073
B=1.00
ly, —4 6.55 —0.28995 2.376 X102
17, -5 7.22 —0.26250 2.031X 1072
L, —6 7.82 —0.24197 1.800X 1072
1p, -7 8.35 —0.22558 1.611X 1072
1k, —8 8.86 —0.21245 1.480X 1072
1A, -9 9.35 —0.201 32 1.362X 1072
1, —10 9.80 —0.19182 1.266X 1072
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FIG. 3. (a) The electronic probability density distribution of
the 6A 1, state in the absence of a magnetic field and for an in-
ternuclear distance of 80. (b) The electronic probability density
distribution of the corresponding magnetically dressed 17, state
at R, =7.22.

5. Estimation of the center of mass motion effects

The above-discussed effects of a magnetic field on the
electronic structure of the H," ion are based on the as-
sumption of infinitely heavy nuclei, i.e., the applicability
of the fixed-nuclei electronic Hamiltonian. However, as
already discussed in Sec. II the center of mass motion of
the H," ion couples to the electronic degrees of freedom
if a magnetic field is present. In order to ensure that our
fixed-nuclei approach is valid for the magnetically
dressed states investigated we have to estimate the cou-
pling of the center of mass motion of the H," ion to the
corresponding electronic states. In Sec. II the relevant
quantity « [see Eq. (3)], which gives us the strength of the
coupling of the center of mass and the electronic motion,
has been introduced. Remember, if x¥ is much smaller
than unity the coupling between different states of the
collective and electronic motion is negligible.

We have calculated the values of k according to Eq. (3)
for all considered “bonding” states at their equilibrium
distances and for the lowest Landau states with the quan-
tum numbers N <2, |u| <2 as well as for several magnet-
ic field strengths, i.e., B=0.01, 0.1, and 1.0. For magnet-
ic field strengths less than B =1.0 the calculated values of
k are less than 107%, i.e., much smaller than one. This
means that the influence of the coupling between the col-
lective and electronic motion on the considered ‘“bond-
ing” states in a magnetic field with a field strength less
than or equal to 0.1 is negligible. In the case of a magnet-
ic field with B =1.0 we obtained values of k ranging from
10~ * to 10~ 2. The cases for which « is less than or of the
order of magnitude of 1073 occur for all considered
molecular electronic states of the manifolds og,...,7,
and for Landau states with the quantum numbers N <2,
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|| 2. The influence of the coupling between the center
of mass and electronic motion is therefore also negligible
for these states. With increasing degree of excitation of
the molecular electronic states, i.e., increasing magnetic
quantum number |m| and/or increasing label n, and/or
increasing degree of excitation of the Landau states, the
values of k increase rapidly (see Table III, which contains
an extraction of our calculated values of « for the elec-
tronic states li,, ..., l‘ug and for a field strength of
B =1.0). For example, for the coupling between the Lan-
dau states N=2,u=2 and N'=2,u'=1 and the molecu-
lar electronic states 1A, and 1u, the values of k are ap-
proximately 2.3 X 10“2 Values of k of the order of mag-
nitude of 1072 indicate that corrections due to the cou-
pling of the collective and electronic degrees of freedom
become important. From our calculation of the parame-
ter k we therefore conclude that the coupling of the col-
lective and electronic motion starts to become relevant at
a field strength of B=1.0 for the “bonding” molecular
states with |m|>9 and already for low-lying Landau or-
bitals of the center of mass motion. For the majority of
the magnetically dressed ‘‘bonding” states considered,
ie., for the states with magnetic quantum numbers
|m| <8, the mixing of the wave functions due to the cou-

TABLE III. The calculated values of « (see text) are given for
the Landau states N <2, |u| <2 and the electronic ground states
of the manifolds with the magnetic quantum numbers

m=—4, ..., —10 and for a magnetic field strength B=1.0.
Landau quantum Electronic
numbers states Parameter

Nu N'y' nm? nm'? K

00 01 ly, 1n, 3.078 X107
01 02 6.156 X107
11 12 9.234Xx107*
21 22 1.231x1073
00 01 17, leg 9.466X 1074
01 02 1.893%x 1073
11 12 2.839x107°
21 22 3.786x 1073
00 01 1o, 1, 2.824X1073
01 02 5.648 X 1073
11 12 9.045x 1073
21 22 1.129X 1072
00 01 lgp, 1k, 1.085x 1074
01 02 2.171X107*
11 12 3.528X107*
21 22 4.341x107*
00 01 1k, 1A, 4.518X1073
01 02 9.037X1073
11 12 1.492X 1072
21 22 1.807x 1072
00 01 1A, lu, 5.624X1073
01 02 1.124X1072
11 12 1.888X 1072
21 22 2.249X 1072




pling is negligible for the lowest Landau levels with
N =2,u=2. These Landau levels of the center of mass
motion correspond to a temperature of the order of mag-
nitude of 100 K. It is, of course, also possible to obtain
for the low-lying electronic states a strong interaction be-
tween the electronic and center of mass motion by fur-
ther increasing the quantum numbers N and/or u, i.e., by
choosing highly excited Landau levels of the center of
mass motion of the ion, and/or by further increasing the
field strength.

B. The magnetically dressed antibonding states

Let us now consider the influence of a strong magnetic
field on the so-called “antibonding” states. In the sense
of the above-discussed correlation (see Sec. IV) between
the molecular states of the H,™ ion in the field-free space
and those in the presence of a magnetic field, we again
compare the lowest three states of each considered ‘“‘anti-
bonding” manifold in the absence of a magnetic field, i.e.,
the states 2pau,4fou,3pag,3d77g, ..., with their corre-
sponding counterparts lo,,20,,30,, 177'g, ... in the
presence of a magnetic field. In field-free space the
potential-energy curves of the ground states of the “anti-
bonding” manifolds with the magnetic quantum numbers
Im|=0,...,10, ie., the 2po,,3dm,, ..., 12np, states,
exhibit a purely repulsive behavior [see Table IV(a)]. In
previous investigations (see Refs. [17,18] and [27,28]) it
was shown that the potential-energy curves of the corre-
sponding magnetically dressed counterparts, i.e.,
1ou,17rg, ..., lu, states, show above some critical field
strength shallow minima. For a field strength of B=1.0
the depth of the shallow potential wells of these ‘“‘anti-
bonding” ground states ranges from 5.4X10™* a.u. for
the 1o, state to 3X107° for the 1y, state [see Table
IV(b)]. All these energies are smaller than the cyclotron
energy of the nuclear relative motion and therefore these
“antibonding” ground states are supposed to be unbound.
The potential-energy curves of the first excited states of
the manifolds Oy»Tgs - - -7, exhibit also in the absence
of a magnetic field potential-energy wells. The depths of
these potential wells are of the order of magnitude of
1073 [see Table IV(a) for a complete list of the dissocia-
tion energies and equilibrium distances of these ‘‘anti-
bonding” states of the H," ion in field-free space]. If we
switch on a magnetic field B =1.0 we obtain for the cor-
responding magnetically dressed states an overall de-
crease of the equilibrium distances and a decrease of the
dissociation energies for the 20 ,,27,,28, states while the
dissociation energies of the 2¢, and 2y, states increase.
For example, the 4f o, state in the field-free space has an
equilibrium distance of 21.0 and a dissociation energy of
5.40X 1073, For the corresponding counterpart in the
presence of a magnetic field B=1.0 we obtain a dissocia-
tion energy of 1.94 X 10~ % and an equilibrium distance of
16.5 [see Table IV(b) for a complete list of the calculated
dissociation energies and equilibrium distances of the
“antibonding” states of the H," ion in a magnetic field
B=1.0]. The depths of the potential wells of the energy
curves of these magnetically dressed first excited states
are of the order of magnitude of 107 3.
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The potential-energy curves of the second excited mag-
netically dressed states, i.e., the 3au,377g,38u states, also
exhibit potential wells. The depths of these wells are of
the same order of magnitude as those of the first excited
states. The potential-energy curves of their correspond-
ing field-free counterparts, i.e., the 3po,,4dw,,5f8,

TABLE IV. The equilibrium internuclear distances R, the
electronic energy at the equilibrium distance £,(R.,), and the
dissociation energies €, of the antibonding o,,...,u states
(m=0,...,—10) (a) in the absence of a magnetic field and (b)
in the presence of a magnetic field B=1.0.

State Ry er(Rg) €p
(a)

2pa, purely repulsive
4fo, 21.0 —1.304X 107! 5.40x 1073
3po, purely repulsive
6ho, 41.5 —6.056X 1072 5.00x1073
3dm, purely repulsive

5gm, 35.5 —5.822X1072 2.66X 1073
4dm, purely repulsive

Tim, 60.0 —3.418X1072 2.93X1073
418, purely repulsive

6hs, 54.0 —3.269X1072 1.44%1073
56, purely repulsive

8j8, 83.0 —2.183X 1072 1.83%X1073
58, purely repulsive

Tid, 76.0 —2.083X 1072 8.30X107*
6hy, purely repulsive

8jY. 104.0 —1.436X1072 4.80x107*

(b)

lo, 9.6 —8.300x 107! 5.40X 1074
20, 16.5 —2.618X107! 1.94X1073
3o, 24.0 —1.619X 107! 1.64X 1073
40, 35.0 —9.257X 1072 2.39X1073
lm, 13.5 —4.567X107! 2.21X107*
2, 19.5 —2.082X 107! 1.62X 1073
3m, 28.0 —1.272X 107! 1.69x1073
4, 39.4 —8.128X 1072 1.94X 1073
18, 16.0 —3.532x107! 1.79x107*
28, 21.5 —1.815X 107! 1.50x 1073
35, 30.5 -1.132x107! 1.69%1073
43,

14, 18.0 —3.001x107! 1.46X107*
2¢, 23.0 —1.644X107! 1.42Xx1073
1y, 19.5 —2.663%107! 1.17x107*
2 24.0 —1.522X107! 1.35%x1073
17, 20.5 —2.423%107! 0.90x107*
I, 22.0 —2.240X 107! 0.80X107*
1p, 23.0 —2.095X 107! 0.60x10~*
1k, 24.5 —~1.977x107! 0.50x107*
1A, 23.0 —1.878x107! 0.13x107*
1, 26.0 —1.792x107! 0.03x10~*
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states, show a purely repulsive behavior. All dissociation
energies of these excited magnetically dressed “antibond-
ing” states for a field strength B=1.0 are roughly two
times larger than the cyclotron energy of the nuclear
motion. By our simple estimation of the vibrational
ground-state energy in the presence of a magnetic field it
is therefore not possible to decide whether vibrational
states do exist in the potential wells of the above-
discussed excited magnetically dressed ‘‘antibonding”
states. A more accurate determination of the vibrational
levels which goes beyond the harmonic approximation of
the well would be necessary in order to decide on the sta-
bility of the excited magnetically dressed “‘antibonding”
states for B=1.0. In addition, we want to mention that
the overall accuracy of the dissociation energies of the
“bonding” states is roughly 0.19% whereas the typical ac-
curacy of the corresponding values of the “antibonding”
states is of the order of magnitude of 1%.

C. Remarks on nonparallel configurations

In the present paper we have investigated a large num-
ber of electronic states of the H,* ion in a homogeneous
magnetic field for the case of parallel internuclear and
magnetic field axes. The symmetries for this parallel
configuration are, as we mentioned in Sec. II, parity and
the rotational invariance around the internuclear axis.
However, for the general case 0°<© <90° the only
remaining symmetry is parity. Therefore the crossings of
the potential-energy curves of the electronic states with
different magnetic quantum numbers but the same parity
in the parallel configuration turn into avoided crossings if
the internuclear axis is inclined with respect to the mag-
netic field axis. In Fig. 4 we have illustrated the above-
described situation for the potential-energy curves of the
eight lowest states of the H,* ion in a magnetic field of
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B=1.0 with gerade parity. The case ©=0° is shown in
Fig. 4(a). Apart from the well-known crossing of the
potential-energy curves of the 17, and 15, states [16] the
number of crossings increases rapidly with increasing de-
gree of excitation of the molecular electronic states. In
Fig. 4(b) the potential-energy curves of the corresponding
electronic states are illustrated for an angle ©=5°. The
potential-energy curves of the 2, and 3, states are now
well separated, i.e., we obtain a strong repulsion of the
17,-18, states if we change the configuration from o=0
to a small nonvanishing angle ©. In contrast to this the
avoided crossing of the 4, and 5, states at approximately
10.25, which evolves from the crossing of the 20, and
1¢, states at © =0, is very narrow. However, a detailed
study of the full potential-energy surfaces of the excited
states of the H," ion in a strong magnetic field goes
beyond the scope of the present paper and will be the task
of future investigations.

Finally, a remark on the numerical effort of our calcu-
lations is appropriate. A rather large number of opti-
mized atomic orbital basis functions was necessary to ob-
tain the above results: The typical number of basis func-
tions we used was roughly 200. By using a Silicon
Graphics Indigo R4000 workstation the average CPU
time to get one point, i.e., for one internuclear distance
R, was between 2 and 6 h (depending on the number of
basis functions and the quantum numbers of the con-
sidered subspace). The total CPU time of our investiga-
tion therefore amounts to one and a half years on the
above computer.

VI. BRIEF SUMMARY

We have studied a large number of excited magnetical-
ly dressed states of the H, " ion for parallel internuclear
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and magnetic field axes. The key ingredient for our ex-
tensive numerical calculations of the molecular electronic
states and potential-energy curves in the fixed-nuclei ap-
proximation was a recently established and optimized
basis set of generalized atomic orbitals. In order to un-
derstand the influence of the magnetic field on the chemi-
cal bond of excited molecular states we performed a de-
tailed comparison of the electronic probability distribu-
tions and potential-energy curves in field-free space with
those in the presence of the external field. First we inves-
tigated the so-called “bonding” states. In the absence of
a magnetic field the potential-energy curves of the second
excited states of the manifolds o,,7,,8, as well as the
ground states of the manifolds 7,,, . . ., 1, exhibit a pure-
ly repulsive behavior. If we switch on a typical strong
field of B=1.0 a.u. all potential-energy curves of the con-
sidered “bonding” states and, in particular, the second
excited states of the manifolds o,,7,,8, as well as the
ground states of the manifolds 7,,...,u, exhibit well-
pronounced potential wells. The reason for the drastic
changes in the latter potential-energy curves in the pres-
ence of a magnetic field is, apart from the overall
enhancement of the absolute values of the electronic den-
sity in the plane perpendicular to the magnetic field axis,
the appearance of a global maximum of the probability
density on or close to the internuclear axis and between
both nuclei. These density maxima do not occur in the
field-free case. By a harmonic approximation of the wells
we could show that in all cases considered the vibrational
ground-state energy is much smaller than the depth of
the corresponding well and therefore many vibrational
states exist in these wells.

Since the above-discussed effects of the H," ion are
based on the fixed-nuclei approximation we have to esti-
mate whether the corrections beyond this approximation,
i.e., the coupling between the collective and electronic
motion of the H2+ ion and the mass corrections, are
small. We showed that the quantity «, which is a mea-
sure for the strength of the coupling for the lowest Lan-
dau levels of the center of mass motion is much smaller
than unity. Exceptions are the electronic 1A, and 1u,
states for which « is of the order of magnitude of a few
times 1072, i.e., for these states the coupling to the center
of mass is no longer a tiny correction and increases rapid-
ly with increasing excitation of the Landau levels.

The main result of our investigation of the so-called
“bonding” states is therefore the fact that all considered
states of the manifolds Og, - --,K, and, in particular, also
those whose corresponding counterparts are unbound in
the absence of a magnetic field, become stable with
respect to dissociation H, " —H+p through the presence
of a strong field.

In contrast to the potential-energy curves of the bond-
ing states the potential-energy curves of the so-called an-
tibonding states of the manifolds o, ...,u, exhibit in
the presence of a strong field B =1.0 only shallow mini-
ma. The depths of the potential wells of the ground
states of the considered manifolds are in each case small-
er than the corresponding zero-point cyclotron energy of
the nuclear motion. Hence these magnetically dressed
states are physically unbound. The depth of the con-
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sidered excited states of the manifolds o,,...,y, are
roughly two times larger than the corresponding zero-
point cyclotron energy of the nuclear motion. Within a
simple approximation of the potential wells by a harmon-
ic potential and an estimation of the vibrational ground-
state energy in this harmonic potential under the
influence of the external magnetic field it is not possible
to decide whether vibrational states can exist in the po-
tential wells of the excited antibonding states considered.

Finally we showed the existence of a large number of
crossings for the potential-energy curves for ©=0° which
turn into avoided crossings if the internuclear axis is in-
clined with respect to the magnetic field axis. This fact
indicates the complexity of the topology of the full elec-
tronic potential surfaces e=¢e(R,0) which becomes par-
ticularly relevant for higher excited states. An investiga-
tion of the topology of the potential surfaces of the excit-
ed states in a magnetic field is a challenging task from
both the numerical as well as the physical point of view
and is left to future investigations.
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APPENDIX

In order to describe the construction of our molecular
orbitals with the optimized basis functions given in Ref.
[27], some preliminary remarks concerning these opti-
mized atomic orbitals are necessary.

For vanishing pseudomomentum which implies a con-
stant angular momentum L, the dynamics of the hydro-
gen atom in a strong homogeneous magnetic field de-
pends only on the transversal coordinate p=(x2+y?)!/?
and the z coordinate parallel to the magnetic field. For
this reason the atomic orbitals which were used to per-
form the optimization are given in cylindrical coordinates
and contain only two variational parameters, a and f3.
They take on the following appearance:

Q7" (p,z,0,0)=p" Vz'exp( —ap>—Bz?)

Xexp{im,p} , (AD

where m, and P,=(— )"*(—)" denote the magnetic
quantum number and parity of the atom, respectively. s
and ¢ are positive integers and characterize the type of
atomic orbitals in a given subspace m,“.

Since we use Cartesian atomic orbitals for the con-
struction of our molecular orbitals, we have to transform
the atomic orbitals (A1) into the corresponding Cartesian
basis functions. This follows via the simple identity
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Iyl

+2 . Im ‘
p"e Texplimp}=3 3 | *
g T

o

d
T
Im, | —o+2s—7)

Xx
X(i+)oyot2r (A2)

Hence we obtain by the transformation (A2), in general, a
set of Cartesian atomic orbitals characterized by the in-
dex i with the same variational parameters a and S but
different triads n,,,; =(n/;,n; 7, n7):

P UT 0?‘ a:r
0,7 (r)=x"y"iz"
oT,1

Xexp{—a;(x*+y?)—B;z%} , (A3)

with

0T =

nli=Im,|—o+2(s—1),

OT —
n,=o+2r,

nyi=t .

The Cartesian atomic orbitals are still eigenfunctions to

: ) nCT+nOT+n07

the atomic parity operator P,=(—)*' »' "3/ but ob-

viously not to the atomic angular momentum operator
L,

For the case of the H, " ion in a homogeneous magnet-

ic field with parallel internuclear and magnetic field axes

the atomic orbitals (A3), centered at the positions of the

|m| k
q);tm P(r’gi’R)zzz ['rl:l| [5 (ii)‘uq):‘w’i(r,gi’R
nov
Im| &
=22
PR

[|m| [’; ](ii)u[%w(r,g,-,R /2)+PP'$, (r.a;,—R/2)],
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nuclei, read in the molecular coordinate system, which
has its origin in the center of mass of nuclei, as follows:

oT oT oT
Mi nz,i

6. (r,a;,+R/2)=x"1y""(z TR /2)
Xexp{ —a;(x*+y?)

—Bi(zFR/2)?}, (A4)

where R is the internuclear distance.
The molecular orbitals ¢  which are eigenfunctions
oT,1

of the molecular parity operator P can be constructed
from the functions (A4) by defining

o (ra,R)=¢, (r,a,R/2)

+PPa¢nmi(r,g,-,—R /2) . (AS)
Molecular orbitals which are also eigenfunctions to the z
component L, of the molecular angular momentum
operator can be obtained by linear combination of the
molecular orbitals (A5) belonging to a set i. For a given
molecular magnetic quantum number m, the components
nyi and ny; of the triad n,,; have to satisfy the condi-
tion

|m| +2k=nl7+nJ7,

oT,i

(A6)

where k is a positive integer. Analogous to the “atomic”
equation (A2) we may construct the molecular eigenfunc-
tions of the operator L, by combining

(A7)

where u,v are the molecular summation indices (they are, in general, not equal to the atomic indices o,7). Each ele-
ment of the calculated Hamiltonian matrix is the expectation value of the fixed-nuclei Hamiltonian (2) with respect to a

molecular orbital of the form (A7).
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