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Resonances of the hydrogen atom in strong parallel magnetic and electric fields

Jianguo Rao
Laboratory ofMagnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics,

The Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China

Baiwen Li
China Center ofAdvanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing, People's Republic of China

and Wuhan Institute ofPhysics, The Chinese Academy ofSciences, Wuhan 430071, People's Republic of China

(Received 24 June 1994; revised manuscript received 13 January 1995)

The behavior of the rsonances of a hydrogen atom in parallel magnetic and electric fields is obtained

with a complex scaling plus B-spline method. The resonant parameters E and I o in an electric field

alone are consistent with those obtained by other methods. In a fixed electric field F the widths I of
both the ground and excited resonances decrease with an increase of the magnetic field B, and the rela-

tive variation (r —ro)/I o is directly proportional to the ratio of the magnetic-field strength to the
electric-field strength. The positions of the resonances, however, are pushed higher by an increasing of
magnetic field. The pushing effect is insensitive to the electric-field strength and depends almost entirely

on the magnetic-field strength.

PACS number(s): 32.60.+ i, 32.70.Jz, 31.15.Ar

I. INTRODUCTION

Up until now, most of the studies of atoms in parallel
magnetic and electric fields are constrained to the domain
where the strengths of the fields is so weak that field-
ionization effects can be ignored completely. The states
can be treated as stable ones. This allows the application
of such methods as the semiclassical perturbative treat-
ment [1,2] and group theoretical approach [3] which take
advantage of the existence of an approximate constant of
motion. When the fields are very strong, the field-
ionization effect cannot be ignored. It shifts and
broadens the bound-state atomic levels and the energy ei-
genvalues may be expressed as E,=E„,—(i/2)t, where

E„,determines the center of a band into which the level
in the parallel magnetic and electric field evolves and I is
the level width defining the ionization probability of the
atom. The field effects drastically increase upon going
from one excited level to another. For the field-
ionization region, up until now, most of the studies are
concerned with the cases of a pure magnetic and a pure
electric field.

For the pure electric field, quite different calculation
procedures are used to get the properties of resonant
states. For example the WKB method [4—6], the Borel
summation of the Rayleigh-Schrodinger perturbation
series [6—7), the finite basis expansion method [8—11],
and the consistent uniform quantum-mechanical ap-
proach [12]. For hydrogen atoms in pure magnetic fields,
the properties of resonant states were calculated by the
complex scaling, the R matrix, and other methods
[13—15].

Johnson, Scheibner, and Farrelley [16] studied the
ground-state hydrogen atom in parallel electric and mag-
netic fields by both a large-order perturbation theory and
complex scaling based on the method introduced by

Reinhardt [17] and Chu [18]. They found that the effect
of a sizable magnetic field (p) 0.05) is to decrease the
width of the ground state but they did not study the effect
of a magnetic field on the excited states of a hydrogen
atom in parallel electric and magnetic fields.

In this paper, we present our numerical studies on the
evolution of both ground and excited resonances of a hy-
drogen atom in parallel magnetic and electric fields by a
complex scaling plus B-spline method. Our main purpose
is to find how the magnetic field modifies the behavior of
the resonances in the electric field, especially for the ex-
cited states.

II.THEORY AND METHOD

The Harniltonian for a hydrogen atom subjected to
electric and magnetic fields both parallel to the z direc-
tion is (in atomic units)

H= —
—,'p ——+pL, + ,'p p +fz, —1

where P=B/B„B,=4.7X10 T, f=F/F„F,
=5.14X10 V/cm '. The nucleus is taken to be dimen-
sionless, of infinite mass and relativistic effects are com-
pletely neglected; L, denotes oz projection of the orbital
momentum L and p the projection of the position vector
r onto the plane z =0. The total Hamiltonian cornrnutes
with L„' therefore, in a subspace with a given m, the
paramagnetic term, which introduces only a global ener-

gy shift pm, can be disregarded. There exists only one
good quantum number m, and the problem is two dimen-
sional and nonseparable.

The complex scaling method has been widely used for
resonances in various atomic and molecular structures
and processes [19]. Reinhardt [17] diagonalized the com-
plex scaled Stark Hamiltonian of hydrogen with a real L
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basis set and obtained complex eigen values E„
=-E„,—(i/2)I . Such a method of directly diagonalizing
the complex scaled Hamiltonian with a real L basis set
is referred by the author as a direct approach of complex
scaling. In contrast to other methods, the direct ap-
proach described above needs no explicit consideration of
boundary conditions, and with the use of the L basis the
boundary condition of square integrability is preserved.

Based on the successful use of the 8-spline basis in the
hydrogenic Zeeman system [20,21], we have combined
the two techniques in an effort to give accurate resonant
parameters of the ground and lower excited states of the
Stark system over a wide range of electric-field strengths
[22]. Now, this method is extended to the calculation of
the behavior of resonances of a hydrogen atom in parallel
magnetic and electric fields.

A full description of 8-spline functions can be found
in, e.g. , Ref. [23]. Given a knot sequence on the r axis
[r, &r2 ~ . ~r~ ~ . ~r~+„], B-spline functions of
order k, B, i, is defined. The B; k (i =1,2, . . . ) are piece-
wise polynomials of order k —1 localized within

[&i,r&+k ], while B, k is nonvanishing within tr, r;+k ].
The behavior of 8-spline functions can be readily adjust-
ed with the knot sequence, viz. , the choice of knot point
r;, order k and number of 8 splines X, which offer a
means to optimize the B splines as a basis set to expand
the wave functions of one or several states concerned.
With such a 8-spline basis set, the radial dimension of a
field-dressed wave function of a certain state 4 can be ex-
panded as

levels in a pure magnetic field to determine the
magnetic-field range in which the accuracy can be main-
tained. After that, we calculate the ground resonance in
parallel magnetic and electric fields in the field range
determined by the above procedure. For the n = 10
states, the knot sequence is readjusted, using the same
procedure as described above.

III. RESULTS AND DISCUSSIQNS

In the calculations for the ground and the n =2 excited
resonances, we employ the same knot sequence and hence
the same 8-spline basis, with I, =12, N=38. The field
range is chosen as 0.03 ~f ~ 0.2, 0.0 P

» 0.05 for
ground resonance (parabolic number n = 1, m =0, n, =0,
n2=0) and 0.005~f ~0.02 0.0 P~0.01 for n =2 reso-
nances. For n =10 resonance we employ another knot
sequence with l „=24,%=58, the field range is chosen
as 2X10 ~f ~4.5X10 O. O~P~1X10 . Results
are tabulated in Table I, where results of a pure electric
field of some other authors are listed for comparison.
With such a basis set, 0 trajectories are very stationary,
and an accurate complex energy at the stationary point
can be obtained.

max1

Ri Y( (2)

(for fixed m and a truncation at I =l,„),where Ri(r) is

Ri(r)=QB, k(r)C, i . (3)

The Schrodinger equation reads

(4)

-0.3

where 8 is the overlap matrix of the nonorthogonal 8-
spline basis. After complex scaling r —+re', we get an
non-Hermitian complex Hamiltonian and a complex
Schrodinger equation in matrix notation. The solution of
the complex equation yields the complex eigenvalues
from which the resonant energy of our interests can be
singled out for its distinct imaginary part that is related
with the resonant width.

Given the number of B-spline functions X (viz. , the size
for basis set) and the order k, our knot sequence is so
determined that the 8-spline basis defined on the knot se-
quence can best represent the zero-field behavior of the
resonant state concerned, in particular the accurate
zero-field energy —1/2n . For example with 1V=38,
k=7, we adjust the knot sequence so that the 8-spline
basis for the Stark shifted and the broadened ground
state gives zero-field energy of —

—,'+ 1 X 10 ' a.u. With
this basis set, the solution of Eq. (4) can give accurate
ground resonance up to the high field range of f=2.0
a.u. , then we use the same basis to calculate the energy
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FIG. 1. The evolution of the [(1 —I o)/I o] of ground reso-
nance of a hydrogen atom with the magnetic-field strength over
the electric-field strength.



4528 JIANCiUO RAO AND BAIWEN LI

TABLE I. The evolution of the E„,and I /2 for the ground and excited states of a hydrogen atom in
parallel magnetic and electric fields. Square brackets denote powers of 10.

State

n& =O, n2=0

Quantity

Eres—Eres

P=0.0

f=0.04
0.503 771 591 013 5
0.503 771 591 00'

0.194 635 00[ —5]

0.194635 [ —5]'

P= 10

0.503 770 551 370

0.194 566 5[ —5]

P=5 X 10

0.501 206 356 2

0.895 759[—6]

n& =O, n&=0 —Eres

Eresr
2r
2

f=0.08
0.517 560 616 888
0.517 560 61700'

0.226982 875 [ —2]

0.226982 877 [—2]

0.517 559 457 175

0.226 968 039 9[—2]

0.514 690 932 2

0.193 358 900[ —2]

n& =O, n2=0
r
2

res

f=0.2
0.570 124 88

0.606 145 5[—1]

0.570 124 056 29

0.606 140 917 [—1]

0.568 045 897 6

0.594 814 638[—1]

State Quantity P=O. O P= 10

n] =O, n2=1

n] =O, n2=0

—Eres

res
I
2r
2
Eres

resr
2

2

f=0.005
1.426 186076[ —1]
1.426 18608[—1]
5.297 223 174[ —5]

5.297 223 2[ —5]
1.120 619 240[ —1]
1.12061924[ —1]
2.864 684 06[ —6]

2.864 684[ —6]

1.426079 644[ —1]

5.275 310 116[—5]

1.120 506 749[ —1]

2.820 209 896[—6]

1.415 817 9[—1]

3.622 265 9[—5]

1.109 587 2[ —1]

6.378 5134[—7]

n& =O, n2=1

n, =1,n, =O

Eres

res
1

2
I
2

res—Eres

f=0.02
2.066 822 362[ —1]
2.066 822 37[—1]
3.039 285 5[ —2]

3.039 285 60[—2]
8.898 376 54[ —2]
8.998 378 55[—2]
1.544 575 74[ —2]

1.544 575 80[ —2]

2.066 751 798 6[ —1]

3.038 943 263 4[ —2]

8.897 53S 6149[—2]

1.543 879 718 0[—2]

2.059 766 24[ —1]

3.005 607 7[ —2]

8.815 250 7[ —2]

1.476 797 8[ —2]

State

n& =O, nz=9

n) =1,n2=8

Quantity

Eres—Eres

res

P=O. O

f=1.4X10
7.212 084 47[ —3]
7.212084 5[ —3]'
4.007021 6[ —5]

4.007 021 6[ —5]'
6.780 036 12[—3]

P=10-'

7.211 916 89[—3]

4.004 574 1[—5]

6.779 577 06[—3]

P=10

7.195 855 76[ —3]

3.784 6110[—5 ]

6.735 493 46[ —3]
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State

n) =2,n~=7

Quantity

r
2
Eres
1

2

P=O. O

2.478 737 3[—5]

6.343 873 45[ —3]
1.314 668 7[ —5]

P=10-'

2.473 255 0[—5]

6.343 187 14[—3]
1.308 672 5[ —5]

P=10-'

1.999453 1[—5]
6.277 299 16[—3]
8.286 835 [ —6]

nI =O, n~=9

n& =1,nz=8

n) =2, n2

'Reference [8].
Reference [11].

'Reference [10].

Eres
Eresr
2r
2
Eres
I
2

resr
2

f=2.2X10
8.660 579 4[ —3]
8.660 578[—3 ]'
5.329 9197[ —4]

5.329 92[ —4]'

8.028 665 96[—3 ]
4.674 810 1[—4]
7.383 11066[ —3]
3.977 618 8[ —4]

8.660451 1[—3]

5.329 394 0[—4]

8.028 308 3[—3]
4.673 283 1[—4]
7.382 558 6[ —3]
3.975 185 5[ —4]

8.647 923 8[ —3]

5.279 798[—4]

7.993 273 5[ —3]
4.528 659[—4]

7.328 252 3[—3]
3.744 03 1 [—4]

From Table I, for the pure electric field, we see that
over the tabulated field range our results agree well with
the most accurate ones by Benassi and Grecchi [8j. This
means that our method is reliable and accurate at least
over the range concerned. It shows that in the region
considered for the ground resonance, the increase of the
magnetic-field strength reduces the width of the reso-
nance. The stronger the magnetic field is, the more stable
t e ground state. This confirms the results by Johnson,

cheibner, and Farrelly [16j. They show that the effect of
sizable magnetic fields (p~ 0.05) is to decrease the width
of the ground resonance of a hydrogen atom in parallel
e ectric and magnetic fields. Our results show that the
effect of a magnetic field that is not as strong as in Ref.
[16j, for instance, p=0.001, is also to decrease the width.
Johnson et al. only gave very few figures for the position
of the ground resonance of a hydrogen atom and did not
give the width of resonance in figures; besides, their re-
sults are not very accurate even for the pure electric field.
For example, at f=0.1, p=0, they gave F„,= —0.5396,
but the accurate result is —0.5274.

The factor a=(l —I c)/I o can be used to indicate the
relative effects of a magnetic field on the width of reso-
nance of an atom in parallel electric and magnetic fields
here I c is the width of resonance free of magnetic field,

and I is the width of the same resonance in the same
electric field and a magnetic field added in). Figure 1

s ows that the relative effect of the magnetic field on the
width of resonance depends approximately on the factor
p f (the relative intensity of the magnetic field with
respect to the electric one). The bigger the factor is, the
greater the relative effects. From Fig. 2, we can see that

-0.5 f 0.03
f O.O4

-0.51

-0.52
O.i

-0.53
C$

I
-0.54

-0.55

-0.56

-0.57
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0 0.0005 0.001 0.0015 0.002 0.0025

FIG. 2. The evolution of energy level of ground resonance of
y rogen atom with the square of the magnetic field.
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at a fixed electric-field strength, the magnetic field pushes
the energy level up. The lines used to describe the evolu-
tion of E„,with P in Fig. 2 are almost parallel. This im-
plies that, unlike the effect on the width, the pushing up
effect is insensitive to the electric-field strength but pro-
portional to the square of the magnetic one for a definite
state.

For the n =2 and n =10 states, from Table I we can
see that for pure electric fields our results are consistent
with the works by Telnov [11]and Kolosov [10], respec-
tively. Careful study of Table I reveals that the evolution
pattern is the same as that of the ground resonance. It is
also shown in Table I that for the same n manifold, the
width of a higher level state is more easily affected by the
magnetic field.

Some of the above behaviors of the resonances in paral-
lel electric and magnetic fields can be explained qualita-
tively as below. The energy levels being pushed up, can
be understood from a perturbation point of view, viz. ,
one of the effects of the magnetic field, to the first-order
perturbation, is to shift the position up by P /2 (

~ p ~ )
which is proportional to the square of the magnetic field.

Generally speaking, the widths of resonances in a
parallel magnetic and electric field are induced by field
ionization which depends on the following factors, the
electric- and magnetic-field strengths, the position of the
energy level, and the charge distribution of the states
considered. The last factor plays a very important role in
the excited resonances but makes almost no effect on the
ground one. So for excited resonances, the analysis will
be more difficult than for the ground one, since the

widths depend not only on the level positions but also on
the charge distribution of the states considered. For ex-
ample, in the pure electric field, the width of a higher lev-
el state is narrower than that of a lower one in the same n
manifold due to the difference between their charge dis-
tributions [24]. Our numerical results for resonances in a
parallel magnetic and electric field reveal the same pat-
tern that is also due to the charge distribution.

This implies that the ionization rates of the excited
states are sensitively affected by their charge distributions
whose dependence on the external field needs further in-
vestigation.

IV. CONCLUSION

8-spline basis has been shown to be an excellent basis
for the direct approach of complex scaling for resonances
of a hydrogenic atom in parallel magnetic and electric
fields. Accurate complex energies for n =1, n =2, and
n =10 resonances are obtained. The results for a pure
electric field agree well with existing highly accurate re-
sults. The evolution of resonances in parallel magnetic
and electric fields is obtained numerically and analyzed
theoretically. Further studies for the evolution of higher
resonances of hydrogen and non-hydrogen atoms in
parallel electric and magnetic field are under way.
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