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O(a ) corrections to the orthopositroninm decay rate

JUNE 1995

R. N. Faustov
Scientific Council for Cybernetics, Russian Academy of Sciences, Moscow, Russia

A. P. Martynenko and V. A. Saleev
Samara State University, Samara, Russia

(Received 30 November 1994)

Relativistic 0{a ) corrections to the orthopositronium decay rate are calculated on the basis of a local
quasipotential equation. We take into account the necessary contributions resulting from the amplitude
of three-photon decay, the normalization condition of the wave function, and the second-order perturba-
tion theory.

PACS number(s): 36.10.Dr

INTRODUCTION may be transformed to a local form [14],

The process of orthopositronium annihilation, which
has been investigated in quantum electrodynamics al-
ready for a long time [1], is the object of much concen-
trated theoretical and experimental attention. Such in-
terest in the orthopositronium decay rate is dictated by
the permanent difference between theory and experiment
in the determination of the decay rate. Thus, for in-
stance, the last experimental measurements of the ortho-
positronium decay rate have given the following results:

7.0514(14) ps ' [2]
7.0482(16) ps ' [3]

'

The diff'erent theoretical calculations of I'"(o-Ps) can
be written in the form [4—7]

b

2p~ 2p
(p)= I V(p, q, M)g (q), , (3)

(2m )

where p, s =M/4 is the relativistic reduced mass, the
square of relative momentum of particles may be ex-
pressed through the bound state mass M=2m+B (B is
the binding energy) in the following manner:

b (M)= —'M —m4 (4)

In the case of positronium the main contribution to the
interaction operator V(p, q, M) is defined by the modified
Coulomb potential [15]

'2

I'"(o-Ps) = I o 1+ A —+ —a lna+B
3

+ 0 ~ ~

4b
(5)

=7.038 31(5) ps

ma 2(ir 9)—
9m.

(2) Then the positronium ground state in momentum
space is described in accordance with (3), (5) by Pauli-
type wave functions [15],

where the coefficient 3 was calculated, A |4j= —10.266+0.011, 3
~5~

= —10.282+0.003, but the
coefficient 8, determining the a corrections, has been
unknown up until the present. The discrepancy between
expressions (1) and (2) is equal to 6 and 9 standard devia-
tions. Explanation of this apparent difference between
the measured and calculated values for the orthoposi-
tronium decay rate may be connected with coefficient B.
A calculation of different contributions to 8 was carried
out recently in [8—12]. An exact determination of order
O(a ) contributions to the S,-positronium decay rate re-
quires employment of the consistent theory of two-
particle bound states.

In this work we performed the calculation of relativis-
tic a corrections to I (o-Ps) on the basis of the
Logunov-Tavkhelidze quasipotential method [13], in
which the two-particle quasipotential equation for wave
function gM(P) in the center-of-mass reference frame

AM 4b
(6)

where w, 2 are two-component Pauli spinors.

I. AMPLITUDE OF THREE-PHOTON
ORTHOPOSITRONIUM DECAY

Relativistic corrections of order a to the Ore-PaweH
formula for I 0 appear, if we take into consideration the
dependence of wave function and the interaction operator
from the particle vector momentum of relative motion p.
The decay amplitude of orthopositronium can be
represented as the product of an e+e annihilation am-
plitude M(q, P) times a Bethe-Salpeter wave function
g(q, P),
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d4qF= Tr q, PM q, P
(2~)

d q, k3 —q~+m=(ie) Tr 6(q„q2)yz

q, —k, +m

(q, —k, ) —m +iO

X A„(k,)A, (k2)Aq(k3), (7)

we have obtained the following expression for amplitude
F.

F=(ie) f (2n. ) 8(q )

(M —28)QM~(q )

(q &

—e(q )+iO)( —
q z+ e(q ) i 0—)

(k3 —q2+m ) (q, —k&+m )

(k3 —q2) —m +iO (q, —k, ) —m +iO
where q& =P/2+q =(M/2+q, q ), q2=P/2 q-
=(M/2 —q, —q) are the four momenta of electron and
positron, P =q &

+q2 is a total momentum, and
q=l/2(q, —qz). The decay diagram O-Ps~3y, corre-
sponding to amplitude (7), is shown on Fig. 1. It is neces-
sary to supplement it with five diagrams with crossed
photon lines k &, k2, k3 for the description of total decay
amplitude.

The wave function g(q, P) obeys the two-particle
Bethe-Salpeter equation, which has no physically in-
teresting exact solutions. So for the calculation of the o-
Ps decay rate it is necessary to transform F in such a way
that this amplitude should contain a wave function that
has a good physical interpretation and is determined by a
simpler bound state equation. For changing Eq. (7) let us
introduce vertex function I (q, ,q2),

Q, +m —gz+m
V1 Q2 2 2+.O

91 ~2 2 2+.O
r(

ql I +lO q2
—m +tO

and decompose the particle propagators on positive and
negative energy states. So the electron propagator can be
written in the following manner:

q&™m u' '(q)u' '(q)

q &

—m +i 0 e(q ) q, e(q )+i—O
U' '( —q)U' '( —q)

q, +e(q }—iO

Considering that the particle interaction is described by
local quasipotential equation (3) and a projecting vertex
function on positive energy states by means of Dirac
bispinors [16]

&q'+m',
q', = ~, —Q~', +m',

M —
co3

—Qco3+m .

(12)

Taking in mind that the electron and positron are in
the S, bound state, let us introduce a relativistic projec-
tion operator on this state, in which the exact dependence
from vector momentum q must be considered [17],

(Q, +m)(1+y )8( —f2+m)
~=u(q)U( —q)=

2&2 2m(e(q)+m )

(13)

where the polarization vector of orthopositronium e„
must satisfy the condition

P„P
Qep&v gpv+
Pal M

(14)

After insertion of the 8 operator we have considered
the contribution of the 6rst pole (12) in amplitude (11),
which takes the form, under these conditions,

2 2

F=(ie) f 3 QM(q)A„(k))A,(k~)Aq(k3)
(2m) e(q )

Xy„u' '(q)A„(k,)A, (k~)A~(k, ) .

The integral function in (ll) has three poles in the
lower half plane of the complex variable q „

' '( ) U
' '( )I'+' ~(q q )= I (q q )

')/28(q } +28(q )

=(M —2+q +m )gg(q), (1O)

(k3 —q2+m )
XTr m.y

(k3 —q~) —m +iO

(q&
—k, +m)

"(q, —k, )' m'+io—

FIG. 1. Diagram for the decay amplitude of orthopositroni-
um F.

where the substitutions q &
=8(q), qo2=M —8(q) are re-

quired in the annihilation amplitude, QM(q ) is a quasipo-
tential wave function of orthopositronium in momentum
representation.

Further calculations of a squared modulus of ampli-
tude ~F~, performed by means of the system of analytical
calculations FQRM [18],have the following main features.
Doing the decomposition of denominators of spinor par-
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ticles propagators on ~q~/m we take into account the
terms proportional to ~q ~/m, ~q ~

/m . If the numerator
of F contained the vector momentum q in second degree
then we used the substitution q =0 in the F denominator
and carried out the angle integration: f (qk, )(qkz)dQ-

q
=4m/3q (k&kz). For parts of the F numerator propor-
tional to q in the erst degree it is necessary to decompose
the denominator of (15) on

~ q ~
/m and after that to do the

angle integration. The typical integral on angle variables
in (15) has the following form:

dQ- k) k3

(1—n, x )(1+n3x ) ~) co3
'

(16)

It may be calculated exactly by means of Feynman pa-
rarnetrization. Thereafter we make the decomposition on

~ q ~
/m with necessary accuracy,

dQ-I= dy 1+x y&3+y

2~a (q) [1+(q /m )3 ]' —xv'2
qV g(nzi+q~g ) [1+(q /m )3]'~ +x&3

~2 2=4m 1+ q
1 ——A

m

m(m —co, —co, )
A =1+

CO ~603
(17)

The sum of photon energies co&+~2+ F3=M. Appear-
ing after the trace calculation in (15) and summing up on
photon polarization in ~F~, the products of photon mo-
menta are determined from the rnomenturn conservation
law, kikz =M(M/2 —co3), . . . . The momentum in-
tegration may be done, using the exact ground state wave
function and the residue theory. It should be particularly
emphasized that the relativistic correction of order cz re-
sults from the calculation of residue in the second-order
pole of wave function [12]. As a result the differential
three-photon decay rate was derived,

X3 1
2

dI
dx j dx2

+ 118x2+2x2x 3
—24x2x 3

—120x2x 3+204x2X3 —84x2+2x 3
—68x 3+ 118x3

—84x3+32,

2m cz f(xzx3)+a
3 3

+ two other cyclic permutations
16x &X2x 3

f(xz, x3)=7x~x3+2xzx3+2xz+26xzx3 —12xzx3 —24xix3 —68x~+7xzx3 —12xzx3+24xzx3 —120xzx3

(18)

where x, =2'; /M. After analytical integration of (18) on
photon frequencies by means of the "REDUCE" system
[19] we have obtained the following infrared finite value
of a relativistic correction to the total decay rate:

r

3~ (7~ —32) a
(19)

32(m —9)

The biggest contribution of an a correction (19) comes
from the terms proportional to q /m, which appear
from the decomposition of particle energies q, , qz in (15)
[66(a/m. ) ]. Formula (19) is not the final result because
there are other sources of O(a ) contributions to
I (o-Ps). First of all, as it follows from (11) and (12) that
in the studied decay rate the o. corrections appear, if we
consider two other poles on q, at an accurate calculation
of amplitude F. Computing the contribution of these
poles to I we must keep in mind that now the propor-
tional to the a term (M —2e) in the numerator of (11) is
not cancelled by a similar factor in the denominator as it
was in the case of the first pole (12). So we have tran-
sposed M —2e(q ) = ma /2 and have ignored the depen-
dence of amplitude F (11) from the vector momentum q
in both the denominator and the numerator. After nu-

merical integration of the corresponding differential de-
cay rate on cu, , co2, ~3, we have obtained that the given
contribution to the total decay rate is equal to

2

a1...=5.4 — r, . (20)

3 t'

3 21 cx
8

2

—I 0

2
2

15m a
0 (21)

resulting in some decreasing of correction, obtained in
(19) and (20).

Of special note is the inhuence of the normalization
factor of the wave function and the quantity 8'(6) on the
quantity of the a correction (when obtained (19) we have
not taken into account the normalization term
[1—3/8a ], and have used the simplified expression for
W: &=am/2). The order O(a ) contribution caused
by these factors is calculated analytically and turns out to
be negative,
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II. SECOND-ORDER PERTURBATION THEORY

Second-order perturbation theory correction in the en-
ergy spectrum of positronium is determined in our case
by the following expression [15]:

FIG. 2. Feynman diagrams of three-photon orthopositroni-
um annihilation.

n =2 8) —8„' (22)

The part of total quasipotential b, V, entering in (22),
consists in one-photon, two-photon interactions and an
annihilation term. With necessary accuracy the
b, V(p, q, M ) may be expressed in the following form (see
Ref. [14]):

and the annihilation part V'" for orthopositronium is
determined by six diagrams of three-photon annihilation
(see Fig. 2). In the process of the construction of quasi-
potential V'" with necessary accuracy we may choose the
relative particle momenta in initial and final states
p =q =0. Then we obtain (see Ref. [20])

b, V(p, q, M) =-
p

6(p 17 )
—6p(p —q)

m m

. Van(
9m

(24)

2 2A 7T + 3&& +Van
m /p

—
q/ 2m' (23)

(p —q) 7ira
( )

m 6m

Averaging (24) on the Coulomb wave function of the
ground state gives us the main contribution to the decay
rate I = —2ImE of expression (2). In order to use the
formula (22) let us modify the sum over the Coulomb
states by means of Schwinger's representation for
Coulomb Green's function (see Ref. [21]),

„=2Bi B„'— (25)

The quantity R (p, q ) describes the particle interaction through the exchange of two, three, and so on Coulomb pho-
tons and it has the following form:

R() IV 5 48'
( 2+ IV2)2( 2+ ~2)2 2 ( 2+ IV2)

48' 1 2A —1+ —ln 2 + arctan&4A —1
(q +W') 2 4A —1

(p + IV )(q +8' )

4W (p —q)
(26)

The calculation of integrals with function R (p, q ) appearing in (22) may be done on the basis of the Caswell-Lepage
identity (see Ref. [22]),

2
1

' 48"P qR p q p
———— P "P

p ln2 ——'+ arctan P ——'ln 1+ P + 27

In the table below we present the results of such calculations of basic integrals by means of (27), which are deter-
mined by quantity R (p, q ) and give the contribution to the decay rate of orthopositronium.

f (p)

1 I dpdq~( )f( )

8'
8' +p

1

8

8'
arctan

p 8
7721—
12

The quasipotential (23) has a clear dependence from the energy of the bound state. So the first term of formula (22)
also gives the contribution to the orthopositronium decay rate. It has the following form:
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ly'&= J ~, y'(I )&'"(o »-)q'(q) q, I,q'(k), , q'(r)
(2~) (2') (2') t)B m (k —r ) (2~)

23

2 4
(28)

Summing up all terms in expression (22), we have ob-
tained the following value of the a correction to the
I (0-Ps) at second-order perturbation theory:

ma (~ —9) 19
(29)

18~ 2 3

III. DISCUSSIQN QF THK RESULTS

I tot I o 1+41 9
'Ir

(30)

where the factor ~ in the denominator of the second term
was separated by an analogy with the radiative correc-
tions of the same order on a.

As pointed out above in the last few years there were
some publications (see Refs. [8—12]), devoted to the cal-
culation of cx corrections to the orthopositronium decay
rate by means of different approaches. Our calculational
scheme in Sec. I is close to that of Ref. [12]. This is espe-
cially true with regard to the momentum space integra-
tion of expression (15), which is not reduced to the substi-
tution q ~b [as might be expected from Eq. (3)], but to
the replacement q = —3/4a m . Such a substitution
takes into account the contribution of the wave function
(6) pole. Our numerical result (19) for the a correction
due to the main three-photon orthopositronium decay
amplitude agrees well with expression a (27m

We have considered above the contributions of the
kind O(a ) in the decay rate of positronium triplet state
S&. These contributions were obtained from the basic

amplitude of three-photon decay (19) and (20), the renor-
malization of wave function, describing the positronium
ground state (21), and the corrections of second-order
perturbation theory (29). Summing the results (19)—(21),
and (29) we get the total contribution in the following
form:

2 I

—204)/16(~ —9)=4,5a, found in Ref. [12]. The rela-
tivistic a correction (21) coming from the normalization
condition of the wave function must be considered to-
gether with a similar correction of second-order pertur-
bation theory (29) because of specific dependence of
quasipotential (23) from the bound state mass M. In the
sum of terms (21) and (29) we have obtained the contribu-
tion, which is close in magnitude to the relativistic
correction ( —0, 6a ) determined in Ref. [12] due to the
modification of the wave function. Let us also point out
that the coefficient B =41.9, derived in this article, is in
good agreement with the result B =46+3 (see Ref. [12]).

In this work we did not consider the a corrections in
amplitude F and one loop corrections of the same order
found in Ref. [10]. Taking into consideration the result
of Ref. [10], the value of coefficient B of formula (2) shall
reach the value B=71, which decreases slightly the
discrepancy between the theory (2) and experiment (1). It
is necessary to emphasize that the calculation of the con-
tributions of two-loop corrections to the annihilation am-
plitude (11) is required in order to obtain the full value of
the O(a ) correction to the orthopositronium decay rate.
It is possible that the interference of the zeroth-order am-
plitude with the second-order radiative correction to this
amplitude may give an essential contribution to the
coefficient B.
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