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(e,e )-pair annihilation in the positronium molecule Ps2
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The (e,e+)-pair annihilation in the bound 'So state of the Ps2 molecule (e e+e e+) is studied. It is

shown that the expectation values of the two-, three-, aud four-body Dirac 8 functions (8+ ), (8++ )
( —= (5+ ) ), and (8++ ) determine the photonless, one- and many-photon annihilation rates, i.e.,
the values of I o~, I"&~, and I „~, where n ~2. The appropriate analytical expressions are presented to-
gether with numerical estimates. As expected, the two-photon annihilation process dominates.

PACS number(s): 36.10.0r, 78.70.8j

In the present study we consider (e,e )-pair annihi-
lation in the ground 'So state (L =0) [1,2] of the
Coulomb four-body system Ps& (e e+e e+) or posi-
tronium molecule [3]. The existence of this single bound
state has been well known for many years [3,4]. In addi-
tion, the Coulomb three-body Ps ion has only one
bound S,&,z state (L =0) [5]. In contrast with these, the
discrete spectrum in the two-body system Ps (or e e+)
contains an infinite number of bound states. The posi-
tronium molecule is of interest in some applications [6]
and has been the subject of intensive theoretical study
[7—13]. We report here analytical and numerical results
for the electron-positron annihilation rate in the posi-
tronium molecule.

As is well known the (e,e+)-pair annihilation in the
Ps(e e+) system proceeds into two- and three-photons
(see, e.g., [2]). Moreover, such annihilation can be ob-
served, in principle, as an n-photon process (n )2), with
the probability for annihilation into (n+1) photons of
order a times smaller than for n photons [2]. In the simi-
lar three-body Ps ion (e e+e ) electron-positron pair
annihilation can be observed also as a one-photon process
[14—17]. The (e,e )-pair annihilation in the four-body
positronium molecule Ps2 (e e+e e+) can proceed
with the emission of an arbitrary number of photons and
even without y radiation. If I „z is the n-photon annihi-
lation rate from the ground 'Sp state of the positronium
molecule, the total annihilation rate r takes the form

r=r„+r„+r„+r„+
In terms of this notation our present goal is to evaluate
numerically the appropriate rates I „r (n =0, 1,2, 3, . . . )

and the sum I .
First, consider the two-photon annihilation rate I z,

=201.234 961 8 X 10 & 5+ ) sec (3)

for Ps2 for which n =2, m =2, and nm (=4) is the total
number of electron-positron pairs. The expectation value
of the Dirac delta function (5+ ), i.e.,

&e S(r —r, )~e)
&+l+) (4)

is used here in atomic units. In all 5 functions the sub-
script —denotes the electron, while + designates the
positron. The velocity of light c, the Bohr radius ap,
and the fine structure constant a are, respectively,

c =0.299 792 458 X 10 m sec

Qp =0.529 177 249 X 10 m

a = 1/137.035 989 5 =0.729 735 308 X 10

(Ref. [22].)
Following Jauch and Rohrlich [2] and using Eq. (3) for

I zz, we can evaluate approximately the other I z„~
values, i.e., the annihilation rates with the emission of
even numbers of photons. Indeed, we have in atomic
units

which is the largest of all rz„ for n ~ 1. The appropriate
analytical expression can be found from work by Lee [18]
(see also [19]). In atomic units (m, =1, A'=1, and e =1)
for a system of n electrons and m positrons, where
max(n, m) ) 1, the expression for I z is [20]

I 2r
=1rnm a ca c

'
& 5+ (2)

which becomes

I 2r =4~a eau
' (5+
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znp zr

=4~a " cao '&5+ ) sec

where n ~1.
To find the analytical formulas for odd numbers of

photons 1 e I 3r as well as I (2„+,1
(n 2) and I &r, we

shall follow the approach proposed by Ferrante [23].
This method is based on consideration of the (e,e+ ) an-
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nihilation from the bound ground state of the two-body
system Ps, of the three-body ion Ps, and of the four-
body molecule Ps2. Note first that the energy of the
ground states in all of these systems is negligible in com-
parison to the m, c energy. Therefore, we can consider
the annihilation to be the result of the electron-positron
collision with energy that is very close to zero. Such a
collision produces two photons (or an even number of
photons) when the (e,e+ ) pair is in the singlet state and
three photons (or an odd number of photons) when this
pair is in the triplet state. We recall that the indistin-
guishable particles in the bound states of the Ps ion and
in the Ps2 molecule are always in singlet states [24]. Since
the total number of (e,e+ ) pairs in the Ps ion is two
times smaller than that in the Ps2 molecule, we write the
following approximate relation (the so-called Ferrante
[23] relation):

I 3r 2I 3 (Ps; S))
(6)

2I (Ps; 'S )

where I ~ (Ps; S, ) is the three-photon annihilation rate
from the S, state of the two-body system Ps (or S, state
of the electron-positron pair), while I z (Ps;'So) is the
two-photon annihilation rate from its 'S0 state. These
values can be found, e.g. , in [2]. From Eq. (6) we find the
expression for r3y

4(vr —9)a
v 9~ Y

I (Ps )

r„(ps- )
'

16(~ —9)
9

a cao (5+ ) sec (7)

r„r„(ps-)'=2
r„(ps-)

After a few simple transformations Eq. (9) can be
transformed with the help of the result for I &z(Ps )

[14—17] to the form (in atomic units)

The annihilation rates I ~2„+1~& with an odd number of
photons (n ~2) can be evaluated from the I"3 value in
the same manner as I 2„ from I 2 [see Eq. (5)], i.e.,

2( n —1)
2 +1]r

9
a "+ ca '(5 ) sec

16(~ —9)
0 +—

The one-photon annihilation rate I 1& can be also deter-
mined from the analogous relation. However, in the
two-body system Ps this process is forbidden and hence
the right-hand side of this formula must involve only the
respective values for the three-body Ps ion. Likewise,
the one-photon annihilation proceeds as a triple collision
process, i.e., either as an (e,e,e ) collision in the Ps
ion and in the Ps& molecule or as an (e,e +,e +

) collision
in the Ps2 molecule [25]. Obviously, the fast electron is
emitted in the first case and the fast positron in the
second. For the Ps2 molecule both triple collisions can
take place, while for the Ps ion only the first one. As a
result the appropriate Ferrante relation for 1 1 takes the
form

I
&

= ga «o ' (5+,Ps )sec5+,Ps

(10)

The value of the proportionality constant g was given
as 1 by Chu and Ponish [14], 2 by Misawa and Mills
[15], and ~ by Kryuchkov [1]. We shall use the value

[17]. The best values to date for ( 5+,Ps ) is

2.07331988X10 and for (5+,Ps ) is 0.358996
X 10 [16]. By using these values formula (10) reduces
to the form

ga I',

2

r,z= ga cao (5++ ) sec
3 2' 8 —1 —1 (13)

It is easy to show from these two different expressions,
Eqs. (10) and (13), for r, z that in the Ps2 molecule the
following relation between the expectation values for the
Dirac 5 functions ( 5+ ) and ( 5+ )(—:( 5+ ) ):

(5 ) =2 (5;Ps )5+;Ps

=0.3463006X10 (5 ) (14)

should hold. This equality does hold approximately and
obviously the possible deviation between these expecta-
tion values for the triple 5 function determined from the
variational calculations and from Eq. (14) can serve to
indicate the accuracy of Ferrante's approximate relation
for the one-photon annihilation rate.

The zero-photon (or photonless) annihilation rate I o~
cannot be evaluated from Ferrante's relations even ap-

F=w„,r„
=0.365 637 575 X 10-"r2r

where 8'& 2 is the one-photon internal conversion
coefFicient for the y radiation determined from Ferrante's
relation.

It should be mentioned here that Ferrante's method
can be applied directly, in principle, only to two-body
contact processes. This suggests that the probability of
such a process is proportional to the expectation value of
the two-body Dirac 5 function, i.e. , in our case = (5+ )
[26]. Actually, the one-photon annihilation is the triple
contact process, i.e., its probability approximately equals
(5+ ) (or (5++ ) ). Therefore, we expect that in this
case Ferrante's relation has a different form [compare
Eqs. (6) and (9)]. Moreover, the value of r, z can be
found directly from the numerical value of (5++ ) for
the Ps2 molecule. Indeed, by following [14—17] we write
the appropriate expression for r,

16
r/y= g&'«0 '((5++ )+(5+ ) ) sec ' (12)1y

or, since in the case considered (5++ ) = & 5+
have [27]
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proximately since this process is forbidden in the relevant
two- and three-body systems. We determine it by the fol-
lowing direct calculation. To start with, 36 Feynman dia-
grams correspond to this process in the lowest order. Six
of them are presented in Fig. 1. The others can be ob-
tained by interchanging the initial electrons, initial posi-
trons, and two intermediate photons. The results of cal-
culations show that all of them contribute strongly to the
result. The momenta of both electrons and positrons are
negligible in comparison to m, c, which gives the scale of
the transition amplitude change and that of the final mo-
menta. Also, the energy of the bound ground state in the
Ps2 molecule is negligible in comparison with m, c . So
the first nonvanishing term in the amplitude expansion in
the p;/m, c parameters can be obtained by substitution of
the (m, c,0, 0,0) four-vector instead of all initial momen-
ta [here the four-momentum p has components (E,p)].
Thus the transition amplitude does not depend on the ini-
tial three-dimensional momentum p in this approxima-
tion. Bearing this in mind it is possible to correlate the
annihilation rate and the value of the four-particle densi-
ty of the Ps2 molecule with all of the particles at the same
point. The photonless annihilation rate I o in the posi-

(b)

(e)

tronium molecule can be obtained in a way similar to the
one used in [17,28]. The answer is (in units with
A=1,c= 1)

/e(0)/' 2~[W f'

4 II,„(2E)II.„,(2E) (2~)'

E)Eq
X

' '
ip, idn, (15)

where 3 is the transition amplitude, calculated according
to the Feynman rules [17,29].

~
%(0)

~
indicates the value

of the four-particle density of Ps2 at the quadruple-
collision point or, in other words, it is the expectation
value for the 5++ function in the ground state of the
positronium molecule, i.e. , ~%'(0)

~

= 4'(0, 0,0, 0, 0,0)
~

=(5++ ). The meaning of the other symbols in this
equation can be also found in [17,29]. It is easy to
show that antisymmetry of this amplitude A with
respect to the permutation of the initially indistinguish-
able particles (for the singlet states both the electron-
electron and the positron-positron pairs) leads to

~
A

~

=g, , 4~M, , t ~ & ~ ~. Here s~ and s6 are the spins of
the final electron and positron and the arrows show the
spin states of the initial electrons and positrons. In this
expression summation is over all possible final states of
the particles. The square of the wave function of the rela-
tive motion 4 is divided by 4 because of the presence
of two pairs of indistinguishable particles in the initial
state and the fact that this wave function is normalized to
unity with integration over the entire six-dimensional
space.

The standard way to calculate
~
A

~
using the corre-

sponding technique of traces [28,29] is not efficient here
because of the large number of terms to be calculated
(36 X 36= 1296). Due to the simplicity of the initial and
final states in this case it was more convenient to first cal-
culate the amplitude A itself, using Dirac spinors of the
corresponding states. Calculation with the use of the
MATHEMATIcA computer program [30] yields the expres-
sion

147&3vr 4 9 c —1I or= a A —(5++ ) sec (16)

(g)

where A=A/mc is the Compton wavelength of the elec-
tron. In atomic units this result takes the form [31]

147&377I op= a cao (5++——)

=0.50991929X10 (5++ ) sec (17)

where (5++ ) is in atomic units. It can be also writ-
ten in the form

147&3~', (5++-- )
(5

FIG. 1. Six basic Feynmann diagrams for the lowest order
(a) —{f). The six exchange diagrams (g)—(1) with the initial elec-
trons interchanged are shown only for the first basic diagram
since the other cases are analogous.

=0.505 173 5409X10 ' I
5+

(18)
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where 8'0 2~ is the two-photon internal conversion
coefficient for the Ps2 molecule.

The formulas presented above determine the various
partial annihilation rates and the total probability of the
electron-positron pair annihilation in the ground So
state (l. =0) of the four-body system Ps2 (positronium
molecule). Note that the annihilation rates I z and I 3z
for the ground state of the positronium molecule were
evaluated previously [32] with the use of a simplified
Hylleraas-type [3] wave function. In fact, the positroni-
um molecule was approximated as a weakly bound clus-
ter system consisting of two neutral (two-body) Ps sys-
tems which are far away from each other. As expected,
the obtained numerical result was (5+ ) =(5+,'Ps).
In reality this approximate relation has the form

(~ ) =(S, ;Ps-) =—&|, ;Ps) .
2

This shows that the real structure of the Ps2 molecule

low

up

2. 17X10
2.20X 10

8.0X 10
9.5X10

3.0X 10
4.5X lo-'

with good accuracy is not in the form of two weakly in-
teracting two-body neutral clusters.

In the present article the needed numerical results for
the expectation values of Dirac 6 functions were comput-
ed with the help of the variational procedure proposed by
Kolesnikov and Tarasov (see, e.g. , [33] and references
therein). The analytical expressions for the respective
elements of Dirac two-particle 5 functions in terms of
their basis functions [33]

TABLE I. The lower and upper estimates (low and up) for
the expectation values in atomic units of two-, three-, and four-
body electron-positron 6 functions for the ground bound state
of the Ps2 molecule. The subscript —denotes an electron, while
+ designates a positron.

Estimate

2 2 2 2 2 2&~l =exp( —~~2r~2 —~]3r&3 o'$3r23 a14r14 a24r24 +34r34)

lP &
=exp( P&2r &2

1—3» r &3
—P23r z3

—
I3&dr &q P&4r&—4

—P34r—34 )
2 2 2 2 2 2

take the form
3

&+is„„ip&=i . (22)

(20)

&~~a„,p) =
a ]4 +Q 24 +a 34

(2l)

Analogous expressions can be found for the other ex-
pectation values of the three-particle 431-, 432-, and 421-
5 functions. For the four-particle 5 function we find

where D —(a i2+ a 24+ az3 )(a i3+ a 34+az3 ) a z3 for the
two-body 41-6 function. Here the subscripts 1 and 2
designate electrons, while 3 and 4 stand for the positrons
and a,"=a, . +P;.. The formulas for the other two-
particle 21-, 31-, 32-, 42-, and 43-6 functions can be ob-
tained form this expression by simple permutations. The
analytical formula for the three-particle 321-6 function is

3/2 ~r- ~r — ~r ' (23)

Table I shows that the accuracy achieved for the ex-
pectation value of the two-particle 5 function (5+ ) is
greater than that for the three- and four-particle 6 func-
tions. We wish to note that at the present time the inac-
curacies in the 5-function expectation values mean that

However, the convergence for all expectation values of
Dirac 5 functions was obviously insufficient, and we
present in Table I lower and upper estimates for the 6+
5++, and 5++ expectation values [34]. From the
results in Table I we have determined lower and upper es-
timates for the annihilation rates which are given in
Table II. We can expect that the exact values of I „z,
where n =0, 1,2, . . . , 10, lie between the appropriate
lower and upper estimates [34], i.e.,

TABLE II. The lower and upper estimates for the many-photon annihilation rates I „~, where n =0, 1,2, 3,4, . . . , 10, and for the
total annihilation rate I in sec

Rate

Low
Up

0. 1530X 10
0.2295 X 10

0.1602
0.1624

r»
0.4381 X 10'
0.4441X1O"

r»
0.3933X 10'
0.3987X 10

r4r

0.2333 X 10
0.2365X 10

I 5y

0.2094X 10
0.2123 X 10'

Rate

Low
Up

I 6y

0. 1242X 10
0. 1259X 10'

0. 1115X 10
0. 1131X 10

0.6615 X 10-'
0.6707X 10

0.5939X 10
0.6021 X 10

rior

0.3523 X 10
0.3571 X 10-'

0.4385 X 10'
0.4446 X 10"
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the annihilation problem for the Ps& molecule has not
been solved finally. Therefore, further numerical con-
siderations seem to be needed and in particular it would
be very useful to have calculations with other basis func-
tions which have the correct asymptotic behavior (see,
e.g. , [8]) or the use of the Hiller-Sucher-Feinberg rela-
tions instead of the 5 functions [35]. The data in Table II
show that the two-photon process dominates;

f t, r„r„r„»r„r„»r„&r„or„

&r„&r„,&r„.
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