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Kohn-Sham wave functions yielding the Hartree-Fock ground-state densities of alkaline-earth and
noble-gas atoms are calculated. From the Kohn-Sham wave functions the corresponding noninteracting
kinetic energies and the exchange energies are calculated according to the density-functional definition.
The difference between the density-functional and the Hartree-Fock exchange energies for a given elec-
tron density is found to be surprisingly small. This justifies, at least for the systems studied here, the
common practice of using Hartree-Fock exchange energies as reference values to assess the quality of
today's approximate density functionals for the exchange energy. The calculated Kohn-Sham wave

functions give energies with the atomic Hamiltoman operators which are de facto identical to the corre-
sponding values obtained from the optimized potential method. The influence of a coupling parameter
turning on the electron-electron interaction on the difference between Kohn-Sham and Hartree-Fock
kinetic and exchange energies is investigated. Various hybrid schemes which combine the Kohn-Sham
and the Hartee-Fock methods are compared. For the atomic systems investigated here, the different ex-

change and correlation energies occurring in these schemes are found in most cases to deviate very little
from the standard Kohn-Sham exchange and correlation energies. Finally, the formulation and validity
of the Hohenberg-Kohn theorem in basis set representations are discussed.

PACS number(s): 31.15.Ew, 31.15.Ar, 31.25.—v, 71.10.+x

I. INTRODUCTION

In density-functional theory (DFT) each electron densi-
ty is associated with a model system of noninteracting
electrons described by the ¹lectron Kohn-Sham (KS)
wave function with N being the electron number resulting
from the electron density [1]. This model system allows
it to define the noninteracting or KS kinetic energy and
the DFT or KS exchange energy. On the other hand, a
Hartree-Pock ground state also defines a kinetic energy
and an exchange energy. Even for a KS model system
with the exact same density as that of some given
Hartree-Fock (HF) ground state, the KS and the HF
kinetic and exchange energies are different. In this work,
the magnitude of this difference is calculated for some
atomic systems. There are at least two reasons to investi-
gate energetic differences between KS and HF wave func-
tions which yield the same electron density.

(i) For the accurate description of electronic structures
within the KS scheme of DFT good approximations to
the density functionals for the exchange and the correla-
tion energy which are not known exactly must be avail-
able [1]. A good deal of the work in DFT over the last
three decades has been devoted to the construction and
improvement of such approximations [1]. A common
practice in assessing the quality of approximate density
functionals for the exchange energy is to evaluate the ap-
proximate functional for HF ground-state electron densi-
ties and to compare the resulting values with the HF ex-
change energies [2,3]. However, this procedure is ques-

tionable because of the different definitions of the ex-
change energy within DFT and HF theory. Of course,
the magnitude of possible errors introduced by using HF
instead of the correct DFT exchange energies as refer-
ence values depends on the difference between the two.
Recent approximate exchange density functionals [3]
yield values which deviate by less than 1% from the cor-
responding HF exchange energies. It is therefore urgent
to clarify this point, in order to have a sound basis for the
further development and improvement of approximate
exchange density functionals.

(ii) There exist several hybrid methods [4—14] which
combine elements from the KS and HF procedures.
These hybrid methods give rise to definitions of
exchange-correlation energies which differ from those of
the standard KS scheme. Subsequently the density func-
tionals corresponding to the various exchange-correlation
energies also are difFerent. However, in actual applica-
tions of the various methods the same approximations for
the exchange and correlation functionals, those derived
for the standard KS scheme, are usually employed. To
what extend this practice is justified needs to be investi-
gated. The differences between the exchange and correla-
tion functionals for the various methods will be shown to
be related to the differences between the KS and HF
kinetic and exchange energies.

A systematic investigation of the differences between
KS and HF kinetic and exchange energies has not yet
been performed. So far, the DFT exchange energy corre-
sponding to a HF density has been calculated only for
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lithium and beryllium [15,16]. In Refs. [15—17], the
kinetic energies of the KS wave functions yielding the HF
densities of lithium and beryllium are presented and in
Refs. [9,15—20] the effective KS potentials necessary to
obtain KS wave functions corresponding to the HF densi-
ties of the atoms Li, Be, and Ne are constructed (see also
Ref. [24]). In this work we use a recently introduced
basis set method [21] to determine the KS wave functions
belonging to the HF ground-state densities of the atoms
Ne, Ar, Be, Mg, and Ca. The KS wave functions subse-
quently allow the calculation of the corresponding nonin-
teracting or KS kinetic energies and of the DFT ex-
change energies. The differences between these energies
and the HF kinetic and exchange energies can then be
discussed. We also investigate how these differences de-
pend on a coupling parameter which turns on the
electron-electron interaction.

In addition, this work is to our knowledge the first to
use a basis set scheme, i.e., the scheme of Ref. [21], to
construct KS wave functions from a given electron densi-
ty. Alternative numerical methods for this purpose have
been developed in recent years [9,15—20,22 —27] but are
usually quite tedious to apply. This probably is the
reason KS and HF exchange energies have been com-
pared only in the few cases mentioned above. In the Ap-
pendix the method of Ref. [21] is briefiy described and
problems arising from the fact that a basis set procedure
is employed are considered. In particular, the general
question of the formulation and validity of the
Hohenberg-Kohn theorem within a basis set representa-
tion is discussed. Furthermore, it is shown that, for the
procedure of Ref. [21],using an iterative scheme which is
based on linear response and therefore on perturbation
theory does not impose any restrictions on the results.

II. DIFFERENCES BETWEEN KS AND HF ENERGIES

Within the constrained-search formulation [1(d),1(f)]
of DFT, the noninteracting kinetic energy T, [n] of an
arbitrary ¹lectron density n (r) is given by

T, [n]= min I(V~T ~p&I =(4 [n]~7 @ s[n]& .
%~n(r)

The minimization in Eq. (1), symbolized by 4—+ n ( r ),
runs over all antisymmetric wave functions yielding the
density n (r). The operator of the kinetic energy is denot-
ed by T. The minimizing wave function @ s[n] is the KS
wave function corresponding to the density n (r). The
DFT or KS exchange energy E, [n] is then defined by

E, [n]=(@ [n]~ V„~@ [n] &
—U[n], (2)

where 0„is the e'lectron-electron interaction operator
and U[n] is the classical Coulomb interaction of the
charge distribution given by n (r). The expectation value
of N [n] with an interacting X-electron Hamiltonian
operator, 0,= T+ 0'„+u„which is characterized by the
operator u to some local external potential u (r), shall be
denoted by E, [n], i.e.,

(3)

and leads to

T "[n]=(4 "[n] T~4 "[n]&

and

E„"[n]=(4 [n]~P'„~4 "[n]&—U[n] .

(5a)

(5b)

In the minimization (4), the wave functions are not only
constrained by the requirement that they have to yield
n (r), but additionally by the constraint that they have to
be single Slater determinants, denoted by "4 is det. "
T "[n] and E "[n] are the HF kinetic and exchange en-

ergy, respectively. The expectation value of @ [n] with
the Hamiltonian operator H, defines E„[n]:

E, "[n]=(@"[n]~T+0'„+v ~4 "[n] & . (6)

If the density n (r) is the HF ground-state density n, (r)
of the Hamiltonian operator 8„ then E„[n„"]is just
the usual HF energy and 4[n„"] is the usual HF deter-
minant corresponding to H, . This follows from combin-
ing the standard definition of the HF determinant as the
Slater determinant that minimizes the expectation value
of 8„with the density-based definition given here in Eq.
(4).

The KS wave function 4 [n] can be shown [1] to be
the ground-state wave function of a noninter acting
Schrodinger equation with an effective local potential
v, (r):

[f'+u, ]C& [n]=E,C& [n] . (7)

At this point we make the common assumption that all
densities occurring here are noninteracting U represent-
able [1], i.e., that all our densities are ground-state densi-
ties of Eq. (7) with an appropriately chosen local poten-
tial u, (r). Note that the energy eigenvalue E, of 4& [n]
is neither the ground-state energy of a real interacting
system with density n (r), nor the HF energy of such a
system. It follows from the Hohenberg-Kohn theorem
[1] that the effective potential v, (r) is uniquely deter-
mined by the density n(r) up to an additive constant.
The other way around each ground state of a nonin-
teracting Schrodinger equation with local potential, Eq.
(7), fulfills a minimization (1) with the constraining densi-
ty being the ground-state density of the Schrodinger
equation (7) [1]. If, as in the systems considered in this
work, no degeneracies occur, then the KS wave function

[n], like @ "[n], is a single determinant. The reason
for this is that there is no electron-electron interaction
present in the minimization (1). Therefore the KS equa-
tion (7) decouples naturally into the corresponding one-
particle equations. In contrast to this, the HF wave func-
tion 4 "[n] is a single determinant because of the expli-

The HF wave function @ "[n] for the same density
n(r) is defined here as the minimizing wave function in
the expression [1,13]

min [ ( 4
~

T+ P'„(4 & J
= ( 4 "[n ] ~

T+ P'„4""[ n ] &

V~n(r)
+ is det

(4)
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cit constraint appearing in the minimization (4).
Next, we define the difference b, T[n ] between the KS

and the HF kinetic energies, the difference b,E„[n] be-
tween the KS and HF exchange energies, and the sum
b,E, [n] of b, T[n] and bE [n] which is equal to the
difference between E„"[n]and E, [n] for any potential
v(r):

b, T[n]=T "[n]—T, [n] ~0,
b E, [n]=E„"[n]—E„[n]~ 0,

(8a)

(Sb)

(9)

The minimizing wave function in Eq. (9), in contrast to
and 4 ", is not a single Slater determinant but rath-

er a linear combination of, in general, infinitely many
Slater determinants. If n(r) is the ground-state density
of some electronic system, then the minimizing wave
function in Eq. (9) is the ground state of the system and
F [n] is the sum of the kinetic and electron-electron
repulsion energy of this ground state. The DFT [1]
correlation energy E, [n] is then given by

E, s[n]=F[n]—T, [n] —U[n] E, [n—] . (10)

A correlation energy E, "[n], related to the HF deter-
minant N "[n], is defined by

EH [n]=Ffn] —T "[n]—U[n] E, "[n] . —

The correlation energy E, "[n], like E, [n], is not the ab
initio correlation energy. A fundamental difference be-
tween E, [n] as well as E, [n] and the ab initio correla-
tion energy is that the former are defined through density
functionals which all belong to one density, whereas the
latter results from energies connected with different den-
sities, namely, the exact ground-state density and the HF
density (see also Sec. V). Therefore the ab initio correla-
tion energy cannot be expressed as easily as E, [n] or
E, [n] as a pure density functional without referring to
an external potential. Equations (8), (10), and (11) show
that bE, [n] is the difference between the correlation en-
ergies E, [n] and E, "[n]:

bE, [n]=E, [n] —E, "[n] . (12)

From a DFT point of view, the energy b,E, [n] is a part
of the correlation energy which is contained in the energy
of a HF determinant.

With these formal definitions in hand, we can now re-
port some details of our method and the results obtained.

bE, [n]=bT[n]+bE„[n]=E, "[n]—E, s[n] ~0 . (Sc)

The inequalities (Sa)—(Sc) follow from the minimizations
(1) and (4) by noting that both N [n] and N "[n] are
single determinants [1(f)]. The energy bE, [n] is a part of
the DFT correlation energy E, [n] and is not the corre-
lation energy of standard ab initio theory, which is
defined as the difference between the true ground-state
energy and the HF energy of a system. In order to define
the DFT correlation energy E, [n], we introduce the
Hohenberg-Kohn functional F [n ][ 1 ],

Within the method of Ref. [21] which is used in this work
to determine @ [n] for a given density n (r), the
effective potential v, (r) of Eq. (7) is expanded in a basis
set. The method of Ref. [21] is essentially a procedure to
determine the coeKcients in the basis set expansion of
v, (r) in a way that, if v, (r) is substituted into Eq. (7), the
resulting ground-state wave function yields the given den-
sity n (r) (for details see the Appendix and Refs. [21,28]).
The ground-state HF densities which serve as reference
densities are obtained by HF calculations using Gaussian
basis sets [29]. The corresponding HF energies are iden-
tical up to phartrees to those of numerical calculations
given in Ref. [30] (except for Ca, which is not considered
in Ref. [30]). For the KS orbitals, the same basis sets as
in the HF calculations are used. The basis sets in which
the electron densities and the exchange-correlation part
of the effective potentials are expanded are derived from
the orbital basis sets [28]. The deviations between the
original HF densities and the densities recalculated from
the corresponding KS wave functions were checked in
the range from the origin (located at the nuclei) to ten
Slater radii (radii attributed to atoms by an analysis of
typical bond distances [31]) on logarithmic grids with
about 1000 to 1500 points. The deviations were less than
10 ppm in the region up to one Slater radius (for Be and
Mg the deviations are slightly higher). Beyond one Slater
radius the relative error increases slowly but always stays
under a tenth of a percent for densities higher than 10
a.u. The Coulomb energies of the original HF and the re-
calculated KS densities which should be identical differ
by less than 10 phartrees except in the cases of Mg (20
phartrees) and Ca (120 phartrees). The same is true for
corresponding differences of the electron-nucleus attrac-
tion energies. The magnitude of these deviations serves
as a criterion for the accuracy of the calculations.

The results for the considered atoms Be, Ne, Mg, Ar,
and Ca are displayed in Table I. The Hamiltonian opera-
tor H, of Eqs. (3) and (6) which determines the HF
ground-state density n, is, of course, the corresponding
atomic Hamiltonian operator here. Table I shows that
the inequalities (8) are fulfilled. In Ref. [15] values for
E„[n,"] and b, T [n„"] for beryllium of 2.667 and
0.0004 hartrees, respectively, are obtained. This is in fair
agreement with our results if one takes into account that
the deviations of the recalculated KS density from the
original HF density are higher in Ref. [15] than in this
work. The more accurate calculation of T, [n„"] for
beryllium in Ref. [17] leads to a value of 14.5720 hartrees
(b T[n, "]=0.0010 hartrees) which is somewhat different
from our result. This discrepancy remains to be solved.
In Ref. [16] another very accurate calculation using a
completely different approach yields values for T, [n„"]
and E' [n, "] of beryllium which are identical to those
found here. Therefore we believe that our result for
T, [n, "] of beryllium is very close to the exact value.
We also report that the value of T, [n] obtained by the
method of this work, when n (r) is the de facto exact
ground-state density of beryllium, differs by only 17 phar-
trees from the value found in Ref. [26] by employing the
same method as Ref. [16].

Table I shows that the differences b, T[n, "] and
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TABLE I. Results for the atoms: Be, Ne, Mg, Ar, Ca.

Ar

THF[ HF]

TKS[n HF]

b, T[n„""]
EHF[ HF]

EKs[n HF
]

[nHF]
EHF[ HF]
gOPM a

V

EKs[n HF]

bE [n HF]

14.573 02
14.572 46
0.000 56

—2.666 91
—2.665 76
—0.001 15

—14.573 02
—14.572 43
—14.572 43
—0.000 59

128.547 10
128.545 45

0.001 65
—12.108 35
—12.105 03
—0.003 32

—128.547 10
—128.545 41
—128.545 42

—0.001 67

199.614 64
199.61172

0.002 92
—15.994 29
—15.988 33
—0.005 96

—199.614 64
—199.611 58
—199.611 60

—0.003 04

526.817 51
526.812 48

0.005 03
—30.18494
—30.174 75
—0.010 19

—526.817 51
—526.812 21
—526.812 36

—0.005 16

676.7582
676.7522

0.0060
—35.2112
—35.1989
—0.0123

—676.7582
—676.7519
—676.7520

—0.0062

'From Ref. [32(a)]; Ref. [32(b)] gives essentially the same values.

bE [n„] and subsequently b,E, [n, "] are extremely
srna11 for all considered atoms. The magnitude of the
diff'erence bE, [n„"]is only about 0.03%%uo to 0.04%%uo of the
total exchange energy. These findings justify, at least for
c1osed shell atomic systems, the common practice of com-
paring exchange energies from approximate density func-
tionals with HF reference values, as long as they differ by
more than one-tenth or two-tenths of a percent. The
1atter is the case for today's approximations to exchange
functionals which typically deviate by about half of one
percent from the HF exchange energy [1,3]. If, however,
the approximate exchange functionals could be improved
further, one should use the correct DFT reference values,
like the ones given in the fifth row of Table I, to check
them (for example, in Ref. [3(a)], a parameter in an ap-
proximate exchange functiona1 is adjusted such that the
functional yields exchange energies which deviate only by
about a tenth of a percent from the corresponding HF
values).

From a formal point of view, these results are some-
what amazing, because they show that it makes almost no
difference whether, for a given density, the determinant
minimizing the expectation value of just T or of T+ V„
is searched. This indicates that the operator V„has al-
most no inffuence on the minimization (4). A convincing
theoretical explanation for this finding has yet to be
found. The results, however, are in agreement with the
we11-known empirical finding in applications of KS and
HF procedures on molecules, that HF and KS orbitals
and therefore also the corresponding KS and KF deter-
minants are quite similar. %'hile the present work con-
centrates on the energies of KS and HF determinants, the
similarities found here strongly suggest that other expec-
tation values of KS and HF determinants also exhibit lit-
tle difference. The similarities of other expectation
values, however, may be less pronounced. (See Ref. [7]
for the related comparison of determinants obtained by
the HF scheme and by the optimized potential method
[8] discussed in the next section. )

III. ENERGIES FROM THE OPTIMIZED
POTENTIAL METHOD

The energies E, in Table I are the expectation
values of the atomic Hamiltonian operators H, with

Slater determinants resulting from the optimized poten-
tial method (OPM) [8]. The OPM determinant is the one
that yields the lowest energy expectation value of a given
Hamiltonian operator, here an atomic A„ from among
a11 determinants which are ground-state wave functions
of a noninteracting Schrodinger equation with some local
potential. The latter constraint leads to
E, &E, "[n, "] On th. e other hand, the inequality
E, [n, "]& Eo holds because, while both the KS
determinant 4 [n, "]and the OPM determinant belong
to a noninteracting Schrodinger equation with a local po-
tential, the KS determinant 4 [n„"] is further con-
strained by the requirement that it has to yield the HF
density, while the density from the QPM determinant is
completely free. The combination of the two inequalities,
consistently with inequality (8c), gives

EKs[ HF] & EOPM & EHF[ HF] (13)

Table I shows that the KS and the OPM energies,
E„[n,"] and E„,respectively, are almost identical,
i.e., the equal sign practically holds for the left relation
(13). (The fact that except for Be the values found for
E„[n,"] are very slightly lower than the values for
E, has to be attributed to computational inaccura-
cies. ) The OPM determinant, like @ [n„"], is a KS
determinant because, by construction, it is the ground
state of a noninteracting Schrodinger equation with a lo-
cal potential. Therefore it fulfills the minimization (1).
The constraining density of the minimization (1) for the
OP M determinant, however, is not the HF density
n„"(r) but the OPM density, i.e., the density resulting
from the OPM as described above. However, in Refs.
[7,32(b)], it is found that the two densities are very close.
The fact that the energies E, [n, "] and E, are al-
most identica1 shows that this little difference in the den-
sity has almost no effect on the energies of the corre-
sponding KS determinants, i.e., the OPM determinant
and the KS determinant 4 [n„"] The energ. ies of the
Slater determinants are affected more strongly by the
type of minimization by which they are determined. For
4& "[n„]this is minimization (4), whereas for 4 [n„"]
and the OPM determinant it is minimization (1). For the
OPM determinant the minimization has to be performed
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with respect to the OPM density, in the other two cases
with respect to n,

IV. SCALING OF THK ELECTRON-ELECTRON
INTERACTION BY A COUPLING CONSTANT

= min I &elf'+aP„I+)],
%~n(r)
4 is det

~THF[n] = ( ~CFHF[n]
l Tl~(pHF[n] )

E "[n]=( 4 "[n]lP'„l 4 "[n])—U[n] .

(14)

(15a)

(15b)

In the above equations, @ "[n] is the minimizing Slater
determinant of Eq. (14). Now the minimization

( 4, "[n]l f+aV„+v
l

CF„"[n])

= min t &elf'+a&„+vlq'&]
4 is det

is considered. Its minimizing determinant 4, " defines
the density n„"(r) The . potential u(r) leading to the
operator f'+af'„+u, of course, is the potential of an
atomic nucleus here. Note that this is not the usual cou-
pling constant variation of DFT [1],because the external
potential is being held fixed here and not adjusted to keep
the density constant. The densities n„"(r) change with
a. In Fig lthe .differences T "[ n, "]—T, [ n, "]and
E "[ n, "]—E [ n„"] for various values of a are

THF[ +HF ] TKS [» HF

]

CP
CJ

CQ

E
LLI

~ ~
'

0~Z. .A ~ ''1'' I l I I I I I I I I I

0»2 0.4 0.6
S S I S S S I

0.8 1.0

-4-

»EHF [a HF] EKS [a HF]

FIG. 1. DifFerenees between KS and HF kinetic and ex-
change energies with varying coupling constant a.

Next, the inhuence of a coupling parameter cz, with
0+++1, which turns on the electron-electron interac-
tion, is investigated. We define the a-dependent kinetic
and exchange energies, T "[n] and E„"[n],respective-
ly, as

& @""[n]l&+a~
I

C'""[n]&

displayed for magnesium. For o.=0, the differences are
zero because in this case the minimizations (1) and (14)
are identical. The results shown in Table I correspond to
a coupling constant a=1. As expected from theory, the
magnitude of the differences displayed in Fig. 1 increases
steadily with increasing o,.

V. HYBRID METHODS BETWEEN THK KS
AND HF SCHEME

F[n,']= T, '[n„']+U[n„']+E.Ks[n,'j+E,~s[n'] .

The corresponding Slater determinant, the KS deter-
minant KIF [n, ], is given by the Schrodinger equation

(T+u+u [n, ]+v [n, ]+u, [n, ])@ [n„]
=E, [n,']e"s[n,'] . (19)

Equation (19) decouples into corresponding single-
particle equations for the orbitals building @ [n„] The.
potentials u([n, ];r), v ([n ];r), and u, ([n„];r) ie d-
ing to the operators u [n„], u [n, ], and u, [n, ], respec-
tively, are the functional derivatives with respect to the
density of U [n, ], E [n, ], and E, [n, ], respectively.
Of course, Eq. (19) is a nonlinear equation and has to be
solved iteratively in order to calculate the KS deter-
minant @ [n, ] and therewith the exact ground-state
density n, (r) Whereas .the classical Coulomb potential
u ([n„];r) is known exactly, approximations have to be
employed for the potentials u„([n, ];r) and v, ([n, ];r).
The contributions to the ground-state energy E, given by

In this section, hybrid methods [4—14] lying between
the KS and HF schemes are briefl. y reviewed, focusing on
the various exchange and correlation density functionals
used and on their differences. In most cases, these
differences turn out to be related to the diff'erence hE, [n]
between the correlation energies E, [n] and E, "[n]
defined in Eqs. (10) and (11), with the pertinent density
n(r) being the exact ground-state density or the HF den-
sity of the given system. The ground-state energy of an
electronic system, which is determined by the external
potential u (r), usually the potential of the nuclei, and by
the electron number X is given by

E„=F[n,]+ Jdru(r)n, (r), (17)

where the density n, (r) is the exact ground-state density
of the system. The various hybrid methods are obtained
by decomposing the functional F[n„] or in other cases
the energy E, in different ways. Subsequently one derives
different one-particle Schrodinger equations for orbitals.
These orbitals build Slater determinants which character-
ize model systems or approximations to the exact ground
state and allow the direct calculation of certain parts of
the ground-state energy E, without using density func-
tionals. The remaining contributions to E„are deter-
mined through density functionals. The various methods
we consider here follow.

(i) The standard KS scheme, the reference method, is
obtained by the following decomposition of the function-
al F[n] [1]:
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T, [n ], U[n ], E [n ], and fdr U (r)n(r), which
sum up to E„[n,], can be calculated directly from the
KS determinant 4 [n, ] and the density n, (r) using Eq.
(3), without making further approximations. The contri-
bution of the correlation energy E, ~[n, ] to E„has to be
determined by evaluating an approximation to the densi-
ty functional E, [n, ] In. actual implementations of the
KS scheme, the exchange energy E, [n, ] is usually also
calculated via an approximate density functional for tech-
nical reasons.

(ii) A modified HF procedure [4] which yields the
correct ground-state energy and density results if the
functional I' [n, ] is written as

F [n„]= T "[n, ]+U [n, ]+E,"[n, ]+E, "[n, ]
=T "[n„]+U[n„]+E,"[n„]

+E, [n, ] b,E, [n, ]—,

(20a)

(20b)

(f'+u+u[n„]+u„"'[n, ]+u, [n, ]—u~, [n, ])N "[n„]
=E"[ii, ]Ep+"[ii 0] (21b)

for the HF determinant N [n, ] are identical to the stan-
dard HF equations except for the appearance of the
operator U, [n, ] generated by the potential v, "(r)
which is the functional derivative of E, "[n] with respect
to the density. In Eq. (21b) the operator U, "[n, ] is writ-
ten as U, "[n, ]—u&, [n„] with v&, [n„]being generated by
the potential Uz, ([n, ];r) which is the functional deriva-
tive of hE, [n„]with respect to the density. The operator
v"'[n, ] is the usual nonlocal HF exchange operator built
from the orbitals which generate @ "[n„] Note th. at the
energy eigenvalue E"'[n, ] is neither the exact ground-
state energy E„nor the energy E, "[n, ] which is ob-
tained if N "[n„)is inserted into Eq. (6). Because of the
extra potential u, "([n„];r),the HF determinant resulting
from Eq. (21) yields the exact ground-state density and
not the HF density. For the unknown potential
u, "([n, ];r), or alternatively U, ([n, ];r) z,U([n, —];r), a
suitable approximation must be employed. All parts of
the ground-state energy E„except E, [n, ], can then be
determined directly without further assumptions, from

"[n, ] using Eq. (6). The correlation energy E, "[n, ],
or alternatively E, [n„]—AE, [n, ], must be evaluated
through an approximate density functional.

(iii) To obtain an exchange-only KS procedure [6,7],
the approximation

Ffn„]—T [n ]+U[n ]+E [n ]

for the functional F [n, ] is made. The Schrodinger equa-
tion for the corresponding exchange-only determinant

[n, ] which, like @, [n„],but unlike @„"[n,], is a

where Eq. (20b) follows from Eq. (20a) by using Eq. (12).
The corresponding equations

(T+u+u [n„]+v,"'[n, ]+v, "[n, ])@ "[no]

=E"'[n„]4 "[n, ] (21a)

KS determinant, is given by

(f+U+ u [n xo]+v~s[n xo] )e~s[nxo]

E [&xo]&yKS[ xo] (23)

The exchange-only procedure, due to the neglect of
correlation, leads to a single Slater determinant
4p[n, o] which yields the exchange-only density n„(r)
instead of the exact ground-state density n, (r) A. s in the
standard KS scheme, the potential U„([n, ];r) must be
approximated. The ground-state energy from the
exchange-only scheme, of course, is also not exact. It can
be calculated directly, without further approximations, as
E, [n„] from 4&, [n, ] using Eq. (3). The exchange
contribution E„[n, ], however, is usually determined
via an approximate density functional. The exchange-
only method can be considered as a regular KS scheme in
which the approximate correlation functional is E, =0,
leading to a correlation potential U, (r)=0. The opti-
mized potential method [8] constitutes a procedure which
implements the exchange-only scheme exactly without
using an approximate exchange potential. The OPM ex-
ploits the fact that the exchange-only determinant

[n, ] is, out of the set of determinants which are
ground states to a noninteracting Schrodinger equation
(7) with a local multiplicative potential, the one which
minimizes the expectation value of the exact interacting
Hamiltonian operator of the system [6—9]. The OPM
performs this minimization directly and not via Eq. (23).
In this way the necessity to use an approximation for the
potential U ([n, ];r) is circumvented. Instead, the ex-
act potential U ([n, ];r) is obtained as a result of the
OPM. However, the OPM in most cases leads to integral
equations which must be solved numerically and there-
fore has been applied only to atoms [8,32] and model sys-
tems [33] so far.

(vi) A KS scheme leading to the HF energy E„"[n„"]
and density n, "(r) is obtained if the HF energy instead
of the exact ground-state energy E, is expressed by densi-
ty functionals [5—7,9,10],

EHF[ HF] —
Z HP) HF]+ U[ HF]+EHF[ HF]

+ fdr u(r)n„"(r) (24a)

=T [n "]+U[n "]+E [n "]
+DE, [n, "]+f dr v(r)n„"(r) . (24b)

The corresponding KS determinant 4 [n„"] which
yields the HF density n, "(r) is the ground state to the
Schrodinger equation

(f'+u+u [n„"] u+„[n, "]+u~,[n, "])@ s[n, "]
[&HF]@Ks[ HF] (25)

The unknown potentials U ([n„"];r)and U&, ([n„"];r)
must be approximated. All contributions to E„"[n„"],
except EE, [n, "], can be obtained directly from the
determinant 4& [n, ] with Eq. (3). This scheme in Refs.
[6,9] has been given the name Hartree-Fock density-
functional theory (HFDFT). It is merely of formal in-
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terest, because it requires the same effort and similar ap-
proximations as the standard KS method, but does not
aim on the exact ground-state energy E„but only on an
approximation to it, namely, the HF energy. The fact
that the HFDFT procedure results from a decomposition
of E„"[n„"],and not of E„or equivalently F [n, ], distin-
guishes this method from the others discussed in this sec-
tion.

The calculation of the KS determinant N [n, "] and
of the corresponding energies from a given HF density
n, "(r), which was the central point of this work, leads to
the same results as those one would obtain if the HFDFT
procedure could be performed exactly. In contrast to the

approach of this work, the HFDFT procedure does not
require that the HF density is known. Of course, if the
HFDFT is actually carried out, by solving Eq. (25), in
practice the employment of approximations for
v„([n„"];r)and Uz, ([n, "];r) introduces errors. There-
fore results from a HFDFT calculation, performed ac-
cording to Eq. (25), will not be exact, in contrast to the
results obtained in this work.

(v) A scheme which delivers the exact ground-state en-
ergy, but not the exact ground-state density, results from
a decomposition of I' [n] and the total energy E„accord-
ing to [12,13]

E„=THF[n, "]+U[n, "]+E "[n„"]+fdr U(r)n„"(r)

THF[&0]—THF[~ H"]+U [~0]—U[tt "]+EH"[n 0]—EH"[n H"]+EHF[n, ]+f dr U(r)[n„(r) —n„"(r)]

(26a)

EHF[ HF
]+EQM (26b)

where

EQM=EHF[tt0)+ [ TH"[n ]—T "[tt "]+U [tt„]—U[n H" ]+EHF[n 0] E„"[—n, "]+f dr v (r)[n, (r) —n„"(r)]]
(27a)

=EKS[tt HF] QE [tt HF]+ TKS[tt0] TKS[nHF]+ U[n ] U[tt HF]+EKS[tt0] EKS[tt HF]

+E, [n„]—E, [n„"]+fdr v(r)[n„(r) —n, "(r)] (27b)

The energy EQ, is the correlation energy as defined in ab initio theory because E„"[n„"][see Eq. (6)] is the standard
HF energy. Next, one exploits the fact that the HF density n„"(r) formally determines the exact ground-state density
n, (r), which therefore can be considered as functional n, ([n„"];r)of n, "(r) [12,13]. This follows from the fact that
the Hohenberg-Kohn theorem is also valid within the HF formalism [5], which implies that the HF density determines
the external potential U (r). For a given electron number X which is also given by the HF density the potential v (r) sub-
sequently determines the exact ground-state density. This allows us to interpret E~„as a functional of the HF density
n„"(r), and to write Eq. (27b) as

EQM[nH"]=E s[nHF] —bE, [n, "]+ T, [n„[n„"]]—T, [n„"]+U[n„[n,"]]—U[n„"]

+EKS[ 0[ HF]] EKS[ HF)+EKS[n0[ HP)] EKS[~HF]

+ f dru(r)[n, ([n, ];r)—n, "(r)}

Within this scheme, the exact ground-state energy is cal-
culated by carrying out a standard HF calculation. This
leads to the HF density and to all contributions of E,
given in Eq. (26), except E,Q„. The correlation energy
E~, must be taken into account by an approximation to
the density functional EQ„[n, "]of Eq. (28). In Ref. [14]
this scheme is applied and called HFDFT procedure, just
as the preceding scheme (iv) was. Of course, the two
methods are different and using the same name for both
might lead to confusion. In this work the term HFDFT

I

is used exclusively for the scheme (iv).
Approximate exchange and correlation density func-

tionals currently available [1] are derived to describe the
exchange and correlation energies E„[n]and E, [n], as
well as the corresponding potentials v„(r) and U, (r)
which emerge in the standard KS formalism. Therefore,
from a strict and formal point of view, today's approxi-
mate exchange-correlation function als should be em-
ployed only in the standard KS procedure (i) and the re-
lated exchange-only scheme (iii). However, the results of
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this work, i.e., the small value of the difference b,E, [n],
suggests that it leads only to very small errors, if the
quantities E, "[n] and U, "(r) appearing in the method
(ii) are treated by approximations to the formally
dift'erent quantities E, [n] and v, (r) of the standard KS
formalism. This is not an absolutely strict conclusion,
mainly for two reasons. First, we have investigated only
closed shell atoms and it remains to be seen whether our
findings for these systems can be generalized also to mole-
cules and solids. Secondly, small differences between the
functionals E, [n] and E, "[n] for certain densities are
not a strict proof that differences between the corre-
sponding functional derivatives, v, (r) and U, "(r), are
small too.

The HFDFT scheme (iv) yields the HF energy
E, "[n, ] and density n, "(r). However, if the terms
bE, [n, ] and U~, ([n, "];r) in Eqs. (24b) and (25) are
neglected scheme (iv) becomes identical to the exchange-
only scheme (iii). The small differences between the re-
sults from the exchange-only procedure (or equivalently
the OPM) and the HF procedure found for atoms [7,32]
must therefore originate in the quantities EE,[n, "] and

U~, ([n, "];r). Scheme (iv), if performed exactly, leads to
the HF density n, "(r) and not to the exchange-only or
OPM density n„(r) of scheme (iii). The difference be-
tween n„"(r) and n, (r) is caused by the potential
U~, ([n, "];r). The difference between the corresponding
HF and OPM energies is caused by b,E, [n, ] and also
indirectly by U~, ([n, "];r) through the difference be-
tween the densities n„"(r) and n, (r) which also affects
all other parts of the energy. The latter contribution is
negligible for the systems considered here. This can be
concluded from the results of Sec. III, which show that
the determinants N [n, ] and 4 [n, ], for closed
shell atoms, yield practically identical energies, despite
their somewhat different densities. For the model system
of the cubic electron gas this does not hold. In this case,
unlike as for closed shell atoms, the differences between
the HFDFT scheme (iv) and the OPM turn out to be
quite significant, at least as far as the one-particle eigen-
values are concerned [33].

The question of how far it is justified to employ ap-
proximations to E, [n, ] for the calculation of
E,~, [n, ] cannot be answered completely by the results
of this work. The difference between the correlation en-
ergies E~, [n„"]and E, [n, ] consists of two contribu-
tions, the term (

—)b,E, [n, ], plus the sum of the terms
in the large parentheses of the right-hand side of Eq. (28).
The results of this work suggest that the first contribu-
tion, ( —)AE, [n, "], is small. The second contribution
has its origin in the different involved densities, namely,
the HF density n, "(r) and the exact ground-state density
n„(r). Its magnitude remains to be investigated. The
functional E~, [n, ], from a formal point of view, is
much more dificult to study than the correlation energy
functionals E, [n] or E, "[n]. The reason is that
E, [n] or E, "[n] are functionals of a density n (r) and
give an energy which is determined by wave functions be-
longing to that density n(r), whereas E~, [n, "] is a
functional of one density, the HF density, and gives an

energy which depends in part on a wave function, that of
the exact ground state, to another density, namely, the
exact ground-state density. In other words the functional
E,~, [n, ], in contrast to the other correlation function-
als, formally contains the additional step of deducing the
exact ground-state density from the HF density. There-
fore method (v) introduces additional formal difficulties.
On the other hand, from a practical point of view,
method (v) is very appealing, because it is conceptually
simple and requires only a single evaluation of a density
functional after a standard HF procedure has been car-
ried out.
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APPENDIX: I.INEAR RESPONSE METHOD
TO DETERMINE KOHN-SHAM %AVE FUNCTIONS

FROM EI.ECTRON DENSITIES

In this appendix, the method of Ref. [21] to generate
the KS wave functions to a given electron density is
brieAy reviewed and the implementation of the procedure
employed in this work is discussed. The method of Ref.
[21] is based on the noninteracting X-electron
Schrodinger equation

[ Z +g ]@Ks E (PKS (A 1)

characterized by the potential U, (r) generating the opera-
tor v, [Eq. (Al) is identical to Eq. (7) of the main text; it
is repeated here for clarity]. At this point, v, (r) is an ar-
bitrary local multiplicative potential. The ground-state
wave function @ of the Schrodinger equation (Al) is
that X-electron wave function which gives the minimal
expectation value with the Hamiltonian operator
[T+U, ]. As a consequence 4 is, among all wave func-
tions which yield the ground-state density to the
Schrodinger Eq. (Al) and which therefore give the same
expectation value with the operator U„ that one which
minimizes the expectation value with the operator of the
kinetic energy T. This property is precisely the one used
in Eq. (1) to define the KS wave function to a given densi-
ty. Therefore each ground-state wave function 4 of a
Schrodinger equation (Al) is the KS wave function of the
corresponding ground-state density. This justifies the su-
perscript KS attached to N . Note that for the
identification of the ground-state wave function of Eq.
(A 1) with the KS determinant of the corresponding
ground-state density, the Hohenberg-Kohn theorem [1] is
not involved if the KS determinant is defined according
to Eq. (1). Indeed, if two different potentials U, (r) were to
lead to the same ground-state density, the above argu-
ment remains valid, and shows that the two potentials
U, (r) would also have the same ground-state wave func-
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[f'+u, ]y,.(r)=e;y;(r) . (A2)

The symbol y;(r) stands for the ith orbital including its
spin degree of freedom, i.e., y;(r) represents a two-
dimensional spinor.

The method of Ref. [21] uses the linear response opera-
tor G which connects infinitesimal changes 5u, of the po-
tential v, with changes 5n of the ground-state density
n (r) of 0& of Eq. (Al), i.e.,

5U, =G5n . (A3)

The representation of Eq. (A3) in ordinary space, which

tion, namely, the KS determinant corresponding to the
common ground-state density. The ground-state wave
function of a Schrodinger equation (Al), of course, deter-
mines up to an additive constant uniquely the potential
v, (r). To see this simply divide the representation of Eq.
(A1) in ordinary space by the ground-state wave function

. Therefore no two potentials v, (r) differing by more
than a constant yield the same ground-state density or
the same ground-state wave function. Thus the
identification of &9 of Eq. (Al) as the KS determinant
also leads to a proof, the constrained-search proof [1],of
the Hohenberg-Kohn theorem, which states that there
can be, within the addition of a constant, at most one po-
tential v, (r) generating via Eq. (Al) a ground-state wave
function @ which yields a given density n (r). The oth-
er way around, a potential v, ( r ) determines uniquely a
ground-state density n(r), if no degeneracies are present.
(For simplicity we assume throughout this work that no
degeneracies are present; for a discussion of degeneracies
and symmetries see Ref. [34].) Therefore the Hohenberg-
Kohn theorem establishes a one to one mapping between
ground-state densities and potentials.

The method of Ref. [21] is a procedure to determine
that local multiplicative potential U, ([n];r) which leads
via Eq. (Al) to a ground-state density which is identical
to some given reference density n (r). The corresponding
ground-state wave function then is the KS wave function

[n] corresponding to n(r). The discussion of the
preceding paragraph shows that the two conditions that a
wave function yields the reference density n (r) and that
it is the ground state to a Schrodinger equation (Al) are
sufticient to guarantee that the wave function is the KS
wave function N [n] to n (r). In other words, once it is
demonstrated that the solution @ of Eq. (Al) yields
n (r) any possible shortfalls of the method used to obtain
the corresponding potential U, ([n];r) are irrelevant. The
Hohenberg-Kohn theorem which guarantees that the po-
tential v, ( [n ];r ) is unique, except for an addition of a
constant, is not used to identify @ [n] as the KS wave
function of n (r). The Hohenberg-Kohn theorem or the
uniqueness of U, ( [n ];r ), however, is exploited by the
method of Ref. [21] to determine the U, ([n];r) corre-
sponding to a given reference density n (r).

In the absence of degeneracies the ground-state wave
function @ of Eq. (Al) is a single Slater determinant.
The N-electron equation (Al) decouples in N one-electron
equations for the orbitals q&, (r) forming the determinant
q) KS.

we denote as r space, reads as [21]

5v, (r)= Jdr G(r, r')5n(r'), (A4)

with

occ unocc y+(r)y (i )y+(r')y. (r')
G(r r')= g g s +c c.

S ~s
(A5)

(i) Solve Eqs. (A2) with an approximate potential U,
obtained in the previous cycle.

(ii) Determine the corresponding ground-state density
n and the difference An to the reference density n
(bn =n —n).

(iii) Determine the linear response operator G and its
inverse G ' on the space in which constant functions are
excluded.

(iv) Calculate a potential U, for the next cycle by add-
ing Av, =u b, n to the potential v, of the current cycle.

A —1

After convergence of the process, the final potential
V, (r) is equal to the effective potential U, ([n];r) belonging
to the reference density n(r) and the corresponding
Slater determinant is the KS wave function 4& of n (r).
This determinant N [n], of course, is built from the KS
orbitals to Eq. (A2) of the last iteration cycle and @ [n]
also is the ground-state wave function to Eq. (Al) with
the effective potential U, ([n];r). At the start of the itera-
tion process a first potential U, (r) has to be chosen. A
suitable choice, made in this work, is to take as starting
potential U, (r) the sum of the external potential, here the
potential of the nucleus, plus the classical Coulomb po-
tential to the reference density n (r) plus the local-density
approximation to the exchange potential of n(r). Be-
cause the first two contributions are exactly known parts

In Eq. (A5) the summations run over the occupied (occ)
and unoccupied (unocc) KS orbitals y;(r), respectively.
The former are the orbitals building the determinant

, while the latter are the energetically higher solu-
tions of Eq. (A2). The linear response operator G cannot
be inverted for arbitrary changes 5v, and 6n. The reason
is that the operator C has an eigenfunction, namely, 5v,
being a constant function, with an eigenvalue of zero.
Additionally only changes 6n which integrate to zero are
generated by G from changes 5U„because the electron
number of N is not afFected by a change of the poten-
tial v, . However, if constant functions are excluded from
the space of the changes 5v, and also from the space of
the changes 5n, then the linear response operator is inver-
tible (see Refs. [21,35] for a discussion). This follows
from the one to one mapping between densities and po-
tentials established by the Hohenberg-Kohn theorem. At
this point the additional assumption is made that all in-
volved densities are noninteracting v representable [1].
Through the latter assumption it is guaranteed that all in-
volved densities are ground-state densities for which the
one to one mapping with potentials v, exists.

One cycle of the iterative scheme of Ref. [21] to deter-
mine U, ([n];r) for a given reference density n (r) consists
of the following steps.
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M M

v, ([n];r)= y c/g/, (r), v, (r)= y c/g/, (r),
k=1 k=1

M

b, v, (r)= g d„g„(r) .
k=1

(A7)

The densities n (r) and n(r) cannot be identified with the
corresponding sums in Eqs. (A6) because they contain a
contribution of the linear combination of basis functions
of the original (M +1)-dimensional basis set which be-
longs to a constant function. The magnitude of such a
contribution is determined by the requirement on the
density to integrate to a fixed electron number X. This
requirement is met by any density built from X orthonor-
rnal orbitals. Therefore the coefficients ak and ak are
sufficient to characterize an X-electron density. The

of v, ([n];r) only the last contribution which is interpret-
ed as a first approximation to the exchange-correlation
potential has to be optimized. The process then
effectively determines the exact exchange-correlation po-
tential to the reference density n (r) starting from the
local-density approximation to the exchange potential to
n (r).

To obtain a converging scheme the approximate poten-
tials v, (r) occurring during the process have to be close
enough to the exact potential v, ([n];r) so that it is possi-
ble to apply a linear response approach in which
infinitesimal changes 6v, and 6n are substituted by finite
changes Av, and hn. Also problems originating in the v-

representable assumption may not interfere. However,
once the scheme has converged, these points become ir-
relevant with respect to the question of whether the
correct KS wave function to the reference density n (r)
has been generated. For this, as discussed above, two
conditions are sufficient, namely, that N [n] is the
ground state to a noninteracting Schrodinger equation
with a local multiplicative potential and that 4& [n]
yields n (r). Both conditions are fulfilled if convergence
has been reached.

In actual implementations of this scheme, the problem
arises that the r-space representation of the operator6, i.e., G '(r, r'), is unknown. There is no simple way
to exclude constant functions from the complete r space.
Therefore the occurring potentials and densities as well
as their changes hv, and An are expanded in an ortho-
normal basis set tgk } consisting of M real basis func-
tions gk(r). The basis set [gk } is obtained by excluding
from an original basis set of dimension M + 1 that
uniquely defined linear combination of basis functions
which corresponds to a constant function. (See Refs.
[21,35] for details. In Ref. [21] two different basis sets for
potentials and densities are introduced. This, however,
leads to unnecessary complications and therefore is not
done here. )

M M

(nr)~ y a/, g/, (r), n(r)~ y a/, g/, (r),
k=1 k=1

M

bn(r)= g b/gk(r),
k=1

[T+V, ]w;=E;w; . (A8)

The vector w, is the representation of the orbital y; with
respect to the basis set [y }.The matrices T and V, with
matrix elements T~=(y;~f'~y~ )and V, ;~=(. y;~v, ~yj. ),
respectively, represent the operators f'and v, in the basis
set Iy, }.

If one adds a matrix V,d, given by the sum

M
T

Vad X pi wi wi
i=1

(A9)

to the matrix V„ the Mr eigenvectors of Eq. (A8) remain
unchanged. The eigenvalues are changed from c.; to
c.;+p;, with the p; being constants. As long as the p; are
chosen in such a way that the eigenvalues c;+p, result-
ing for the N lowest eigenvalues c.; are again the N lowest
eigenvalues in the new spectrum of eigenvalues c;+p, ,
the occupied orbitals and therewith the density are not
affected by the modification of the matrix V, . This
demonstrates that V, can be substituted by an infinite
number of symmetric matrices without changing the cor-
responding ground-state density. This is not a contradic-
tion of the Hohenberg-Kohn theorem, because an arbi-
trary symmetric matrix is not, in general, the representa-
tion of an operator to a local potential, For nonlocal po-

change 4n does not contain a contribution of a constant
function and therefore can be completely represented by
the basis set [gk }. The potentials v, [n] and i/', as well as
the changes hv, can be chosen not to contain a contribu-
tion belonging to a constant function. The coefficients of
Eqs. (A6) and (A7) are collected in the vectors a, a, b, c,
c, and d, respectively. The operator 0 is represented by a
symmetric matrix 6 with matrix elements
G/, /=(gk ~0~g/) in the basis set IgkI. The inverse G
of Cx is the representation of 6 and the equation
b v, =0 b, n of step (iv) of the iteration process turnsA —1

into the matrix equation d =Ca b. The determination of
the orbitals in step (i) of the iteration process can be car-
ried out essentially exactly by solving the corresponding
Eqs. (A2) numerically. The iteration scheme is converged
if the coefficient vectors a and K are identical.

In this work, for technical reasons, the KS orbitals y;
are also expanded into an orthonormal basis set [gj } of
dimension M&. To simplify the presentation, the basis
Iy } is assumed to be real. The basis functions actually
used in this work contain complex spherical harmonics.
The basis set representation of the orbitals leads to addi-
tional complications, because in this case the
Hohenberg-Kohn theorem constituting the foundation of
the method [21] is not strictly valid, as will be demon-
strated next. (A general and comprehensive investigation
of basis set representations of densities, density matrices,
and potentials, as well as a thorough discussion of the
mappings between these quantities can be found in Refs.
[36,37].) In order to discuss problems arising from the
employment of finite orbital basis sets, we first have to
formulate the Hohenberg-Kohn theorem within the basis
set representation. If the orbitals are expanded in a basis
set, then Eq. (A2) turns into the matrix equation
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tentials, however, the Hohenberg-Kohn theorem does not
hold. Indeed the addition of the nonlocal operator
g;p;~y;)(y;~ to the operator v, of the local potential
v, (r) in Eqs. (Al) and (A2) with appropriately chosen
constants p,- also does not affect the corresponding
ground-state density [38]. For Schrodinger equations
with nonlocal potentials there exist one to one mappings
between the density matrices and the wave functions to
ground states [39]. These mappings exhibit some formal
similarities to the mappings established by the
Hohenberg-Kohn theorem. However, in contrast to Ref.
[39], the term Hohenberg-Kohn theorem shall be used
here exclusively for the original mapping between densi-
ties and potentials. Equations (A8) do not give the inost
general form of a matrix V,d which can be added to V,
without affecting the corresponding ground-state density.
Any matrix which mixes the occupied and unoccupied
orbitals only among themselves and keeps the eigenvalues
emerging from the set of occupied orbitals lower than
those emerging from the set of unoccupied orbitals
qualifie as Vad

Within the basis set representations used here the cri-
terion of whether a symmetric matrix is a matrix V, be-
longing to a local potential shall be whether the matrix
can be expanded according to

M

V, —g ckVk,
k=1

with matrix elements Vk;~
= (y; ~gk ~gj ), (A10)

and with the matrices Vk being the basis set representa-
tion of operators Uk generated by the basis functions
gk(r). The vector c collecting the coefficients ck
represents through Eq. (A7) a local potential u, (r) con-
nected with V, . The Hohenberg-Kohn theorem within
the representation defined by the basis sets [y; j and [gk j
is given by the statement that two different vectors c can-
not lead via Eqs. (A10) and (A8) to two sets of occupied
orbitals w; which give rise to the same vector a charac-
terizing the corresponding ground-state density. To
demonstrate that the Hohenberg-Kohn theorem in this
form is not, in general, obeyed we show that different vec-
tors c lead to identical orbitals w; and therefore to an
identical vector a. (How the vector a corresponding to a
set of occupied orbitals w, is determined is demonstrated
later. ) The matrix V, is symmetric and therefore consists
of (M&+1)Mz/2 independent elements. That means for
a given V, Eq. (A10) is equivalent to (M&+ 1)Mr/2
linear equations for the M variables ek. If the dimension

Ms of the basis set [gk j is greater than (M++1)Mz/2,
then the system of equations is underdetermined and
different sets of coefBcients ck, i.e., different vectors c, re-
sult in the same matrix V, and therefore lead to the same
orbitals, the same determinant @,and the same vector
a characterizing the corresponding ground-state density.
This clearly violates the basis set formulation of the
Hohenberg-Kohn theorem given above. The representa-
tions u, (r) of the potential in ordinary space resulting
from the two different vectors c by Eq. (A6) are not the
same for the different sets of coefticients.

If the inequality M ~ (M++1)Mz/2 holds, then
different vectors c nevertheless may lead to the same ma-
trix V, if the M vectors of dimension (M&+1)M&/2
which are built by the elements of the unique matrix ele-
ments of the M~ matrices Vk are linearly dependent.
Whether this happens depends on how balanced the basis
sets [gk j and [y j are chosen. Even if
Ms ~ (Mr+ 1)Mz/2 and if the vectors built from the ma-
trix elements of the Vk are linearly independent, this does
not guarantee that the Hohenberg-Kohn theorem is
obeyed. In the latter case different vectors c result in
different matrices V, . However, there may exist vectors
c,d which lead through Eq. (A10) to matrices V,d [see Eq.
(A9) and text thereafter]. The addition of such a vector
c,d to a given vector c changes V, but not the eigenvec-
tors of Eq. (A8) and therefore leads to the same density
matrix and the same vector a characterizing the corre-
sponding ground-state density.

Next we consider the consequences of such a violation
of the Hohenberg-Kohn theorem on the basis set version
of the scheme of Ref. [21] to generate KS determinants to
a given density. If the Hohenberg-Kohn theorem is
violated then the matrix representation G of the linear
response operator has zero eigenvalues and cannot be in-
verted directly. The symmetric matrix G always can be
written as

G=UA, U (Al 1)

with A, being the diagonal matrix of the eigenvalues of G
and with U being an orthonormal matrix consisting of
the eigenvectors of G. For step (iii) of the iteration
scheme an effective inverse of G is generated by inverting
all nonzero diagonal elements of A, and keeping any zero
eigenvalues unchanged. In actual calculations those diag-
onal elements with a magnitude smaller than a certain
threshold are set equal to zero. If that effective inverse of
G is used to calculate in step (iv) of the iteration scheme
the change EU, from the difference b n, only that part of
the density n of a certain cycle which can be represented
by eigenvectors of G with nonzero eigenvalues is moved
towards the corresponding part of the reference density
n (r). The remaining part of n which belongs to eigenvec-
tors of G with zero eigenvalue is not optimized through
the iteration procedure. The linear response operator
and therefore its matrix representation G depend on the
orbitals w, and consequently change from cycle to cycle.
Therefore, in each cycle, a different singular value decom-
position (Al 1) of the matrix G is obtained. The iterative
scheme is converged if the contributions to n (r) and I(r)
of that linear combination of basis functions [gl, j belong-
ing to eigenvectors of G with nonzero eigenvalues are
identical (or in practice sufficiently close).

After convergence of the iteration scheme, it has to be
checked whether the contributions to n (r) and n(r) con-
nected with the zero eigenvalues of G also are identical
(or in practice sufficiently close). Only if this is true is the
complete final density n (r) identical (or sufficiently close)
to the reference density n (r). This is the case for all sys-
tems considered in this work. To check this, a transfor-
mation of the basis set [gk j defined by the matrix U of
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Eq. (All) from the last iteration cycle has been carried
out. The coefficients of the basis set representations of
n(r) and n(r) for those new basis functions belonging to
zero eigenvalues of Cx differ by less than 10 ppm, if the
magnitude of the coefficients is similar to that of a typical
coefficient to a new basis function belonging to a nonzero
eigenvalue of G. For each order of magnitude the abso-
lute value of the "zero eigenvalue" coefficients to n (r)
and n(r) decreases, the absolute value of their difference
increases by at most one order of magnitude. Therefore
the absolute error remains small and is within the accura-
cy of the method.

If the vectors a and a, characterizing the densities n(r)
and n(r), are identical (in practice sufficiently close) then
the KS determinant to a=K is the determinant built by
the orbitals represented by the w; of the final Eq. (AS)
from the iteration scheme. The crucial point now is that,
for the identification of the Slater determinant built by
the orbitals represented by the w; with the KS deter-
minant of a density n (r) characterized by the vector a
[Eq. (A6)], the following two conditions alone are
sufficient: The w; are eigenfunctions to an equation of
the type of Eq. (AS) with a matrix V, given by Eq. (10),
and the w; lead to a density characterized by a. The way
in which the vector c determining V, has been obtained is
irrelevant. Therefore the fact that the Hohenberg-Kohn
theorem is violated does not matter, as long as at the end
of the iteration scheme the condition a =a is obeyed. The
reasons this condition turns out to be fulfilled here
despite the difficulties with the invertibility of the matrix
G originating in the violation of the Hohenberg-Kohn
theorem lies in the relations of the basis sets Igk I and

IX, I [4o].
Next the above statement for the identification of the

KS determinant is proven. The one-electron equations
(A2) for the orbitals with the N lowest eigenvalues are
equivalent to the X-electron equation (Al) for the deter-
minant built from them. In the basis set representation
considered here, Eq. (A2) turns into Eq. (A7) and Eq.
(Al) [or, to be precise, the minimization equivalent to Eq.
(Al)] is given by

E, =min g p,. [T+V, ]p; .=min ( Tr(P[T+ V, ] ) ] .

(A12)

The minimization (A12) runs over all sets of X orthonor-
mal vectors p, . The matrices P have the form

(A13)

The minimizing matrix P is the matrix built from the X
energetically lowest orbitals w; to the corresponding

one-electron equation (AS) leading to the energy E, :
N N

E, = g wT[T+V, ]w, = g s, (A14)

The density n '(r ) to a trial matrix P is characterized by
the vector a' of Eq. (A6) for n'(r). The components ak of
a' are given by

ak =Tr[PVk ] . (A15)

Inserting Eq. (A10) and subsequently Eq. (A15) into Eq.
(A12) leads to

E, =minITr[PT]+a' cI . (A16)

Next, the subset of matrices P yielding a density which
has expansion coefficients a' equal to the coefficients a of
the ground-state density of Eq. (A12) is considered. The
coefficients ak of the "ground-state vector" a are ob-
tained if the matrix P in Eq. (A15) is replaced by
g; =&w;w; . From minimization (A16), which searches
over all matrices P, it follows that among the subset of
matrices P leading via Eq. (15) to the ground-state vector
a, the one that minimizes the kinetic energy is the one
fulfilling minimization (A12) or equivalently (A16)

T, [a]=min[Tr[PT]I .
P a

(A17)

In Eq. (17) by "P—+a" it is indicated that the minimiza-
tion runs over all matrices P which yield via Eq. (A15)
the vector a. Equation (A17) is the equivalent of the
definition (1) of a KS determinant with respect to the
basis sets jyJ. ] and Igk}. The foregoing argumentation is
valid for arbitrary vectors c occurring in Eq. (A16) and
characterizing via Eq. (A10) the effective potential V, in
Eqs. (A12) and (A14). That means if a vector c is found
which leads via Eqs. (A10) and (AS) to a set of vectors w;
yielding via Eq. (A15) with P=g+ &w;w; to the
coefficients ak of a vector a which in addition also
characterizes the reference density n (r) then the vectors
w; represent the KS orbitals y; which generate the KS
determinant to n (r).

Finally, we mention that the method of Ref. [21] to cal-
culate KS determinants to a given density as it is imple-
mented in this work can be derived directly as a basis set
constrained-search procedure according to Eq. (A17)
[2S]; this means as a procedure which directly searches
the set of orthogonal orbitals which minimize the kinetic
energy among all sets of orthogonal orbitals yielding a
given reference density. The vector c in this derivation
emerges not as the representation of a local external po-
tential but is obtained as Lagrange multipliers originating
from the constraint that the orbitals yield a certain densi-
ty. In r space the equivalent interpretation of v, (r) as
Lagrange multiplier is well known [1].
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