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A simple optical experiment is discussed that implements the “quantum time-translation machine”
suggested by Aharonov et al. [Phys. Rev. Lett. 64, 2965 (1990)] for photons. The time-translation effect
was observed experimentally as the shift of the fringe pattern in a modified Mach-Zehnder interferome-
ter. The possibility of describing the effect classically, in terms of Maxwell’s equations, suggests an alter-
native interpretation that does not invoke time-translation effects.

PACS number(s): 03.65.Bz, 12.20.Fv

I. INTRODUCTION

In the standard interpretation of quantum mechanics,
an ‘“‘ideal measurement” of an observable 4 on a quan-
tum mechanical system W brings the system into an
eigenstate of A whose eigenvalue is the result of the mea-
surement. This kind of measurement is ideal in the sense
that it allows one to make the uncertainty arbitrarily
small—at least in principle. Real measurements of
course never reach this extreme limit and leave the sys-
tem in a state that is not exactly equal to the eigenstate.
The perturbation of the system can be kept small if the
interaction with the measurement apparatus is weak
enough, at the price of higher uncertainty in the mea-
sured value.

Aharonov and co-workers [1,2] call this type of mea-
surement “weak measurement.” They use it to discuss
the properties of a system between two standard measure-
ments. Their concept involves three distinct steps: the
preparation of an initial state ¥,, a low-resolution mea-
surement of a variable A, and a postselection measure-
ment, which projects the states of the system onto a state
W, after the measurement. The result of such a measure-
ment depends strongly on the scalar product (¥,|¥,) of
the two states: if the states ¥, and ¥, are identical, the
second measurement does not affect the system, and if the
two states are orthogonal, the probability for a success in
the second measurement is zero. In the intermediate
case, however, some rather nonintuitive effects may arise.
In these cases, the second measurement selecs part ot the
total system for observation. For this part, which passes
the second measurement, the expectation value for the
weak measurement is {4 ) e =W, 4|¥,) /(¥ |¥,).
The surprising property of such a measurement is that
the expectation value can lie far outside the eigenvalue
spectrum of A if the states ¥, and ¥, are almost orthogo-
nal. One example is that the “the result of a measure-
ment of a component of the spin of a spin- particle can
turn out to be 100 [1,3].

This holds also for the case that the observable A4 ap-
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pears in the Hamiltonian that controls the evolution of
another system. A weak measurement may then find an
energy that lies outside the eigenvalue spectrum of the
Hamiltonian. An experimenter who prepares the system
in an initial state ¥, and measures the state to which it
has evolved after a time 7 might conclude that the system
is farther from the start than it could have arrived during
the measurement time if it had evolved under any of the
eigenvalues of #. Aharonov et al. describe a procedure
that brings a quantum mechanical system into such a
state by letting it evolve under a Hamiltonian that de-
pends on an external quantum variable and subsequently
performing a measurement on this external system [4,5].
They interpret this effect as a “time-translation
machine.”

Duck, Stevenson, and Sudarshan [3] discussed the con-
cept of weak measurements and conclude that the predic-
tion of Aharonov et al. was essentially correct and “in-
volves nothing outside ordinary quantum mechanics.”
This analysis as well as the name “quantum time-
translation machine” may leave the impression that this
effect is a peculiarity of quantum mechanics [6]. It is the
purpose of this paper to counter this view by discussing a
simple optical setup that was implemented experimental-
ly and shows the predicted effect. The theoretical
analysis shows that it can be described not only quantum
mechanically, but also within the classical formalism of
Maxwell’s equations. This allows us to relate the effect to
more familiar effects in classical physics.

The paper is structured as follows: the following sec-
tion summarizes the quantum mechanical description of
the general situation. Section III discusses the specific
experimental situation, which consists of a modified
Mach-Zehnder interferometer. Section IV analyzes the
situation in terms of Maxwell’s equations and we con-
clude with a summary of the results.

II. QUANTUM MECHANICAL DESCRIPTION

Before discussing the specific example, we establish the
notation by describing the general concept of Ref. [4]. It
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superimposes two states to a final state, which is, in a
sense, more remote from the original state than any state
it would reach within the same time without this super-
position. Figure 1 illustrates the idea: we consider a sys-
tem ¥, that undergoes two distinct evolutions described
by the unitary propagators U,, Ug, which take the initial
state W,(0) into the intermediate states W,(¢),Wg(t). The
Hamiltonian that drives the two unitary evolutions de-
pends on a quantum mechanical variable 4, which does
not depend on the degrees of freedom of the system. The
two evolutions U, Ug correspond to eigenvalues a and
of an observable A. The two states V¥, Wy are initially
identical, ¥ ,(0)=W4(0)=¥,(0), but become distinct by
the different evolutions

W (1)=U,¥,(0), Wyt)=Ug¥,(0) . (1

The next step in the time-translation concept is the for-
mation of a superposition of these two states by an ideal
measurement of an operator A4’, which does not com-
mute with 4. The measurement brings the system into
an eigenstate £,,( A') of the operator 4’, which is a linear
combination of the eigenstates £,(4) and £4(A4) of the
operator A,

E (A ) =c b A)Fepp(A) . 2)

If the system before this
¥(1)=U,¥,(0)+ Ug¥(0), it becomes

W(t+)=c W, (1) +cg¥a(1)=c,U,¥s(0)+czUg¥,(0) .
3)

Obviously, the resulting state can also be written as
Y(t)=UWY,(0), where

U=c,U,+cgUg 4)

measurement  is

is a “superposition of time evolutions” [4]. The not so in-
tuitive properties of this superposition of time evolutions
include the possibility that the effective time evolution U
can differ significantly from the evolution of the individu-
al systems described by U,, U p- In particular, it can lead
to states that the system would otherwise reach only after
a much longer evolution period. The authors of Refs.

U \P(x(t) =
o U,'Y,(0)
U Y(t) =
_______________________ €a'Vo(0) +
\PS(O) > CB\PB(O) =
U UY(0)
B W) =

FIG. 1. Schematic representation of the superposition of
time evolutions: the initial state ¥(0) evolves along two separate
time evolutions U,, Ug into the intermediate states W,(¢), ¥4(1).
The superposition of these two states, W(z) can be considered as
having originated from the original state through the effective
evolution U.

[4,5] compared this effect therefore to a time-translation
machine.

III. EXPERIMENTAL REALIZATION

We hope to clarify this seemingly counterintuitive
phenomenon by discussing a simple experiment that real-
izes this general scheme. The “system” consists of a sin-
gle mode of the radiation field and the “external” variable
corresponds to the photon spin, i.e., to the polarization of
the light. This is the simplest possible realization of the
general concept: the system, i.e., the single mode radia-
tion field, is a scalar, while the external variable has only
two eigenstates, the smallest possible number.

We write the initial state of the radiation field as ¥ (0)
and the two polarization states as |a),|B). If the light is
initially polarized 45° with respect to the polarization «,
the total initial wave function is the product state
W(0)=(1/V2)[¥,(0)+¥0)], where ¥, (0)=¥(0)|a).
The two substates evolve as

W (1)=U,W,(0), Wyt)=Uz¥40), (5)

where the evolution operators are complex numbers with
modulus one. The choice of a one-dimensional system
ascertains that the propagators are always well defined
quantities with a single parameter. This parameter—the
phase—plays the role of the time.

The final superposition of the two states is obtained by
projecting the external state onto a state that is a super-
position of the two eigenstates |a),|B), with coefficients
that are different from those of the initial condition. The
most interesting situation arises if we project the external
system onto a polarization state |a')=cos(8)|a)
+sin(@)|B) which represents a linear polarization rotat-
ed by an angle 6 from the direction . We then obtain

W (£;0)=(1/V2)[cos(0)U,+sin(6)Ugl¥,(0) . (6)

In our experimental implementation, a birefringent ele-
ment in the beam path distinguishes the evolution of the
two polarization states. At location r behind the
birefringent element and time ¢, the field has evolved into
a state described by the propagators

Ua =eiwt—k~r)’ Uﬁzei(mt—k~r—kAnI= Uaeié R N

where 8= —k Anl is the additional phase acquired by po-
larization B,k is the wave vector, An is the refractive in-
dex difference, and [ is the length of the birefringent ele-
ment. The projection onto a state of the external system
is accomplished by a polarizer that selects a linear polar-
ization state determined by its orientation 6 from the
direction |a). The effective propagator for the projected
state is then

V2U=U_[cosO+sin(8)e®]
=U,[cosf+sin(0)(cosd+i sind)]= U ae™® , (8)
with the overall phase

sind sind

cos@+sinfcosd | ° ©)

¢=tan"!
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Standard optical techniques can measure this phase.
As an example, Fig. 2 shows a possibility that uses a
Mach-Zehnder interferometer. This setup eliminates the
time-dependent term e’®, and the reference phase can be
adjusted to eliminate also the propagation effect de-
scribed by the term e’** contained in U,,. If the polarizer
is oriented in the direction of |a) (|B8)), corresponding to
6=0 (m/2), the phase ¢ of the meter beam behind the
analyzer becomes O (8), as expected. In the range
0< 6 <m/2, the overall phase falls within the range [0, 8]
spanned by the phases acquired by the two basis states
¥, Vg, but it falls outside the range for 7/2 <@ <. This
is therefore the time-translation regime.

In the experimental implementation, a HeNe laser
beam propagates through a Mach-Zehnder interferome-
ter. In one of the two arms, an adjustable retardation
plate (Soleil-Babinet compensator) provides the
differential evolution of the two polarization states of the
meter beam. The axis of the compensator, which defines
the polarization direction a, was oriented at 7 /4 from
the polarization of the incident laser beam. The two po-
larization states W ,, W therefore have equal weights. The
meter and reference beams were recombined on the out-
put beam splitter of the interferometer. A rotatable po-
larization analyzer in the path of the combined laser
beams allowed the selection of the final polarization state.
The two beams were slightly misaligned, such that a
fringe pattern appeared on a detection screen. A phase
shift of the meter beam could then be measured as a shift
of the position of this fringe pattern. The resulting data
were recorded with a photodiode array, digitized, and
transferred to a computer, where the phase was extracted
by a least squares fitting procedure.

Figure 3 shows a quantitative comparison of the
theoretical and experimental phases as a function of the
analyzer orientation. The line represents the theoretical-
ly expected behavior for a relative phase of §=0.3, while
the circles represent the experimentally observed values.
The agreement between theoretical and experimental
values lies within the experimental uncertainty. The ex-
perimental data were corrected for variations in the opti-
cal path length associated with the rotation of the polar-
izer by subtracting the corresponding data from a run
with §=0. The shaded area at the bottom of the figure
marks the range of phases [0, 8] that fall within the range
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FIG. 2. Schematic representation of the experimental setup.
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FIG. 3. Comparison of experimental and theoretical phases
for §=0.3 as a function of analyzer orientation. The shaded re-
gion at the bottom extends from ¢=0 to ¢=325.

spanned by the two basis states ¥,,¥g The remaining
part outside this range includes the majority of the
points. In the terminology of Aharonov et al., it demon-
strates the time-translation effect.

IV. CLASSICAL INTERPRETATION

Obviously, the experiment described here does not re-
quire a quantum mechanical analysis—Maxwell’s equa-
tions predict the same result. Classical optics describes
the light after the retardation plate as elliptically polar-
ized: the electric field vector at a given point rotates while
its amplitude changes. To assign a unique phase value to
this field, a reduction to a one-dimensional system is
necessary. The question of how the phase of an elliptical-
ly polarized field can be defined was discussed by Pan-
charatnam [7], who chose the direction of the major axis
of the polarization ellipsis to define a linearly polarized
component whose phase defines the phase of the ellipti-
cally polarized wave.

This reduction to a single dimension discards the infor-
mation about the component in the orthogonal direction.
A complete description, which is adapted to the present
experiment, considers the phase of the field vector in an
arbitrary direction

sind sind

o —1
¢(0)=tan cos@+sinf cosd

) (10

which is of course identical to Eq. (9) derived by the
quantum mechanical analysis. Similarly, the field ampli-
tude depends on the orientation 0 as

a(0)=v"1+sin(26)cosd . (11)

Both the phase and the amplitude of the linearly polar-
ized components are thus functions of the orientation and
can assume a range of values that varies from 0 to 2 for
the phase and from 1—cosd to 1+ cosé for the amplitude.
Taking all orientations into account, the probability to
measure a particular phase ¢ is
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FIG. 4. Phase of a linearly polarized wave that results from
projection of the elliptically polarized wave on a given direction
as a function of orientation. The thickness of the line indicates
the field amplitude for the corresponding orientation. The func-
tion plotted along the vertical axis indicates the weighted proba-
bility P(¢) for finding a phase ¢.

de¢(0)

P®)=[""d0a(0) |-

(12)

This function may be interpreted as a probability distri-
bution for the phase of an elliptically polarized wave,
averaged over all orientations and weighted with the field
amplitude.

Figure 4 summarizes this dependence: It shows the
phase ¢(8) of the linearly polarized component as a func-
tion of the orientation from zero to 7. The width of the
line is proportional to the amplitude a(8) in this direc-
tion. The region where the line is wide corresponds to
the orientation along the major axis of the polarization
ellipsis. Here, the variation of the phase with orientation
is slow. The region where the amplitude is small, which
corresponds to the minor axis of the ellipsis, shows a fast
variation of the optical phase.

The phase distribution P(6) is plotted along the verti-
cal axis. It shows that the phase of the elliptically polar-
ized wave is not a unique number, which would corre-
spond to a & function, but a distribution whose width de-
pends on the ellipticity. For the case of circularly polar-
ized light, this function becomes a constant, no particular
phase is preferred. Pancharatnam’s definition corre-
sponds to the maximum of this function, which is also its
average. It represents thus a natural choice for a reduc-
tion of the distribution to a single number.

V. DISCUSSION

The setup described here realizes the time-translation
effect of Refs. [4,5] but can be described classically, using
Maxwell’s equations. We conclude therefore that the
effect is not specific to quantum mechanics, but occurs

also in classical field theories. It results directly from the
linearity of the theory (the Schrodinger equation in one
case, the Maxwell equations in the other). The superposi-
tion of two states W, 5 (in the quantum mechanical termi-
nology) or waves (in the classical case) with different
phase and polarization leads to a state ¥ whose phase is
not a fixed quantity, but a distribution that depends on
the direction of the field vector and on the phase
difference 8. For identical phases, §=0, the combined
wave becomes linearly polarized and its phase is well
defined, independent of the analyzer orientation. A non-
vanishing phase difference & establishes a correlation be-
tween orientation 8 and optical phase ¢(6), which be-
comes complete when d=/2. The dependence between
the two variables means that a measurement of the opti-
cal phase in one direction is a biased measurement that
selects a specific value out of this distribution. That such
selective measurements yield results that depend on the
selection taken and can assume any value within the total
distribution is well known from classical physics and not
a specifically quantum mechanical effect.

This interpretation of the effect as a biased measure-
ment can easily be transferred to the quantum mechani-
cal description: the combined system is initially in a prod-
uct state of the system and external variable. The evolu-
tion under the coupling Hamiltonian establishes a corre-
lation between them—the resulting state is no longer se-
parable, system and external variable become Einstein-
Podolsky-Rosen (EPR) correlated. A measurement per-
formed on the external variable preselects then the value
of the system observable.

A more detailed quantum mechanical analysis depends
on the interpretation of the quantum mechanical formal-
ism. In a purely statistical interpretation of quantum
mechanics [8], there is no significant difference from the
classical viewpoint, but an interpretation at the level of
individual particles leads to rather different conclusions.
The Copenhagen interpretation, e.g., implies that in those
rare cases where the measurement of the variable A’
yields the value a', the whole system makes a transition
into a state with advanced or retarded phase. In a causal
interpretation, like that of Bohm [9-11], we would con-
clude that the measurement on the external variable A’
modifies the quantum potential in such a way that only
those particles whose initial conditions are consistent
with the advanced or retarded arrival at the detector can
reach the detector at all. How close the analogy between
the classical and the quantum mechanical description is
depends therefore to some degree on the interpretation of
quantum mechanics that one prefers.

In conclusion, we have demonstrated an optical im-
plementation of the quantum time-translation machine
by superposition of time evolutions suggested by Aharo-
nov et al. and Vaidman [4,5]. This implementation
shows all the features that the general concept predicts
and also allows, besides the quantum mechanical, a clas-
sical description. We conclude that the observed effects
are not specific to quantum mechanics but are well
known in classical field theories. The time-translation
effect can be reinterpreted as a selective measurement:
the coupled evolution of system and external variable es-
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tablishes correlations between them that make it possible
to select a specific value of the system variable by an ap-
propriate setting of the external variable. This interpre-
tation is applicable in the classical as well as in the quan-
tum mechanical regime.
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FIG. 2. Schematic representation of the experimental setup.
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FIG. 3. Comparison of experimental and theoretical phases
for 8=0.3 as a function of analyzer orientation. The shaded re-
gion at the bottom extends from ¢ =0 to ¢=25.



