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Relativistic modifications of charge expansion theory
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We examine the e6'ects of relativity on the high-Z (where Z denotes nuclear charge) behavior of
isoelectronic sequences and the modifications required of the traditional charge expansion theory. We
propose that the idea of a complex be refined to include hydrogenic angular-momentum degeneracy, so
that a relativistic complex should be defined as the set of all configurations with the same occupation of
angular-momentum quantum numbers j as well as the same principal quantum numbers n. This leads to
asymptotic, high-Z grouping of states that might cut across the conventional LS-coupled states, group-
ing together levels from difFerent configurations, as long as the n and j occupation numbers remain the
same. This regrouping substantially reduces the asymptotic configuration interaction from that predict-
ed by a nonrelativistic theory. Frequently correlation configurations that are significant in low-Z ions
disappear entirely in high-Z ions.

PACS number(s): 31.10.+z, 31.30.Jv

I. INTRODUCTION

The systematic behavior of atomic properties along an
isoelectronic sequence has long been a basis for under-
standing atomic structure theory, permitting the predic-
tion of atomic properties by interpolation and extrapola-
tion along the atomic number. In general, this also pro-
vides the framework for understanding qualitative trends
in the atomic structure of moderately and highly charged
ions. The systematic behavior of energy levels has pro-
vided a useful spectroscopic tool for the prediction and
identification of ionic energy levels [1,2]. The problem of
understanding other properties, such as transition oscilla-
tor strengths, has also benefited from analyses based on
isoelectronic regularities [3]. The effects of an important
class of strong configuration interaction (CI), namely, the
asymptotic CI, also belong to one aspect of isoelectronic
sequence behavior.

The theoretical foundation of most such analyses is the
charge expansion theory of Layzer [4], where the many-
electron Schrodinger equation is partitioned such that
one can make a perturbation expansion in descending
powers of Z, the "bare" nuclear charge. Thus, for exam-
ple„ the nonrelativistic total energy of any state of any
atom or ion can be written as

E=EOZ +EiZ+E2+Ei/Z+
Here the zeroth-order energy Eo is the sum of the hy-

drogenic energies of each of the electrons of the atom
(ion). The first-order energy E, represents the leading
effect of the electron-electron repulsion and the succeed-
ing E s are higher-order energy coefticients of Rayleigh-
Schrodinger perturbation theory. It is important to note
that each of these energy coeScients is independent of Z,
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the only Z dependence being that explicitly indicated in

Eq. (1). Similar expansions can be derived for other prop-
erties as well.

One can use the Z expansion theory to carry out calcu-
lations of atomic structures and make quantitative pre-
dictions of energy levels and other properties [5]. Such a
program has proven successful for lighter systems with
few electrons [6]. However, of even more importance is
the fact that it provides a single comprehensive frame-
work for understanding isoelectronic behavior. The un-

derlying idea of this scheme is to look at an entire se-
quence as a single entity rather than as individual ions.
From this standpoint, the atomic system is viewed as
having a continuous variable Z, which can be raised or
lowered at will. Real atoms or ions are described by
those points where Z is an integer.

Another important feature of this scheme is the asymp-
totic (Z~ ao ) configuration interaction needed to obtain
the Ei coefficient. If there is a degeneracy in the zeroth
order, then these multielectron configuration state func-
tions will mix in the first order [4,7]. The classic example
here is the ground state of the Be-like ions, where 2s 'S
is asymptotically degenerate with 2p 'S and this
configuration interaction persists along the entire se-
quence. As discussed later, this CI produces a linear Z
dependence in the correlation energy.

This theoretical scheme holds out the marvelous prom-
ise of encompassing all the ions of a sequence, irrespec-
tive of the stage of ionization. It should be noted that,
since the expansion is in powers of Z, the inverse nu-
clear charge is the natural parameter for a graphical dep-
iction of atomic properties [3]. With the Z = Oc limit
known exactly from theory [7], the Z '=0 point is well
established and a11 other high-Z values are obtained by
interpolation, not extrapolation. Unfortunately, this
charge expansion theory is entirely nonrelativistic and
the highly charged ions of greatest interest wi11 most cer-
tainly be dominated by relativistic effects. Also, it is not
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possible to make so neat a theoretical reduction relativist-
ically. The expansion coefficients E, of Eq. (1) are now
dependent on Ze, where o. is the fine-structure constant.
However, it is still possible to make some physically
reasonable conjectures as to the manner in which relativi-
ty modifies the predictions of charge expansion theory,
and that is the topic addressed in this paper.

In the next section we review the nonrelativistic Z-
expansion theory and present in Sec. III our arguments
for the physical eA'ects to be expected due to relativity.
Section IV is devoted to examples of the relativistic
modifications of energy levels and asymptotic CI. We ex-
pect relativistically that energy levels will cluster together
not only according to their principal quantum number
occupancy, as predicted by the nonrelativistic theory, but
in addition according to the j quantum number occupan-
cy. This further suggests that the only asymptotic CI to
survive for high Z is also determined by the j occupancy.
Our conclusions are presented in Sec. V.

II. NONREI. ATIVISTIC Z-EXPANSION THEORY

We use atomic units (a.u. ) throughout this article un-
less stated otherwise. The conventional charge expansion
theory begins with the many-electron, nonrelativistic
Schrodinger equation written in terms of the scaled dis-
tance variable p=Zr. This casts the equation into a form
suitable for Rayleigh-Schrodinger perturbation theory
with the interelectronic repulsion as the perturbation and
1/Z as the perturbation parameter,

ghs(P)+ —g1 1

P
Z p)v I pv

(2)

where E is the eigenvalue of the "unscaled" Schrodinger
equation.

The wave function and the total energy are then given
by the expansions

0 =e"'+w'"/z +e"'/z'+
6 =E +E /Z+E /Z +

(4)

(&)

Because cf the separable nature of Ho, +' ' is simply the
antisymmetrized product of hydrogen atom wave func-
tions, populated according to the occupation numbers of
the state under consideration. As mentioned in Sec. I Eo
is the sum over these hydrogen atom energies and E, is
the first-order energy coeIIicient

—( ip(0)~ @~A(o) ) V y —1 (6)
p)v

It should be emphasized that everything is evaluated
with hydrogen atom wave functions, i.e., with Z =1. The
entire Z dependence has been thrown into the power-
series expansion in Z

If there is a degeneracy in zeroth order, it is removed
by diagonalizing the first-order energy matrix over these

where the sums run over all the electrons in an atom.
Here hz is the nonrelativistic, one-electron hydrogen
atom Hamiltonian and the eigenvalue is

@=E/z',

4( '=a, 4(ls 2s )+a2@(ls 2p ), (8)

where the coe%cients a; are the elements of the eigenvec-
tor of the E, matrix [Eq. (6)] and the configuration state
functions C&(ls 2s ) and 4(ls 2p ) correspond to 4' '

and 4(„' in Eq. (7), respectively. The set of all

configurations of the same parity that are degenerate in
the hydrogenic limit (without relativistic corrections) has
been called a complex and it is really the more appropri-
ate designation for the states of a highly charged ion
rather than any single configuration [4].

This configuration interaction within a complex, in-
duced by the asymptotic degeneracy, has significant
consequences in two important ways. First, matrix ele-
ments evaluated with the CI wave function of Eq. (8) usu-

ally are quite diA'erent from matrix elements evaluated
with only one of the degenerate configuration state func-
tions, namely, the nominal state configuration. Further-
more, experience shows that usually the mixing predicted
by charge expansion theory persists along the entire
isoelectronic sequence [8] at least qualitatively and can
have strong efFects on properties such as oscillator
strengths [9].

Second, the asymptotic CI has a profound eftect on the
correlation energy for an isoelectronic sequence. The
correlation energy is traditionally defined [10] as the
difference between the exact total energy and the single-
configuration Hartree-Pock energy minus relati Uistic
corrections. Obviously, this is too simplistic since modern
atomic structure theory can now account for most lead-
ing relativistic and quantum electrodynamic (QED)
corrections. How to define a correlation energy that is
consistent with the current theoretical capability is a
complicated issue by itself and we shall retain the tradi-
tional definition in this article since our conclusion is not
afFected by adopting a more modern definition of the
correlation energy.

It is known that the Hartree-Fock approximation also
has a similar expansion in powers of Z ', with the same
zeroth-order energy term as in Eq. (1), but with a first-
order energy contribution that is the same only for the
nondegenerate case [11,12]

EHF =EOZ +E&Z+Eo+ (9)

so that the correlation energy AE, which is the difference
between the Hartree-Fock and the exact energy, is given
by an expansion

E =hE i Z +AE2 +AE3 /Z + (10)

'or, when there are no degenerate configurations in the
high-Z limit,

hE =AE2 +EE3 /Z + .

In other words, the correlation energy has a linear depen-

degenerate state functions

v =(c"' vie"'& .
W q

In the previous example of a Be-like ion, one diagonalizes
the first-order matrix to get the zeroth-order function
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dence on Z or approaches a constant asymptotic value
(b,E2) with high Z, depending on whether or not there is
an asymptotic degeneracy.

Since the zeroth-order energy is given by the sum of
one-electron energies e„,the gross level ordering for high
Z is determined solely by the principal quantum number
occupation. This is often quite different from the level
structure of the neutral atom. For example, 2p 'S is not
even a bound state for neutral Be, but it quickly comes
down below all of the n =3 levels as one moves along the
sequence. Similarly, all states of 3d in the Al sequence
must come down below the 3s 4I levels, even though
3s 4s is the first excited state in neutral Al. In general,
all states in an isoelectronic sequence must cluster togeth-
er asymptotically according to their principal quantum
number occupancy. Such knowledge about the asymptot-
ic behavior of a sequence provides a general framework
for understanding the structure problem, allowing one to
anticipate changes in level structure, what configuration
interactions should be necessary, etc. The essential phys-
ics of the method derives from the fact that, for a highly
charged ion, the nuclear central field is so strong that the
structure problem is dominated by the hydrogenic char-
acter of the system, with the interelectronic repulsion tru-
ly providing only a perturbation to the level scheme.
However, the dominant configuration interactions are
determined by the hydrogenic degeneracy condition.

III. RELATIVISTIC ENERGY LEVELS

Unfortunately, a very strong central field produces
classically very large particle velocities, especially near
the nucleus. This in turn means that the system requires
a relativistic description, whereas the preceding discus-
sion has been nonrelativistic. Unfortunately, also, a fully
relativistic charge expansion theory has not yet been
developed and it is dificult to see how one would develop
such a theory. Some attempts have been made to incorp-
orate the lowest-order relativistic corrections [13,14], i.e.,
adding the one-particle Pauli operators to the Hamiltoni-
an, which introduce terms of order Z e into the energy
expansion [15]. However, a fully relativistic theory
would in principle include all powers of Z, making the
idea of a large-Z asymptote meaningless.

The problem arises from the Dirac single-particle
Hamiltonian, which would have to be included in the
treatment. In the conventional approach to the mul-
tielectron, relativistic structure problem, the wave equa-
tion 1S

gh~(p)+ g 1 lr„„'P=E'Il,
. P p)v

where hz is the hydrogenlike Dirac Hamiltonian with
nuclear charge Z. However, since the Dirac Hamiltonian
is linear in the momentum operator, a Z scaling of the
distance variable does not lead to a separation where the
interelectronic interaction can be treated as a perturba-
tion with the resulting expansions in powers of Z ', as in
the nonrelativistic theory. Indeed, since the Dirac energy
ultimately diverges for a finite value of Z (Z =137 for a
point nucleus), one should not expect a theory that per-

e„,=a [[1+(aZln') ]
' —1},

where a is the fine-structure constant and

n'=n —(j+—,')+[(j+—,') —(aZ) ]'

(13)

(14)

The rest mass has been subtracted in Eq. (13) to make e„~
consistent with the nonrelativistic one-electron energy.

We therefore suggest that one should define a relativis-
tic complex as the set of all relativistic configurations
with the same n and j occupation. For high Z, energy
levels should be expected to cluster together according to
their nj occupancy and to separate if the jj configurations
are different, even though the principal quantum num-

bers are the same. We also suggest that the asymptotic
configuration interaction will follow the analogous rule,
which can be significantly different from the predictions
of the nonrelativistic theory.

In Sec. IV we will describe the results of relativistic
calculations of selected ionic structures along isoelectron-
ic sequences. The first group of examples is designed to
illustrate the relativistic modifications of the high-Z
energy-level structures. The second group shows the
effect of relativity on the asymptotic configuration in-

teraction. For certain cases, it is possible for relativity to
entirely remove the configuration interaction so that the
high-Z wave function reverts to a single (relativistic)
configuration, with the concomitant disappearance of the
linear-Z behavior of the correlation energy. All the cal-
culations were carried out both in the Pauli
intermediate-coupling approximation and in the
multiconfiguration Dirac-Fock (MCDF) approximation
without the Breit interaction and QED corrections. The
results of the Pauli approximation and the MCDF calcu-
lations were basically the same. Hence, except where
otherwise noted, the results quoted will be those of the
MCDF calculations. We should emphasize that these are
only a few representative samples. The effects being illus-

trated have much broader and more far-reaching conse-
quences.

The Breit interaction and QED corrections —better
known as the Lamb shift —have a more complicated Z
dependence. For instance, the leading term of the self-

energy has a (Za) ln(Za) dependence, while that of the
vacuum polarization has a (Za) dependence [16]. The
leading term of the Breit interaction also has a (Za)
dependence [16]. To avoid complication, we have omit-
ted the Breit interaction and QED corrections from all

our relativistic numerical results when they are used to

mits arbitrarily large values of Z.
Nevertheless, we feel that it should be possible to de-

scribe the high-Z trends of atomic properties in terms of
a relativistic modification. In analogy to the nonrelativis-
tic scheme, due to the overwhelming nuclear central field,
one should expect the structure problem to be dominated
by the hydrogenic character of the system, with the in-
terelectronic repulsion introducing a "fine tuning" of the
level structures. The differences due to relativity arise
from the fact that the Dirac hydrogenic energy levels de-
pend not only on the principal quantum number, but also
on the one-electron total angular momentum j = I+—,',
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elucidate qualitative aspects of the charge expansion
theory. However, including appropriate Breit interaction
and QED corrections in theoretical results is crucial for
achieving reasonable agreements with experimental data
on highly charged ions [17]. All of our relativistic calcu-
lations were carried out with extended nuclei, while non-
relativistic calculations were performed with point nuclei.
The Breit interaction, which is the leading relativistic
correction to the interelectronic repulsion, is usually in-
cluded in MCDF calculations as a first-order perturba-
tion. Therefore, the total energy is afT'ected by the Breit
interaction, but the wave functions are not.

IV. RESULTS QF CALCULATIC)NS

Figure 1 shows the computed excitation energies,
within the n =3 complex, for the Na isoelectronic se-
quence. The excitation energies here have been scaled by
Z,~=Z —10, which would give an eIII'ective Z of unity for
neutral Na. Nonrelativistically, the separation of the 3s,
the 3p, and the 3d levels should vary iinearly with Z. The
inAuence of relativity does not begin to dominate until
somewhere in the vicinity of Z =40, i.e., about the 20th
stage of ionization. For high Z the "clustering"' of levels
according to the relativistic complex becomes evident.
The 3p, /z level continues to "track" the 3s&/z ground
state quite closely all along the sequence. The 3p3/z level,
however, separates rapidly for high Z, tracking the
behavior of 3d3/z The 3d5/z level also begins to separate
from the J =3/2 levels at around Z =60. One should ex-
pect this kind of rearrangement to occur quite generally,
probably more slowly for n =4 levels and more rapidly
for those with fl =2.

The Na sequence is basically a one-electron system.
However, this jj clustering of energy levels should also
ensue for true multielectron systems. A very simple ex-
ample is provided by the lowest levels of the boron se-
quence, where the ground state is 2s 2p and the lowest
excited states arise from 2s2p . In terms of the relativis-

tic complex, the lowest group of n =2 levels should be-
long to the (j =1/2) configurations, with the second
group arising from (1/2) (3/2). This is shown to be the
case in Fig. 2, where we give the scaled excitation ener-
gies of the B sequence as determined by a MCDF calcula-
tion. The trend towards the asymptote produces a level
crossing in the vicinity of Z =40, which is not in itself
especially unusual. The nonrelativistic theory often pre-
dicts a host of level crossings before achieving the asymp-
totic behavior, depending on the atomic system. What
does appear somewhat unusual here is the fact that the
lowest level of 2s2p has come down well below 2s 2p3/z,
which is the upper level of the ground state doublet P.
This kind of restructuring of the energy-level spectrum
according to the relativistic jj complex is expected to be
quite general, with similar shufBing happening for the C
sequence, the N sequence, the Al sequence, etc.

One of the more extreme cases is illustrated in Fig. 3,
which shows the scaled excitation energies within the
n =3 complex of the Cl sequence. Near the neutral end
of the sequence, the lowest levels are those of the
ground-state doublet of 3s 3p P. However, with in-
creasing Z, relativity rapidly drives the upper P, /z level

up in the spectrum. The 3s3p S&/z level behaves the
same way as the Pj/z level. Meanwhile, a multitude of
levels of 3s 3p 3d, which, however, belong to the relativ-
istic complexes (1/2) (3/2) and (1/2) (3/2) (5/2), be-
gins to develop approximately in parallel with the ground
state, all of them crossing the rising P, /z and S, /z lev-

els, which belong to the relativistic complex (1/2) (3/2) .
By about Z =80 this relativistic restructuring of the
spectrum appears to be complete.

Turning now to the relativistic alterations of the
asymptotic CI, we take for our first example the simple
but classic case of the ground states in the Be isoelectron-
ic sequence. Nonrelativistically, there is a strong mixing
of 2p with Zs, a mixing that persists all along the se-
quence so that this CI is by far the largest single correla-
tion correction for neutral Be itself. This interaction also
gives rise to the well-known linear dependence of the
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volve at least one 2p3/2 which does not have the same
energy in the hydrogenic limit. We therefore find the
rather unusual situation where relativity has completely
removed the configuration interaction predicted nonrela-
tivistically and the asymptotic state is a pure single
configuration. Figure 7 shows the behavior of the mixing
coefficients of the pertinent relativistic configurations.

We should remark that this is also true of the lowest
J=1 and 2 states, the asymptotic configuration being
2s, /22p, /22p3/2, and it is impossible to construct a 2p
term with which to interact asymptotically. The same
situation applies for the B sequence, as well as the analo-
gous Al and Si sequences. No doubt such simplifications
will be found to prevail for numerous other cases.

Our final illustrations of this effect are examples in the
Mg sequence. The ground state of the Mg sequence is
similar to that of Be. However, the two J =1 states of
the 3s3p configuration each provide difFerent examples of
the relativistic modifications of charge expansion theory.
Nonrelativistically, both the I' and the 'P states will ex-
hibit an asymptotic configuration interaction with 3p3d.

I

Mg sequence Nonrelativistic
Relativistic

M

C
Q3

O

030
C3

0.05—

0.00

—0.05

—0.1 0—

0.00

3pz/23dz/2
3pa/23d 5/2

3pi /23d~/2

I

0.02

3p3d ~P

0.04 0.06

FIG. 8. Comparison of the relativistic and nonrelativistic
3p3d mixing coefficients for the lowest J =1 (odd) state in the
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FIG. 7. Nonrelativistic and MCDF configuration mixing
coefficients for the lowest J=0 state of the C isoelectronic se-
quence.

However, relativistically the lowest J =1 state arises
from 3s &/z 3p i/2, and no 3p 3d mixing will survive at high
Z. Relativity therefore converts this to a single-
configuration asymptote. This is illustrated in Fig. 8,
where we show the coefficients of the 3p 3d
configurations.

For the second J= 1 state, however, the relativistically
dominant configuration is 3s, /23p3/p and this does have a
surviving interaction with 3p&/23d3/2 as shown in Fig. 9.
The other 3p3d configurations, which do not belong to
the relativistic complex, are clearly tending toward zero,
while this one is not.

V. CQNCLUDING REMARKS

Our major conclusions can be summarized by saying
that for high Z, in an isoelectronic sequence, one should
expect the energy levels to be clustered together accord-
ing to both their n and their j quantum number occupan-
cy. This is different from a nonrelativistic approach
where they cluster according to the principal quantum
number alone. Relativity can, and often does, splinter
the levels of a nonrelativistic IS-coupled state into
different large-Z asymptotes. Thus, for examples, the
two levels of the ground configuration doublet of the B or
the Al sequence eventually belong to different asymptotic
clusters of energy levels.

As in the nonrelativistic theory, the asymptotic level
clustering also defines a relativistic complex and therefore
also the surviving high-Z configuration interaction. As a
consequence, on the whole, the degenerate configuration
interaction is substantially reduced over that predicted by
the nonrelativistic theory. In many cases the interaction
is much weaker, as in the ground states of the Be se-
quence or the Mg sequence, so that weights of
configurations in a relativistic complex are significantly
smaller than in their nonrelativistic counterparts. In
many other cases, relativistically, the configuration in-
teraction disappears entirely, so that for high Z the ion is
correctly described by a single-configuration approxima-
tion.

Ultimately, this should simplify the correlation prob-
lem for highly charged ions since the proper zeroth-order
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approximation is represented by either a single
configuration or a much more weakly coupled
multiconfiguration approximation than indicated by a
nonrelativistic theory. This considerably mitigates the
need for a multiconfiguration representation of the refer-
ence state [18] for a proper treatment of the correlation
problem, whether it be a variational multiconfiguration
approach or a relativistic many-body perturbation theory
(RMBPT). For instance, RMBPT can be applied success-
fully to high-Z members of the C sequence (see Fig. 5),
where the ground state consists of a single (and closed-
shell) relativistic configuration ls 2s 2p, &2. In contrast,
the Be sequence has two degenerate relativistic
configurations even at the high-Z limit, 2s and 2p&&2,
thus requiring a multiconfiguration description as the

starting point for a perturbation theory. This is probably
why Johnson, Sapirstein, and Cheng [19] encountered
convergency difficulty for Be-like uranium but not for C-
like uranium. Low-Z members of the C sequence, howev-
er, require multiconfiguration descriptions because both
the 2p»2 and the 2p3/2 configurations are degenerate in
the low-Z limit.
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