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We study the time evolution of a linear superposition of two spatially separated wave packets, and we
focus on the entanglement of the two distinct branches of the state vector with the environment. We
focus in particular on the dynamics of a dissipative oscillator under the infiuence of objective processes
of wave-function collapse, the continuous spontaneous localizations (CSL) recently proposed by Ghirar-
di et al. [G. C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 42, 78 (1990)]. We prove that the en-
tanglement of the system of interest with the environment induces an accumulation of spontaneous
wave-function collapses denoted by us as the environment-enhanced CSL process. This process of CSL
accumulation is triggered by the same mechanism of interaction between the quantum system and the
environment as that responsible for relaxation and dissipation. In agreement with the predictions of a
preceding paper of our group [D. Vitali, L. Tessieri, and P. Grigolini, Phys. Rev. A 50, 967 (1994)], the
CSL processes are shown to produce negligible e6'ects at the statistical level. However, if we assume the
attitude stimulated by the recent literature on optical quantum jumps, which is forcing us to adopt
individual-system pictures, we show that the single runs are characterized by processes of wave-function
collapses occurring at times compatible in principle with the experimental observation.

PACS number(s): 03.65.Bz, 42.50.Lc

I. INTRODUCTION

One of the most controversial aspects of quantum
mechanics stems from the linear nature of the
Schrodinger equation. This means that if ~g, (t)) and

~ g2( t ) ) are distinct solutions of the Schrodinger equa-
tion, the wave function

~ g(t) ) =
~ P&(t ) ) +

~ g (t 2) ) is also
a solution of it with an acceptable physical meaning. In
the special case where

~ g, ( t ) ) and
~ $2(t ) ) are states of a

macroscopic system corresponding to two distinct trajec-
tories, this property leads to a striking convict with clas-
sical mechanics and with our direct perception of dynam-
ical processes, thereby making it dificult to recover clas-
sical from quantum mechanics. The problem of the prop-
er interpretation of quantum mechanics is still the subject
of research and passionate debate [1—4] and we are not in
a position to give here a fair and complete illustration of
the wide gamut of interpretations proposed. We limit
ourselves [5] to roughly dividing the researchers of this
field of investigation into two major groups. The authors
of the former group [6—10] rest on the belief that it is
possible to settle all the paradoxical aspects of quantum
mechanics without changing it, but only considering the
important fact that no isolated system exists in nature
and that the interaction between the system of interest
and its environment always has to be properly con-
sidered. For the sake of simplicity, we choose Zurek [6,7]
as the representative of this former group.

The authors of the latter group [1,4, 11—16] maintain
that the problems raised by the superposition of distinct
macroscopic positions can only be solved if quantum
mechanics is adequately changed in such a way as to

derive a unified representation of both macroscopic and
microscopic processes [11]. This extension of quantum
mechanics must be made in such a way as to leave the dy-
namics of microscopic systems essentially coincident with
the predictions of ordinary quantum mechanics. For
macroscopic systems, on the other hand, the deviations
from ordinary quantum mechanics must become
significant for the new dynamical rules to prevent the su-
perposition of macroscopically distinct states with no
need to use the inhuence of the environment to account
for the destruction of quantum-mechanical coherence.
We essentially refer to the theoretical proposal made by
Ghirardi, Rimini, and Weber (GRW) [11]. According to
these authors, the wave-function collapses already take
place at the level of microscopic systems without result-
ing, though, in significant dynamical corrections to the
prescriptions of ordinary quantum mechanics. This is so
for the following reason. Let us image that
~g(t)) = ~/&(t))+ ~$2(t)) refers to a microscopic body,
e.g., a proton, and that the distance between the two dis-
tinct positions is b,Q. The process of direct collapse
affecting an individual microscopic constituent is charac-
terized by the two key parameters A, and 1/Va. The first
is the rate of occurrence of the process of wave-function
collapse, and its value is set [11]at A, =10 ' sec '. The
value of the second parameter is assumed [ll] to be
1/V'a = 10 cm and represents the distance beyond
which two distinct spatial components of the same state
must be found for a collapse to be effective. In other
words, if b.Q ((1/&a, the collapse into one of the two
distinct positions never occurs and if EQ=1/&ct, or
larger, it occurs in 10 years. It is evident that with these
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new dynamical rules, the dynamics of a microscopic body
fits almost exactly the predictions of ordinary quantum
mechanics.

Let us consider now a macroscopic system of N parti-
cles. In the GRW scheme, the evolution of the statistical
operator is dictated by the Liouville —von Neumann equa-
tion, corrected by the occurrence of the processes of
spontaneous localizations [11]:

where

3/2

Jd x exp ——(q,. —x) p

X exp ——(q, —x)

Typically, the center of mass Q and the internal degrees
of freedom [r ] are decoupled, since one has
H=H&+H, . This decoupling is present also in the
GRW version of quantum mechanics. In fact, it is easy
to prove that the density matrix for the center of mass

p&
=Tr„[p] obeys the evolution equation

(1.2)

that is, the center of mass of a macroscopic system
behaves as a single particle, which is now subject to a
strong localization process, with an enhanced rate

This implies that for a body of 1 g, a linear
superposition of two wave packets at a distance larger
than 10 cm is reduced into one of its components in a
time of the order of 10 sec. This means that the
quantum-mechanical coherence survives for times much
shorter than the time required for us to perceive the
motion of macroscopic bodies, and that this motion is
virtually indistinguishable from that predicted by ordi-
nary classical mechanics. In the formalism of the statisti-
cal operator, this collapse accumulation manifests itself
in the quick diagonlization of the density matrix in the
coordinate representation. However, the processes of
spontaneous localization correspond to a real collapse of
the wave function and an equivalent individual-system
picture is now available [12,13], describing the evolution
of the state vector in terms of a stochastic and nonlinear
Schrodinger equation. In spite of the fact that
throughout this paper we shall be adopting the statistical
formalism of (1.1), we shall keep in mind this individual-
system picture and, adopting the terminology of Ref.
[13],we shall refer to these processes as processes of con-
tinuous spontaneous localization (CSL).

The center of gravity is an illuminating example of
macroscopic variable subject to a significant process of
accumulation of the individual spontaneous localizations.
However, in the field of condensed matter we cannot ig-
nore the fluctuation-dissipation processes as a possible
source of accumulation of the CSL processes. This is so

because in condensed matter a microscopic constituent
interacts with infinitely many other constituents, and
since each of them undergoes an individual CSL process,
we might reasonably argue that this interaction process is
responsible for an accumulation of collapses as well as for
the birth of fluctuation-dissipation properties. In an ear-
lier paper [17],we have assessed that an ordinary process
of quantum-mechanical Auctuation-dissipation is left
essentially unchanged by the occurrence of collapses
affecting the bath particles. However, this result, albeit
incontrovertible, was based on a statistical picture and
for this reason left essentially unsolved the question of
whether or not an individual-system representation of the
system of interest would lead to jumps occurring at times
compatible with experimental observation. This question
is of some interest if we make the optimistic assumption
that the technology of the individual-system observation
[18]might become so advanced as to go beyond the ambi-
guities of the so-called Zeno effect [19,20].

We think that the conclusion of the previous paper [17]
confirms that the GRW physics is statistically equivalent
to ordinary quantum mechanics. However, we want to
prove here that this statistical equivalence does not
convict with a significant enhancement of the processes
of spontaneous collapses and that, in addition to that
which was pointed out by the authors of the GRW and
CSL theories, concerning the center of gravity of a rigid
body, an additional process of enhancement of significant
interest for quantum statistical mechanics might exist.
This enhancement process is triggered by the same physi-
cal mechanism as that behind the environment-induced
decoherence phenomena. To give an intuitive illustration
of it, let us illustrate first the process of environment-
induced decoherence. As pointed out earlier, the
environment-induced decoherence is, according to Zurek
[6,7], the key ingredient to use to explain why in classical
mechanics the superpositions of distinct spatial com-
ponents are forbidden. We shall refer to this point of
view as decoherence theory (DT) [21]. To make the basic
aspects of the DT clear, let us study the dynamics of a
dissipative quantum oscillator, initially placed in the fol-
lowing state:

(1.3)

where
~ tp ) is a coherent state shifted with respect to the

equilibrium position by the quantity b, Q /2 in the positive
direction and

~

—y) the coherent state shifted by the
same quantity in the opposite direction. The representa-
tion in terms of coherent states is supposed to be the most
convenient to recover, in the proper limit, classical phys-
ics from quantum physics [22]. The larger we make the
quantum numbers, the closer quantum mechanics should
be to the predictions of classical physics. However, the
larger ~y~ is, the wider the separation b.Q between the
spatial positions of these two states, thereby generating a
paradoxical condition, referred to in literature as the
Schrodinger cat [3,23]. The DT provides the recipe to
settle this paradoxical problem by adopting the following
two key ingredients.

(i) Influence of the environment. A macroscopic sys-
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tern cannot be regarded as being fully isolated from its
environment. Therefore, the initial condition (1.3) must
be replaced by a proper initial condition concerning both
the quantum oscillator, which is expected to become
"classical, " and its environment. The choice made for
the initial state of the total wave function of the
"universe, "

I QT(0) &, is

(1.4)

where p T, in accordance with (i), must be the density ma-
trix of the "whole universe. " Definition (1.5) implies a
statistical interpretation of quantum mechanics resting
only on ensembles of systems, with no place left for a
description in terms of individual systems.

Let us see how, by using these two ingredients, the DT
"settles" the problem posed by the Schrodinger cat. First
of all, due to the interaction with the oscillator of in-
terest, the environment rearranges itself very quickly and
within a very short time rD the initial state (1.4) is
changed into

(1.6)

where the states
I
E & and

I
E + & fulfill the orthogonality

condition

(E,IE, &=0 (1.7)

due to the macroscopic character of the environment. At
this stage, ingredient (ii) enters into play. If we measure
an observable concerning the oscillator, namely, the sub-
system of interest of the whole universe, the adoption of
the definition of quantum mean value (1.5) implies

( A & =Tr(pT 2 )=Tr, (ps A ),
where p& is the reduced density matrix defined by

ps=Tr pT . (1.9)

Using (1.7), it is immediately seen that at times t =rD, the
reduced density matrix of the system of interest is given
by

(1.10)

which is indistinguishable from a statistical distribution
of oscillators, half of them located at the position

where IE & represents the initial quantum state of the en-
vironment. The evolution of the whole system is driven
by ordinary quantum mechanics.

(ii) The orthodox definition of quantum mean value of
an observable A. According to the orthodox interpreta-
tion [22], the quantum mean value of an observable 3,
denoted by ( A &, is the result of an average over an
infinite number of measurements repeated under the same
conditions or, equivalently, of an average over a Gibbs
ensemble of identical systems. Thus, even when we are
studying a pure state, rather than a statistical mixture,
the correct way of expressing ( A & is given by

(1.5)

where 1/I is the longitudinal relaxation time of the oscil-
lator. This is a dephasing time and it turns out to be ex-
tremely short, thereby ensuring a quick destruction of the
Schrodinger cat (1.4). This result coincides with that of a
preceding work by Zurek [25] and Caldeira and Leggett
[26] and the philosophy behind it is essentially shared by
Joos and Zeh [9].

Let us see now how this process serves also the purpose
of triggering a sensitive enhancement of the spontaneous
collapses. Let us consider the case, explicitly studied in
this paper, where the environment is represented by an
infinitely large number of harmonic oscillators, linearly
coupled to the oscillator of interest. The entangled con-
dition (1.6) means that the individual ith oscillator of the
bath, with frequency co; and coupling strength c;, tends
to set itself in a state which is a linear superposition of
two wave packets localized around two distinct spatial
positions at a distance

E;b,
hL;=

m;co;
(1.12)

from one another. This is so because the coupling be-
tween the oscillator of interest and ith bath oscillator
shifts the origin of the harmonic potential of the latter os-
cillator by the quantity (1.12) in the positive or in the
negative direction, according to whether the oscillator of
interest is shifted by the quantity EQ in the positive or
the negative direction, respectively.

The direct CSL process acting on this "bath" oscillator
causes a reduction of its wave function and hence of the
whole entangled state (1.6) with increasing e%ciency as
hL,- widens, until it fulfills the condition

(1.13)

Q =b, Q /2 and half of them at the position Q = —b, Q /2.
Note that the decoherence time coincides with the time

necessary for the states E (t) & and IE (t)& to become
orthogonal. This is described by a unitary time evolution
of the whole universe and does not have the important in-
gredient of irreversibility necessary to establish a com-
plete equivalence between the dephasing process and the
occurrence of a real collapse, which is irreversible by
definition. This proves that the problem of recovering
classical mechanics is subtly related to the microscopic
derivation of irreversibility and decoherence itself as an
irreversible process. We think that this aspect is more
conveniently dealt with from within the CSL physics,
which is irreversible and becomes approximately reversi-
ble when it is expected to be almost equivalent to either
quantum or classical mechanics. This aspect will be dis-
cussed somewhere else. For the time being, let us follow
the conventional approaches to decoherence and irrever-
sibility, including the subjective assumptions necessary to
make these approaches satisfactory [3].

The decoherence time ~D has been evaluated by Unruh
and Zurek [24] to be

$2

2I Mk~ T( b, Q )
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which ensures the complete efBciency of the CSL reduc-
tion process. Notice that we shall assume for the bath os-
cillators an Ohmic distribution of frequencies. Thus, the
large hQ, the more numerous the bath oscillators satisfy-
ing (1.13), thereby resulting in an increased rate for the
collapse of the wave function of the central oscillator. In
a certain sense, the central oscillator collects collapses
from the bath oscillators, resulting in a cumulative effect,
which we refer to as the environment-enhanced CSL
effect (EECSL).

Notice that the EECSL mechanism of collapse accu-
mulation is well distinct from that taking place on the
center of gravity of a macroscopic body, as we shall dis-
cuss in more detail later on in this paper. A substantial
difference between the two processes, however, already
emerges from the sketchy description of the mechanisms
outlined above. The collapse accumulation on the center
of gravity refers to the dynamics of a macroscopic vari-
able, and the GRW and CSL theories have been tailored
for the speci6c purpose of recovering in this case the
prescriptions of ordinary classical mechanics. The
environment-enhanced CSL effect, on the other hand,
refers to both macroscopic and microscopic variables.
This is so because it is closely connected to the processes
of fluctuation and dissipation, and these, in turn, are not
limited to macroscopic variables, but can also be extend-
ed to a microscopic variable, with the only proviso that
this microscopic variable is coupled to in6nitely many de-
grees of freedom.

We shall not be giving the individual-system picture
now available to describe the CSL processes [12,13].
However, the reduced master equation that will be built
up in the following sections of this paper will turn out to
be the sum of a decoherence term corresponding to the
DT and one, much smaller so as to fulfill the conditions
of statistical agreement with ordinary quantum mechan-
ics, corresponding to the EECSL effect. Within an
individual-system picture, the dynamics described by the
reduced master equation must be perceived as the time
evolution of the wave function of the system of interest
expanded over distinct spatial components. The EECSL
decoherence process corresponds to real collapses of the
wave function into these components. What would the
individual-system time evolution corresponding to the

DT be like? Within the CSL perspective, the DT motion
corresponds to the phases of the expansion coeScients
over the distinct spatial components undergoing a sort of
Brownian motion triggered by the interaction with the
environment and with no real collapse into any of these
components.

The paper is organized as follows. Section II is devot-
ed to the mathematical derivation of the EECSL effect on
the basis of the mathematical results of [17]. The physi-
cal nature of this process and its connection with the
fluctuation-dissipation process are illustrated in Sec. III.
With the concluding remarks of Sec. IV, we discuss in
more detail the consequences of these results on an
individual-system representation.

II. THEORETICAL DERIVATION
OF THE EECSL EFFECT

x q;+
E;

, Q
77l I CO).

(2.1)

where the double sign + means that we do not limit our-
selves to studying the case of the stable oscillator of Ref.
17 (positive sign) and that our result can also be applied
to the case of the unstable oscillator (negative sign). The
%+1 particles of the system are assumed to be distin-
guishable.

Due to the harmonic nature of the system under study,
it is convenient to adopt the Wigner picture [27]. We de-
scribe the state of the whole system (in a statistical sense)
in terms of the Wigner quasiprobability distribution

This section is devoted to the theoretical derivation of
the rate of the EECSL processes in the special case of a
linear oscillator, either stable or unstable, interacting
with an environment of harmonic oscillators. The calcu-
lations of this section rely heavily on the formal develop-
ment carried out in the preceding work [17]. For the
sake of clarity, we shall shortly review the treatment of
[17], and we shall adapt it to the specific purpose of this
paper.

We study the following model Hamiltonian:

~2
1 N P.+—MQA+g + —men;

2M 2 2m 2

2

1
pw(Iq p ]'t)= „+, II "y exp —g p;y; (Iq; —y;llplIq;+y;j) (2.2)

whose evolution in the presence of the CSL processes act-
ing on each oscillator, is given by [17]

apw CXW2=IH, p~]r~+ 2, k; exp
Bt i=0 4 gp2

(2.3)

where the label i =0 denotes the oscillator of interest, i.e.,
Qo

=—Q and po =P. —

The dynamical contribution of ordinary quantum
mechanics is given by the first term on the rhs of Eq. (2.3)
and it is equal to the classical Poisson brackets because in
the linear case under discussion, the differential operator
generating the quantum evolution of the Wigner
quasiprobability is proved [27] to coincide with the classi-
cal evolution generator.

The second term on the rhs of (2.3), a non-gaussian
diffusionlike operator, expresses the effect that the CSL
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processes have on the signer quasiprobability. Notice
that in the preceding paper [17] this same term was used
to express the dynamical correction that, according to
the GRW theory [11], must be added to the standard
quantum evolution. In that specific case, the parameters
A.; denote the mean frequency of the process of spontane-
ous localization for the ith oscillator, and the "decoher-
ence parameter" a is defined by the spatial length 1/&ct,
which represents the distance after which a linear super-
position is transformed into a statistical mixture. Within
the CSL theory [12,13] the standard Schrodinger equa-
tion is supplemented by the inclusion of a nonlinear and
stochastic correction, with a strength y that is related to
the parameters a and k by y =A(a/4') ~ . The param-
eter a retains the original meaning. Under the assump-
tion that the particles are distinguishable, the GRW and
the CSL lead to the same evolution equation for the sta-
tistical density matrix [12,13].

F(go, ~o;t)= fdQdPexP (Qg—o+Pvro) Pii, (Q, P;t)

=Tr . exp —(Qgo+Pmo) P(t) ~ . (2.4)

It was proved [17] that the characteristic function
F(yo, rro,'t ), corresponding to a given initial condition for
the whole system, Fo( I y;, vr; J ), can be written as follows:

In Ref. [17] we derived an exact expression of the con-
tracted Wigner quasiprobability p11,(Q, P; t), which is ob-
tained from the total distribution (2.2) by integration over
the coordinates of the environment oscillators. The re-
sult of this derivation can be expressed in a simple form
in terms of the Fourier transform of p~(Q, P; t ), i.e., the
characteristic function F(yo, m.o't ) defined by

N A, o(r)
F(go rro, t)=exp g A, ;f dr 'exp ——A;o(r)pro+

i. =O 4 l
foal O

1O

~ ~ m, . XO
XFo ' m A o( t )pro+ A .o( t )go A (ot )pro+ A o( t )

mo mo
(2.5)

N s111(zk t )
Aoo(t)= A(t)= g Rok-

k=0 ~k

where

(2.6a)

+ Ok

N 11+ g
1 m, M (zq —co. )

(2.6b)

(mo=M), namely, as the product of two factors, of
which the first provides the effects of the CSL processes
and the second describes the standard quantum evolu-
tion. The dynamical quantities A;o(t) appearing in (2.5)

are given by

one imaginary, thereby yielding exponentially diverging
expressions for the functions A;o(t).

In Ref. [17] the general solution (2.5) was analyzed in
detail in the case of a particular class of initial conditions,
the "constrained equilibrium initial condition, " with the
whole system in a state of canonical equilibrium at tem-
perature T, except for the mean values of the central os-
cillator, (P(0) ) and (Q(0) ). We need now to adapt the
approach of Ref. [17] to difFerent initial conditions in or-
der to discuss the processes of decoherence and collapse
of the linear superposition (1.3). For this reason, we have
to consider the factarized initial states of the form (1.4),
which are not contained in the class of constrained equi-
librium initial conditions. To this end, we shall consider
the class of factorized initial conditions of the form

A o(t) f dr A(t) i s[no,.c(t —r)], i&0
co; QMm,

(2.6c)

The "frequencies" zk are the normal-mode frequencies of
the model Hamiltonian (2.1) and are the %+ 1 solutions
of the eigenvalue equation

(2.7)

pops

exp( —81, /king T)

Tr [exp( —A~ /k~ T ) ]

~2
+

2 m( CO~+.
2m I.

(2.8a)

(2.8b)

Note that in the stable case [when in (2.7) the positive
sign applies] all the %+ 1 frequencies zk are real. In the
unstable case [when in (2.7) the negative sign applies] this
eigenvalue equation results in X real frequencies and in

describing the oscillator of interest in a generic state with
density matrix pz and the environment, decoupled from
the central oscillator, with the canonical equilibrium dis-
tribution corresponding to the temperature T. If we ap-
ply the general solution (2.5) to this case, we get (see also
Ref. [28])
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X A;0(r)
F(Xo,mo;t)=exp g A.; dr exp ——A;0(r)ma+

0 4 M

2

X@0 MA(t)no+ A(t)X0, A(t)no+ A(t) expI —
—,'[X(t)Xo+ Y(t)~o+MX(t)XO~O]],

M
(2.9)

where @o(Xo,mo) is the characteristic function associated
with [according to definition (2.4)] the initial condition po
of the central oscillator and the functions X(t) and Y(t)'
are expressed in terms of the A;0(t) in the following way
[28]:

(2.9), after some straightforward algebra we derive the
non-Markovian master equation for the Wigner quasipro-
bability p~(Q, P;t) of the central oscillator. Its exact ex-
pression in the case of factorized initial conditions of the
form (2.8) is

N i5co„X(t)=
z g m„co„coth

A„o(t)
X A„o(t)+ (2.10a)

'pw(Q P;t) = [LHR(t)+LcsL(t)]P w(Q P't ) .
Bt

(2.11)

The first term describes the standard quantum evolution
of the damped oscillator, and its expression, first derived
by Haake and Reibold [28], reads

N i6co„
Y(t) =—g m„~„coth

2 „, " " 2k~T
A„o(t)

A„o(t)+
~n

(2.10b)

Although the exact time evolution for the reduced
quasiprobability distribution provides a complete descrip-
tion of the dynamics of the central oscillator, a more
direct approach to the EECSL processes and to the eval-
uation of the mean collapse time ~c associated with them
can be derived from the explicit expression of the master
equation. As shown in Refs. [24,29,30], when the CSL
processes are switched off, the off-diagonal density matrix
elements are made to quickly vanish in a preferred basis
(pointer basis) by the diffusion term of the master equa-
tion. When the CSL processes on each oscillator of the
bath are switched on, there appears an additional contri-
bution to the decoherence of the system of interest,
which, does not, however, have anything to do with a
standard decoherence process. This increase in the
decoherence rate is caused by the occurrence of real
wave-function collapses whose frequency is significantly
increased, with respect to the case of an isolated oscilla-
tor, by the same entanglement process as that causing the
decoherence of the DT [6,7].

Therefore, let us derive the explicit expression for the
master equation. By differentiating the exact expression

LHR(t)=
a —, a

MBQ
+MA (t)Q +y(t} P

BP BP

+D(t), f(t)—
BP2 BPBQ

(2.12)

A(t) —A(t) A(t)
A (t) —A(t) A(t)

A(t)A(t) —A(t)A(t)y(t)=
A (t) —A(t) A(t)

D(t) = ,' Y(t)+y(r—)Y(t)+ —,'M'0'(t)X(t),

(2.13a)

(2.13b)

(2.13c)

f(t) = ,'My(t)X(t) —M—Q—'(t)X(t)——,'MX(t) .

(2.13d)

The second term in (2.11) is the crucial correction to the
standard quantum dynamics resulting from the CSL pro-
cesses. It is convenient to write this contribution by iso-
lating the term corresponding to the bare continuous
spontaneous localization of the central oscillator, i.e., the
CSL process that the central oscillator would undergo in
the case of no interaction with the environment. We thus
obtain

LcsL(t) =LcsL+LcsL(t)
r

aAI csL ~o exp
4 BP'2 1

a' A 0(')
L,"„(t)=$ dr[ A( )r+(y)tA, ,(r)+n'(t)A„(r)] A„(~) +

0 2 0 (jP2 M BQBP

(2.14a)

(2.14b)

A;o(r)
X exp A,.o(r) +

2

(2.14c)

We want to prove that the CSL processes are enhanced by the occurrence of dissipation. From a formal point of
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view, dissipation is obtained when the bath frequencies have a continuous distribution. The continuum limit is obtained
by replacing discrete sums with integrals and by using the spectral density [31]

2

J(co)=—g 5(co—co;) .
m; Q)

(2.15)

We consider in particular the Ohmic spectral density with a Lorentzian cutoff function, namely,

CO

J(co)=r)co z
CO +N

(2.16)

where g is the friction coefficient and co, is the frequency cutoff of the environment. In the limiting case of an extremely
fast thermal bath, which means co, ~~, we get [28]

y(t)= =2I,
M

0'(t ) =+0', (2.17)

where I is the damping coefficient of the velocity of the oscillator of interest. The negative sign in (2.17) refers to the
unstable oscillator and the positive to the stable oscillator. The interesting aspect of the infinitely fast bath case is that
because of (2.17), the first factor in the integral of Eq. (2.14c) for i =0 identically vanishes, that is,

Aoo(r)+y(t) Aoo( r) +0 (t)A00(r)=0 (2.18)

for both the unstable and the stable oscillator. This implies that we can rewrite the contribution L csi (t ) in (2.14c) as

LcsL(t)= g f d [rA, (~o)+2rA, O(r)+0 A, o(r)] A, o(r) +
r

aAX exp
4.

a A;0(&)
A, o(r) +

aP

'2

(2.19)

where now the sum runs from i =1 to i =X. This means
that in the co, ~ oo limit, expression (2.14a) corresponds
to an unambiguous separation between the direct and the
indirect CSL processes. The term Lcsi in (2.14a) de-
scribes the effect of the spontaneous localizations acting
directly on the oscillator of interest. The second term,
LcsL(t ), describes the collapses that the localizations act-
ing on the bath oscillators produce on the wave function
of the central oscillator because of the entangled struc-
ture of the state vector (1.6) induced by the interaction
with the environment. The reader can realize that this is
plausible by observing that the functions A;0 (with i & 0),
in (2.14c) vanish when the interaction strengths E; are
made to vanish [cf. (2.6c)], thereby implying that the
term LcsL of (2.14b) is reduced to zero if the interaction
between the system of interest and the environment is
switched off.

To make it possible for us to derive a simple expression
for the collapse time v.c associated with the indirect CSL
Process, we focus on the term LcsL(t) and we make a
weak-coupling assumption. This assumption requires
some comments. As noticed in Ref. [17], the presence of
CSL processes introduces non-Gaussian corrections to
the usual Gaussian time evolution of the damped quan-
tum oscillator, thereby making it rather involute. Here
we can recover Gaussian properties, and with them a
significantly simplified picture, by making the weak-
coupling assumption: in the limiting case of very weak
c, s, we see from (2.19) that the derivatives of order

higher than the second can be safely disregarded, thereby
obtaining

a' 82
LcsL(t) DcsL(t) 2 fcsL(t)

g gpBP

where

(2.20)

and

+0 A;0(r)] (2.21a)

A, ,-O.A2

fcsL(t )= g f dr A. (r)[A (r)+2I A (r)
2M 0

+0 A, o(r)] . (2.21b)

Let us now evaluate the explicit form of these diffusion
coefficients in the continuum limit. As done in Ref. [17],
we make the plausible assumption that each oscillator is
subject to the same localization process, i.e.,
i =1,2, . . . , N. The continuum limit of (2.21) thus exists
and, after tedious calculations, in the infinitely fast bath
limit co, —+~ we get for the CSL contribution to the
diffusion coefficients the following simple expressions,
valid for both the stable and the unstable oscillator:

AaA I
DCSL( )tf CSL(t ) 0

2
(2.22)

A, , A%2

D„,(t)= g ' f dr A„(r)[A-„(r)+2rA„(7)'
2 0
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Henceforth, we shall focus on the decoherence process
and, consequently, on the diffusion terms of the master
equation, which are the main cause of decoherence. By
retaining only the second-order differential operators in
the momentum P, the master equation (2.11) for the
Wigner quasiprobability is made to read

ap~(Q, P;t) a2
=[Dq+DcsL(t)] 2pw(Q, P;t ),aa' (2.23)

where Desi (t) is given by Eq. (2.22) and D is the high-
temperature limit of the standard diffusion coefficient
D(t) of Eq. (2.13c), i.e.,

D(t ) =D =2MI kii T, (2.24)

which is valid for both the stable and the unstable oscilla-
tors. Therefore, we see that in the weak-coupling limit,
the CSL processes on the environment degrees of free-
dom have only the effect of renormalizing the momentum
diffusion coefFicient by adding a correction term linear in
time. As will be made more apparent later, this correc-
tion does not have significant effects from a statistical
point of view, since the correction term is extremely
small compared to the standard diffusion term of the DT
[6,7]. However, from the point of view of the individual
systems the consequences are striking. This is so because
this contribution to decoherence is actually the manifes-
tation of a real collapse of the wave function, which takes
place at a time scale that in principle does not conAict
with the possibility of an experimental control. This is
the EECSL effect mentioned in Sec. I.

Let us evaluate the collapse time of the EECSL effect.
Equation (2.23) corresponds to the following equation for
the density matrix in the coordinate representation
p(g, g';t):

dard process of decoherence resulting from the dissipa-
tive coupling of the system with the environment, studied
by Caldeira and Leggett [26], Joos and Zeh [9], Zurek
and co-workers [24,30], and Hu, Paz, and Zhang [29].
The latter is the explicit expression of the contribution to
decoherence of the EECSL process. The decoherence
rate of these two independent processes can be estimated
by setting each separated term in the exponent of Eq.
(2.26) equal to one, thereby getting for the former process

2MIk Tbg
g2

(2.27)

which is the usual prediction for the decoherence rate
[24,25], and for the latter process

+Aal b.g
2

(2.28)

which is the rate of the EECSL process. It is remarkable
that the EECSL collapse time ~c is made shorter and
shorter by increasing the dissipation rate I .

III. MORE ON THE PHYSICAL MEANING
OF THE EECSL PROCESS

In this section, we shall shed further light on the physi-
cal meaning of the EECSL process derived in Sec. II, by
comparing with the direct process of collapse and with
the collapse accumulation discussed in [11—13]. We shall
also provide further physical arguments to establish-a
more apparent connection between the EECSL process
and the DT [6,7].

In the preceding section, we have seen that, in the
infinitely fast bath limit and in the weak-coupling approx-
imation, the CSL contribution to the effective Liouvillian
stemming from the contraction over the bath, is

ap(g, g', t)
at

2mrk, Z
+ (Q —Q')'

Xp(g, g', t), (2.25)

aA a
LcsL(t ) = A,p exp

4 ap'
A,afi I't 8

aI'

(3.1)

whose formal solution is

2MI k~T(g —Q') t
p(Q, Q', t)=exp

It 2 2

p(Q, Q', 0) . (2.26)

If we consider an initial linear superposition of two local-
ized wave packets spatially separated by a distance Eg,
as, for example, the initial state (1.3), the corresponding
initial density matrix in the coordinate representation
shows two distinct symmetric off-diagonal bumps (one
centered at Q =b, Q /2, Q' = —hg /2 and the other one at
Q= —bg/2, Q'=kg/2) describing quantum interfer-
ence between the two wave packets. Therefore, if we set
(Q —Q')=b, g, Eq. (2.26) yields the quick suppression
of quantum coherence by the joint effect of two indepen-
dent decoherence mechanisms. The former, correspond-
ing to the first term in the exponent of (2.26), is the stan-

A direct CSL process with localization rate A would in-
stead read

p(g, Q', t ) =exp —A 1 —exp
a(Q —Q')'

Xp(Q, Q', 0) . (3.3)

This simple expression clearly shows the separation of the
CSL contribution into the direct process [first term in the
rhs of (3.1)] and the indirect one [second term in the rhs
of (3.1)] working on the central oscillator as a conse-
quence of its interaction with the bath.

If we focus only on the indirect contribution, as we al-
ready did in Sec. II, we obtain the following expression
for the time evolution of the statistical operator in the
coordinate representation:

T

I Aa( — ') t
p(Q, Q', t)=exp — p(Q, Q', o) . (3.2)
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Comparing Eqs. (3.2) and (3.3), we see that the two pro-
cesses take a similar, although not identical, form in the
limit

(Q —Q'( « —10 ' cm
&a

(3.4)

The different nature of the two processes is stressed by
the opposite limiting condition,

—« IQ —Q'I (3.6)

In this case, the direct process of Eq. (3.3) becomes

p(Q, Q', r ) =exp( At )p(Q—, Q', 0), (3.7)

with no dependence on the distance ~Q
—Q'~ left, while

the indirect one (3.2) still retains this dependence.
The mathematically difFerent forms of Eqs. (3.2) and

(3.7) mirror the distinct character of the two underlying
physical processes. A direct CSL process realizes the
reduction of a superposition of two spatially separated
wave packets with a rate A independent of the distance
hQ between them, whenever EQ is larger than I/&a.
The indirect process (3.2), on the other hand, always de-
pends on b, Q, becoming faster and faster as b, Q grows
larger. As pointed out in Sec. I, where we have already
given an intuitive explanation of the EECSL effect, this
effect is triggered by the same mechanism, the entangle-
ment between system and environment, as that responsi-
ble for the environment decoherence. This is so because
the entangled condition (1.6) means that the individual
ith oscillator of the bath tends to set itself in a state
which is a linear superposition of two wave packets local-
ized around two distinct spatial positions at the distance
(1.2).

Notice that in the case of the CSL accumulation con-
cerning the center of gravity, the non-Hamiltonian term
in the evolution equation of the center of mass retains its
form with respect to the case of a single particle [11—13].
This is not the case for the EECSL process, as made man-
ifest by the comparison between the two terms on the rhs
of Eq. (3.1): the form of the first one in no way can be re-
duced to that of the second, stemming from the indirect
process. The indirect CSL process illustrated in Sec. II is
environment induced, and is triggered by the same entan-
glement effect as that producing the dephasing process of
the DT [6,7].

We shed further light on the physical meaning of Eq.
(2.25) and, consequently, on our main result (2.28), by re-
marking that the CSL theory, due to the appearance of
non-Hamiltonian terms in the evolution equation, implies
the energy conservation principle to be broken [11]. In
fact, spontaneous localizations produce a steady increase
of the mean kinetic energy of a physical system, which,

(where a has been assigned the value suggested in Ref.
[11]). Roughly speaking, the indirect process can then be
compared to a direct one with a localization rate linearly
increasing in time, as if the localization rate A, instead of
being time independent, were given by

(3.5)

for an individual particle of mass M, can be estimated to
be [11]

Au% t
4M

(3.8)

This energy increase can be equivalently seen as a linear
growth of the temperature of the central oscillator as well
as that of its bath, b, T=AE/kz. If we now adopt the ap-
proximate expression (2.24) of the diffusion coefficient,
D(t)=D~, and we take into account this temperature
drift, we get exactly the renormalized diffusion coefficient
of Eq. (2.23) and therefore Eqs. (2.25) —(2.28). It is then
clear that from a statistical point of view the detection of
the EECSL effect would be equivalent to the experimen-
tal determination of this steady temperature increase.
The new constants of nature of the CSL theory, A, and cz,

however, are given the values A. = 10 ' sec
1/i/a=10 cm [11]so as to make this temperature in-
crease completely negligible; in Ref. [13] it has been es-
timated that b, T/t = 10 ' K per year. This makes im-
mediately evident why any statistical manifestation of the
EECSL process is quite negligible with respect to the
standard decoherence mechanism.

Using (2.27) and (2.28) we can assess that in the ordi-
nary physical conditions the following inequality,

&(&c (3.9)

holds true. Actually, the new collapse time ~c is also
larger than the typical relaxation time of the oscillator
w~ =1/I, for any experimentally feasible value of the
wave-packet separation EQ. However, it is of crucial im-
portance to stress that, differently from the "bare" CSL
reduction time of I/A, =10' sec, the collapse time ~c is
not astronomically large, but usually is within the range
of experimental observation: for example, for b, Q =1 cm
and I = 10 sec ', we get wc = 10 sec.

In conclusion, if we carry out an observation that im-
plies and average over an ensemble of Gibbs systems, it is
virtually impossible to detect corrections to the decoher-
ence rate (2.27) predicted by Caldeira and Leggett [26]
and by Unruh and Zurek [24].

IV. CONCLUDING REMARKS

At first sight, the conclusions of this paper seem to
convict with those of the preceding work of our group
[17],where we proved that the CSL processes lead to sta-
tistical predictions virtually equivalent to those of ordi-
nary quantum mechanics, thereby giving the impression
that no accumulation of the CSL processes on the system
of interest can take place. Actually, the conclusions of
[17] only rule out the accumulation processes of the same
kind as those concerning the center of gravity of a macro-
scopic body [11]. As shown in this paper, the statistical
equivalence of the new physics with ordinary quantum
mechanics does not prevent an accumulation of spontane-
ous wave-function collapses, the EECSL effect, from
occurring. Since this objective process of wave-function
collapse does not produce detectable statistical effects,
the main conclusion of Ref. [17] still holds true. The
detection of the EECSL by means of real experiments
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must refer to the observation of an individual system.
We are tempted to state that whenever the entangle-

ment of the system with its environment occurs, the
EECSL process if also activated. This might have re-
markable consequences in the field of quantum chaos. It
is well known [3] that the effect of classical chaos is to in-
crease quantum uncertainty so quickly as to make essen-
tially quantum also those systems that would fulfill the
conditions set by the correspondence principle for a
quantum system to be considered classical. Zurek and
Paz recently pointed out [32] that the interaction with
the environment restores the statistical equivalence with
classical physics through a mechanism of entanglement
of the same kind as that of (1.6). Notice that the theoreti-
cal development of Zurek and Paz [32] rests on an unsta-
ble oscillator interacting with its environment, namely,
the same system as (2.1) with the negative sign. The
present paper suggests that, in addition to ensuring the
statistical equivalence between classical and quantum
mechanics as shown in Ref. [32], the interaction between
system and environment could also induce real wave-
function collapses, thereby contributing to the recovery,
for an individual system having a classically chaotic
counterpart, of the concept itself of classical trajectory.

The EECSL processes are attractive because they seem
to make much wider the processes of accumulation of
wave-function collapses discussed by Ghirardi, Pearle,
and Rimini in Ref. [13], insofar as they are triggered by
the same interaction mechanisms as those responsible for
dissipation and irreversibility. Thus, they apply to a wid-
er set of physical conditions, namely, to microscopic and
mesoscopic dissipative systems as well as the macroscopic
isolated systems of Refs. [11—13].

We think that an important field of research to apply
the techniques used in this paper is that of direct observa-
tions of individual systems, the optical quantum jumps
being an especially appealing example of this field of in-

vestigation [18]. It must be pointed out that this is oblig-
ing the researchers, and also those who are using ordi-
nary quantum mechanics, to adopt individual-system pic-
tures. A remarkable example of this kind is given by the
work of Gisin and Percival [33]. These authors
developed an individual-system picture with the con-
straint of an exact equivalence with ordinary quantum
mechanics. The theory of Gisin and Percival, used as an
individual-system counterpart of the DT, would lead, for
the physical process studied in this paper, to erratic tra-
jectories for the expansion coefficients on the states y)
and

~

—y ), characterized by abrupt jumps at times of the
order of ~D. We think that within the CSL perspective,
the time duration of these erratic fluctuations with no
jumps would be much more extended and would last for
the time ~~ &&~D. The single runs provided by the CSL
theory would be qualitatively similar to those of the Gisin
and Percival theory, but they would be dilated over a
much more extended time scale. However, in the
academic example here under discussion, the collapse
time rc of Eq. (2.28) assumes physically significant values
only when the distance b, g is so large that Eq. (2.28) loses
much of its concrete meaning. For distances of experi-
mental significance, the two branches would be reunited
much earlier by the longitudinal process itself. However,
research work by our group to apply the theoretical re-
sults to more realistic physical conditions, mimicking the
main features of the processes of optical quantum jumps,
is in progress.
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