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Quantum inverse problem for an unstable nonlinear Schrodinger equation:
A functional Bethe ansatz

N. Das Gupta and A. Roy Chowdhury
High Energy Physics Diuision, Department ofPhysics, Jadaupur University, Calcutta 700032, India

(Received 22 June 1994)

We have formulated the quantum inverse problem for the unstable nonlinear Schrodinger equation
that forms the basis of nonlinear optics, following the modified approach of Sklyanin. Due to the nonex-
istence of the vacuum for the corresponding Lax L operator, the algebraic Bethe ansatz cannot be for-
mulated. This difhculty is removed by recourse to the functional Bethe ansatz. The whole analysis is

performed by considering di8'erent boundary conditions at the two ends of the interval on the x axis.
Both signs of the nonlinearity are treated, corresponding to "bright" and "dark" solitons.

PACS number(s): 03.65.—w

INTRODUCTION

Quantization of an integrable system forms one of the
most interesting problems in the study of two-
dimensional nonlinear systems [1]. Of late, various equa-
tions have been treated on the basis of the formalism
developed by Thacker [2] and Faddeev [3]. An interest-
ing aspect of the formulation is its close relation with the
Yang-Baxter equation [4], and this is perhaps the reason
for which the second approach has been widely applied.
Of late, two very important problems have been analyzed
while applying the quantum inverse scattering method
(QISM). One is the question of the finiteness of the inter-
val on which the quantization is performed, for relaxing
the condition of periodicity [5], and the other is the
difhculty associated with the nonexistence of a vacuum
state due to the algebraic structure of the Lax operator
(L) [6]. Here in this paper we report on the QISM study
of a nonlinear Schrodinger equation (NLS) obtained by
interchanging the (x and t) variables. It can be written as

iq„+q„+2IqI q =0 .

Originally such an equation was deduced by Yasima and
Wadati [7] from the equations describing the propagation
of waves inside a plasma. More importantly this equa-
tion also forms the basis of contemporary nonlinear op-
tics, where t is the retarded time measured in a frame of
reference moving with the group velocity [8]. Fucha-
steiner and Oevel studied the integrability through the
use of master symmetry [9].

FORM UI.ATION

The nonlinear Schrodinger equation is written as

tq, +q„+21ql'q =0

where

+i IqI 2i k— iq, +2Aq,
iq,

*—2A,q' + ilql'+2ii, ' (3)

(4)

It is now easily observed that Eq. (1) can be generated
from the following Hamiltonian:

H= i q q* —qq +2qq+2 q q dx, 5

with the following canonical Poisson bracket:

Iq, q,*]=5(x —y),
Iq', q, I =5(x —y) .

(6)

T(x,y, A, )=exp f L dz = 1+5f L dz
X X

=(1+EEn)=Ln . (8)

It is to be remembered that the interval (x,y) has been di-
vided into n equal intervals, each of length 6, and since
our theory is ultralocal, it is sufhcient to keep only terms
of the order b, . We now set

1 J' 1
qn q dZ, qnt qt dZ

X X

whence we get

(9)

For the quantization, we start with the definition of the
scattering matrix T(x,y, A, ) (via the discretization pro-
cedure adopted by Faddeev [3]),

T(A, ) =gLn,
where we have set

and is second order in time, whereas the original NLS
was first order in time. The Lax pair associated with Eq.
(1) can be written as b, (iq„, —2Aq„")

b.(iq„, +2k,q„)
&+~[+i lq„l'+2iz'j

%.=1%, %, =M%, (2) (10)
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and from the Poisson brackets (6) we can at once write
the commutation rules:

fi
[7n &'Vmt ] g ~nm

Using the L„given in Eq. (10) in

given by

R,2(u —v)'7'(u)R, 2(u+v)+yV (v)

='T (v)R,2(u +v +y)V'(u)R, 2(u —v), (18)

where T(u) denotes the scattering data, modified due to
the presence of the boundary condition. It is defined as

A(u) 8(u)
'T(u) = T(u )E (u)T '( —u+y) =

R(A, ,p)L' (A)L„(p)=L„(p)L' (A, )R(k,p),
we can solve for the R (A, ,p),

(12)
(18a)

R (A, ,p)=

0 0
2(A, —p, ) +y

2(A, —p)+y 2(A, —p)+y
+y 2(A, —p}

2(A, —p}+y 2(A, —p)+y
0 0 0

(13)

and we shall also write

A'(u) 8'(u)
T(u) Ci( ) Dl( )

(18b)

We quote here only a few, which can be obtained from
(18), needed for the setting up of the Bethe ansatz equa-
tion:

where we have used the standard notation L„'(I,)
=L„(A,)IL„(A, )=1 L„(A, ). Finally it is possible to
write the following equivalent form of the quantum R
matrix, which is more convenient:

P

(u v+y—)(u + v + y)B (u) A (v )

=(u —v)(u +v) & (v)8 (u)

+(u —v)y[8 (v)D(u)+(u +v)+ y]8 ( )vA (u),
0 0 0
g +y 0

+y 0 0
0 0 0+y

g+y
0

R(8)=

0

(14) 8 (v)B (u )=8 (u)B (v ),
(u —v)[D(u}, A (v)]=(u +v+y)[A (u), D(v)],
(u —v)[A (u), D(v)]=(u +v+y)[D(u), D(v)],
(u +v)[A (u), A (v)]=+y[B(v)C(u) —8 (u)C(v) j .

with 8=2(A.—p). It may be noted that though the form
of the L operator is quite distinct from that of the usual
NLS equation, the R matrix has the same structure.

(19)

(20)

(21)

(22)

(23)

=K+ (A2)R ( —
A, ,2+ y )K+ (A, , )R ( —A2), (16)

where E+ denote the transpose. In the present situation
we get

(++A,+y

0——~+y (17)

COMMUTATION RULES FOR THE SCATTERING
DATA AND BOUNDARY CONDITION

We now want to formulate the QISM with different
boundary conditions at the two ends of the interval. It
has already been demonstrated by Sklyanin [10] that such
boundary conditions could be easily considered with the
help of the matrices E+ and K, obtained as solutions of
the following equations:

R(A, ,2)E' (A, , )R(A, ,2+y)K (A2)

=K (A2)R(A, ,2+y)K' (A, , )R (A, ,2),

R ( —A, ,2)E+ (A, , )R ( —A, ,2+ y )K+ (A2)

The next important step is to define a pseudovacuum ~0),
which would serve as the basis for the construction of the
excited states; but due to the form of the commutation
rules, if we interpret q, , q, as annihilation operators,
then (q, q*) will be the operators for creating the states.
Unfortunately, then the operator L„on ~0) will not be
triangular, and so we cannot interpret either B(u) or
C(u) as a creation or annihilation operator, and hence
the usual route for the construction of the algebraic
Bethe ansatz cannot be taken. Of late, two methods have
been proposed to circumvent such a difhculty. One
method is due to Baxter (for the case of the eight-vertex
model) and the other due to Sklyanin [11]. The latter one
was called the functional Bethe ansatz. Here we adopt
this latter approach to set up the equation determining
the momenta of the Bethe states.

Let us refer back to Eqs. (10) and (7) and observe that,
due to the form of the operator t.„,we can at once write

A'(A, )=EP, +p'A, + .

g & g2m —1+g & g2m —2+ g & g2m —3+
where we have used the notation

Ar]2 Al] At2AI]2 API] +k2 ~

The commutation rules for the scattering data are

g ~ g2m —I +g ~ g2m —2+ g ~ g2m —3+

D'(A, ) =K' A, +R'A, +

(24)
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where the coefficients occurring in (24) are dependent on
various nonlinear fields. Now, from the definition of
T(u), as given in (18a), we get

rules of these from those of A, B, C, etc. Using these
forms of A, B, and D in Eqs. (19) to (23), we obtain

A(X) =K,X~+PX" '+-

B(X)=Q, X -'+Q, X"-'+Q,X~-'+

D(A, )=K2A, +RA, +
(25)

ai g Xz = . g Az+(A, .+y) .aj,
i =K

(29)

where A.z means that the jth term is dropped from the
summation. The other important relations are

where the coefficient sets used in (25) are some combina-
tions of those in (24), and their actual form will not be
necessary in the ensuing discussion.

In the functional approach of Sklyanin it is very neces-
sary to construct some general functional form of A, B,C,
etc. , from the information given in (25) and the zeros of
the function B(A, ). Let us suppose that these are at
A, =A, 1, whence by Lagrange interpolation formulas we
can at once write

N=2
B(A, )=AQ, g (A, —A, ),

j=1

Q, P =(P yE—2)Q, ,

Q, R =(R+y K~)Q, ,

p, & ~k = P~+(~, + y—)'I p,

All other commutation relations are zero.

(30)

(31)

(32)

FUNCTIONAL BETHE ANSATZ

Equations (29)—(32) form the basis for setting up to the
functional Bethe ansatz equation. Actually we can con-
sider any symmetric function of the variables A,;, and
there equations will then imply that

—Q, QA, =Q2,
J

Q, gA, ;AJ=Q3,

(26) a, f(Ai X„)=f(A,, . . . (k, +y) . k„)a, ,

p f(A, , k )=f(A, (A, +y) .
A, )a

(33)

N —2N —2 N —2

A (A, ) = g g a.+S(A, ) g (A, —A. ),
j=1 K=1 J j=1

S(A)=A, K2+K~kgA, . +P+K2 g A,
J J

N —2

D(X)= g g P +X(A, ) g (A, —A, ),
j K j K j=l

where

X(A, )=A, K~+R +K2A, Q Ai. +K2 g k~ .
J J

(27)

(28)

Here we observe an important effect due to the change in
sign of y. So, it actually interchanges the role of the
creation and annihilation operator, due to a change in
sign of y in nonlinear terms, which creates the important
distinction between the bright and dark solitons [12].

The Hamiltonian of the system with finite boundary
condition can be written as

t„(A, ) = trK+ (1,) V(A, )

=(A+y+g+)A (A, )+(g+ —A, +y)D(A), (34)

Here we interpret A. , Q„aJ,P, R,pi as operators. Ou. r
chief motivation will be to determine the communication

whence let us consider the action of such an operator on
the symmetric function 0 (A, , A,„,):

t„(A, )(b(A, X„,)

2n 2 2n 2

=(A.+y+g+) A, K2+K2A, Q A, +PK2 gA, g (A, —A., )+ g ai .p(A, k„,)

J J J j=1 J K

+(1++y —~) .
2ll 2 2n 2

A, K~+K2+ A, +K~A, gA, +R + (A, —A))+ g p p(A, A,„,)
k=1 j
j&K

Setting A, ~A ., we get

t„(A, )P(A, A,„,)=(A, y+g+)P(A, (A, +y) .
A,„,)+(g+ —

A,, +y)P(A, (A, + —y) A.„,) . (36)
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We now seek tb as a separable function of the form

p=Q %(A, ) . (37)

momenta U, which can be solved in the usual way after
converting it into an integral equation.

DISCUSSION

Substituting in (36) we get

t(A, )4(A, )=(X +y+g+)%'(kl+y )

+(g+ —
A, +-y)%(A. —h),

and we set

(38)

V(u) = Q (u —u )(u+u ),

so we get

(u„—u +y)(u„+u +y)
(u„—u +y)(u +u„+y)

(u„+y+(+ )
(39)

(g+ —u„+ —y )

which is the familiar type of coupled equations for the

In the above analysis we have considered the problem
of quantizing the (x, t) interchanged nonlinear
Schrodinger equation. Apart from the different form of
L operator, the difhculty is the nonexistence of a pseudo-
vacuum. Such a difhculty can be overcome by recourse
to the functional Bethe ansatz approach. It may be noted
that both cases of bright and dark solitons can be treated
on the same footing, though the Bethe-type equation for
the quasirnomenta becomes different due to the inter-
changed roles of creation and annihilation operators.
Lastly the equation giving the eigenmomenta is given ex-
plicitly.
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