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It has been recently proven that the bound states of the one-dimensional Schrodinger equation
Hg"=E"l("tin [0, ~) can be approximated by those of the corresponding Dirichlet eigenproblem
Hs f'z'=Es"g'„' in a finite box [O,R] when R ~ 00. In this paper, we use a set of mathematical criteria
that guarantee the correct calculation of expectation values in the frame of Hilbert spaces, to show that
correct expectation values of most physical operators S are obtained by using the equation
limR „(t(s',Sg(g') = (P",Sg")},which includes operators not relatively form bounded by the Hamil-
tonian H. It is shown that standard numerical methods supply approximate wave functions g()I) for
which the equation lim „((((iII),SQ(g' ) = (f(sI Sg'g) ) holds true. Thus, combining the previous limits
we obtain a general approach to compute correct expectation values. It is shown how this approach
agrees with the results found by other authors in special cases. In the particular case of computing ap-
proximate wave functions g'R) with the Ritz method, we show, analytically and numerically, that
correct convergence toward the expectation values of high power of moment operators r holds even
when the basis functions have an analytic structure that substantially di6'ers from that of the exact wave
function.

PACS number{s): 03.65.Ge, 03.65.Ca, 03.65.Db

I. INTRODUCTIQN

but whose dipole moments do not satisfy

lim ( g„,Sf„)= ( tti, St)( }, (1.2)

where (f,g }= ff 'g dr and the second equality of (1.1)
is understood as f ~g„g~ dr ~0 wh—en n increases.
Klahn and Morgan [2] studied this problem from a
rigorous mathematical point of view and showed in detail
how approximate values of high powers of the moment
operators r", which were obtained from both Fourier and
Ritz expansions with a special Gaussian basis, can
diverge or even converge to a wrong limit.

It is generally accepted that the correctness of Eq. (1.2)
depends on the ability to duplicate the local peculiarities
in the exact wave function. For Ritz-type sequences,
Klahn and Morgan [2] pointed out that the correct ex-
pectation values can be obtained if the rate of conver-
gence of approximate energies E„ is very fast. Schwartz
[3] showed how this is determined by the ability to dupli-
cate the analytic structure of the exact wave function in a
neighborhood of the points where it is not analytic [4].
Recently, Klopper and Kutzelnigg [5] indicated that
Gaussian basis sets, which do not have the correct analyt-

It is known that while approximate wave functions g„
may be used to compute the expectation value of one
physical property, they may fail utterly if used to com-
pute another physical property. Lowdin [1],for example,
gave a sequence of energies and wave functions that con-
verge toward their correct limits

lim E„=E, lim lt „=t)'i,

y(i) q(i)+ 2 V( )q(l) —2E(l)y(i)
dl' r2

g"(0)=0 with 0 r ac, O~ 1
(1.3)

can be approximated by those of the Dirichlet eigenprob-
lem in a box [O,R]

g(l) + f(l) +2 V( )P(l) 2E (l)g(l)
T r

g' (0)=g' (R)=0, 0+ r +R, (1.4)

as R —+ Do, according to

ic structure, can nevertheless exhibit rapid convergence if
nonlinear parameters appearing in the exponent of the
Gaussians are chosen wisely. The aim of this paper is to
show that if the approximate wave functions are obtained
from the Dirichlet eigenproblem in a box, rather than the
Schrodinger equation in [O, ac ), these eigenfunctions have
correct convergence properties for a wide class of opera-
tors including the moment operators r with large
enough k. In the particular case of solving the Dirichlet
eigenproblem with the Ritz method, it is shown that
correct convergence toward the true expectation values
holds even when the analytic structure of the basis func-
tions differs substantially from that of the exact states.

Henceforth R is a positive number, (f,g )z [(u, u)]
denotes the usual inner product of the Hilbert space
L2(O, R) [L2(0, ac ) ], and /tf [/z [/[u //] is the correspond-
ing norm. In previous works [6,7] it was shown that for a
wide class of potentials V(r), the bound states of the
one-dimensional Schrodinger equation
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lim E"=E"with E"~ E" E" for R R'
R~oo

and

lim llgR" —g"ll=0 where g~'(r)=0 for r ~R .
g ~ oo

(1.5)

(1.6)

The wave functions gz' will subsequently be referred to
as Dirichlet wave functions (DWF's). The main result of
this work is that correct expectation values of most
operators S for which (g",Sg'j') exists can be obtained
by means of the limiting procedure

lim ( i'(i) Sqg() ) —( q(i) Sq(j ) )
g —+ oo

(1.7)

Thus a combination of (1.7) and (1.8) permits us to com-
pute accurate expectation values (1i~",Sg'j') of most
operators of physical interest.

The idea of computing the bound states of Eq. (1.3) by
means of the numerical solution of Eq. (1.4) is not new.
This approach has been applied in an implicit way by
several authors who, to solve Eq. (1.3) with methods such
as finite-difference or finite-element methods, use the fact
that g"(r} is infinitesimally small for large r to replace
the boundary condition lim„„fi'i(r)=0 by Pi'i(R)=0
with a suitable "large" R [8—12]. Other authors have ap-
plied specific techniques to solve (1.4) and found that the
energies Ez' and other physical quantities tend to the
corresponding properties of the unbounded eigenproblem
(1.3) as R is made larger [13—16]. As we will see in this
work, these results are particular cases of Eqs. (1.5)—(1.8).

The structure of the paper is as follows. In Sec. II we
present general reliability criteria that guarantee the
correct calculation of properties, which will be used to
show the correctness of Eqs. (1.7) and (1.8). These cri-
teria are obtained from rigorous mathematical results,
some of which have been used by other authors to study
the correctness of Eq. (1.2) [2,17—19]. In Sec. III we
show that the ADWFs /~i' obtained from several nu-
merical methods are reliable to compute (gz', Sgg')z
[Eq. (1.8)] and in Sec. IV we show the correctness of (1.7).
The results are illustrated by calculating the ground state
of the He+ ion with the Ritz-type ADWF obtained from
several basis sets, some of which do not have the correct
analytic structure. In order to show that correct conver-
gence of properties holds even when the basis functions
do not have the correct analytic structure, in Sec. V we
make a comparison of the calculations of Klahn and
Morgan and those obtained from our Ritz-type ADWF.

II. RELIABILITY CRITERIA

Following Lowdin [1], we say that an approximating
sequence [g„]„",is reliable to compute the expectation
value (S)=fP'Sfdx if (i) the sequence

a result that includes S =r with k ~ —2. Furthermore,
it is shown that standard numerical methods for solving
Eq. (1.4) supply approximate Dirichlet wave functions
(ADWF's) g~ that satisfy the equation

(1.8)

(S)„=fQ„Sitj„dx converges to (S) as n~ ~ and (ii}

upper and lower bounds of the error (S )„—(S ) can be
constructed. Although the error bounds of (S )„do not
have much practical value, they represent a good test of
the numerical stability of the limiting procedure (i).

In this section we give general reliability criteria that
guarantee the correct calculation of physical properties in
an interval [O,a] that may be bounded or unbounded
(0(a ~ ao). These criteria are obtained from rigorous
mathematical results, some of which have been used by
other authors to study the correctness of (1.2) in the
frame of Hilbert spaces [2,17—19]. The inner product of
the Hilbert space Lz(O, a) is (f,g ), =fP*g 'dr and the
corresponding norm is llf ll, = (f,f ),' . For an operator
B in L2(O, a), D(B) denotes the set of functions f in
Lz(O, a) for which Bfbelongs to Lz(O, a).

A. Criterion of L2 convergence

The norm of L2(O, a) leads to the following concept of
convergence between wave functions, which will be re-
ferred as L2 convergence: We say that the sequence [g„J
converges to i' in the L2 (0,a ) norm if it satisfies
lip„—gll, ~0 as n~oo. The fundamental role of this
concept in the calculation of expectation values is given
by the following.

Theorem 1. I.et S be a symmetric operator in Lz(O, a)
and suppose that ill'„' and g" belong to D (S) (i = 1,2 and
n ~1). If [g'„'] converges to i'" in the Lz(O, a) norm,
then lim lim„„(g'„",Sg' '), =(p"',S1i' ')„
where the left-hand term is the so-called iterated limit.

This theorem is a consequence of the following inequal-
ity, which is obtained by using the symmetry of S and the
Schwarz inequality:

l ( q(1) Sq(2) ) ( q(&) Sq(&) )

where 5$'„'=P'„'—g". Theorem 1 is analytically true
and since to compute ( it"',Sf' '), one chooses a
method that supplies approximating wave functions f'„'
in D(S), the relevant assumption is the L2 convergence.
Thus we can say that the L2 convergence is indeed a
sufltcient criterion to converge toward the true expecta-
tion values.

The L2 convergence of approximating sequences I g„]
obtained from standard numerical methods has been ei-
ther exhibited or rigorously proven (see, for example,
Refs. [20—25]). Assuming that [P„J converges to g in
the L2(O, a) norm, the question is then how to find an
upper bound of the quantity ll5@„ll, =ll@„—@ll„which
we will call the exact error of g„, since it appears in the
calculation of the error bounds of numerical expectation
values, as we shall see below. This can be made in terms
of eigenvalues by using Eckart s inequality and its gen-
eralizations [26] or applying the properties of the L2(O, a)
norm to obtain the following result [27]: If [ g„iki] k = i is
a rapidly convergent subsequence that satisfies
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llfn( k+1) 1 n(k+2)lla7=sup ( 1
ill ()) 0 (k+i)ll

then

II~I.())ll. -(1—&} 'll@.())—4.(2)ll. .

(2.2a)

(2.2b)

determinantal inequalities method, Weinhold [19] ob-
tained a general class of upper and lower bounds of b,S„',
whose practical application depends primarily on the
boundedness of [ IIS@(„')ll, ] „"=,.

C. Relatively form-bounded operators

Since in practical situations only a finite number of ma-
trix elements ( g(„",Sg( '), can be computed, the iterated
limiting procedure of Theorem 1 does not have practical
value, so one has to be satisfied if (g(",SP( ) ), can be
reached by the single limiting procedure

lim ( q(1) Sq(2) ) ( q(l ) Sq(2) )
pg —+ oo

(2.3)

Unfortunately Eq. (2.3) is not generally true even when
[g(„')] converges correctly in the norm, as was shown by
Lowdin [1] and by Klahn and Morgan [2]. We will give
below two additional conditions that together with the
Lz convergence are sufBcient to guarantee the correctness
of (2.3) and to compute both upper and lower bounds of
the error of approximating expectation values

gS)2 ( y(1) Sy(2) ) ( q(l) Sy(2) ) (2.4)

B. Boundedness condition

When the sequence [IISQ(„)ll, ]„",is bounded by some
positive constant M, the inequality (2.1) leads immediate-
ly to the following.

Theorem 2. If in addition to the hypothesis of
Theorem 1 the sequence [ IISQ„ II, ] is bounded by M )0,
then the single limit (2.3) is true and the following in-
equality holds:

les„"I Mll~@'."ll.+ Ils@"'ll. II&@'."ll. . (2.5)

This theorem shows that the boundedness of at least one
sequence {IIStf'„'ll, ] (subsequently referred as the bound
edness condition) together with the L2 convergence is
sufficient for assessing the correctness of (2.3} and to ob-
tain a bound of the error AS„' .

The boundedness condition holds when S is a bounded
operator in L2(O, a) since by definition there is a constant
c such that IISf II, (c holds for any normalized wave
function f in Lz(O, a). For example, if S=s(r) is bound-
ed by c, on [O, a], then it is a bounded operator in

L2(O, a). Examples of unbounded operators in Lz(0, oo )

are the power moment operators r" with k&0. When S
is not bounded in Li(O, a) the boundedness condition
may fail, as showed by Klahn and Morgan [2], who com-
puted variational wave functions P„ in L2(0, ~ ) for
which [ Ilr P„ II ]„",diverges if k is large.

The importance of the boundedness condition is rein-
forced by the fact that rigorous bounds of the error AS„'
have been obtained by some authors starting from the as-
sumption that IISQ'„'ll, remains bounded when @(„')~(((".
For example, Bazley and Fox [17]considered Eq. (1.3) for
a potential V(r) that vanishes at infinity and gave an esti-
mate of Ils (r)@"II

in order to obtain a bound of Ib,S„"
I

from inequality (2.5), assuming a priori that
[Ils(r)@('ll]„", is a bounded sequence. By using the

Another criterion to guarantee the correctness of (2.3)
is obtained in terms of sesquilinear forms. Every opera-
tor in B in L2(O, a) defines a sesquilinear form given by
b(f, g)=(Bf,g ), for f,g ED(B). In the particular case
of a self-adjoint Hamiltonian H, =T + V in L 2(0, a ), with
T and V the kinetic and potential operators, respectively,
we have the form

h, (f g)=(Tf g), +(Vf g), for f gED(H, ),
which defines the well-known energy functional
E,(f)=h, (f,f), so that E,(f) is the energy associated
with f. Suppose that H, is bounded from below by E()
[E,(f))EDIIfll, for fED(H, )]. A symmetric operator
S is said to be relatively form bounded by H, if there exist
two positive constants c, , c2 such that

I «Sf f ). I c, Ilf II,'+c2[E, (f)—E() IIf II,']
holds for all fED(H, ) . (2.6)

lim E (Q")=E,(f")
pf —+ oo

lim II@(„')—@")ll.=0,
Pg~ 00

(2.7)

where f(„') and f" are normalized wave functions, then
the single limit (2.3) is true and the following inequality
holds:

Consider, for example, the Hamiltonian H in L2(0, ~ )

defined by T= d ldr a—nd V(r)=r +r . One can
prove that the operators T and V as well as the individual
terms r and r satisfy the inequality (2.6) [18,28].

There exists a set of functions f (r) in L2(O, a) for
which the energy functional E,(f) is well defined even
when f (r) does not belong to D (H, ). This set is denoted
by D (h, ) and is called the "domain of h, ." For example,
if H, = —d Idr and f (r) is a function in L2(O, a) whose
first derivative df Idr has a finite number of discontinui-
ties on [O,a], then E,(f) exists, but H,f does not belong
to L2(O, a). This is important for assessing, with the aid
of Theorem 3 given below, the correct calculation of
properties obtained from methods, such as finite-element
and finite-difference methods, that supply approximate
wave functions P(„') for which E, (f(')) exists even when
g(„')ED(H, ). Theorem 3 is a slight generalization of a
similar one found by Bazley and Fox [18], who proved it
for Ritz-type sequences, but the present formulation al-
lows us to apply this result to approximate wave func-
tions obtained from nonUariational methods as well.

Theorem 3. Suppose that the self-adjoint Hamiltonian
H, in Lz(O, a) is bounded from below by Eo and has the
eigenfunction g" (i =1,2}. Let h, be the sesquilinear
form associated with H„with E, ( ) the corresponding
energy functional. If S is relatively form bounded by M,
and the sequence [g(„'] in D (h, ) satisfies
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lhs'
l

~ lls@"'ll llew@' 'll +(3Ic+2)[E (@' ')+1 E—)' [E (@'") E—(@"')+[1 E—+E (@'")]llew@'"ll

(2.8)

where K =maxIc, +c2l 1 —Eol, cz j. Therefore, approxi-
mating sequences [P'„'j that satisfy (2.7) are always reli-
able to compute both expectation and transition values of
an operator S in the class of operators relatively form
bounded by H, .

D. Calculation of density moments as a reliability criterion

N

g p.*p a
n, m =0

P*P a + + ~
—0 (2.9)

n, m =0

for all N and all t p„. . . , p„j in C . (ii) If in addition to
the positivity requirements (2.9) the ak satisfy the condi-
tion

la. I

~ &D "(2k)(, (2.10)

where A and B are arbitrary constants, then the measure
p(r) of part (i) is unique.

Since the probability density lP(r)l defines a positive
measure dp(r)= lg(r)l dr, the moments (r") satisfy (2.9)
and thus the relevant result follows from part (ii): If the
moments (r") satisfy (2.10), then they uniquely deter-
mine p(r). The inequality (2.10) holds in many cases of
interest because of the exponential decay of wave func-
tions; for example, a straightforward calculation with the
ls state of hydrogenlike ions shows that (2.10) holds.
Therefore, to compute the true measure p(r) associated
with lg(r)l it is necessary and suflicient that the calcula-

Since standard numerical methods supply approximat-
ing sequences that satisfy (2.7) [20—25], the calculation of
expectation values of relatively form-bounded operators
does not present theoretical difficulties. However, when
the same trial functions are used to compute the expecta-
tion value of a nonrelatively form-bounded operator, they
may fail utterly. This can be attributed to the fact that
the boundedness condition does not hold, as was shown
in Ref. [2], where Ritz-type wave functions for which the
sequence [llr"g„ll}„",diverges with large k are given.
These remarks suggest that the boundedness condition
may be used as a general test of reliability in the follow-
ing sense: A sequence I g„j is more reliable than another
one If„'j if the class of nonrelatively form-bounded
operators for which I llSf„ll, j is bounded is larger than
the corresponding class of [1''„j. The immediate question
is then, which is the best set of nonrelatively form bound-
ed operators S useful for testing the boundedness of
[llSg„ll, j'? The results found by Klahn and Morgan [2]
indicate that this set may be the high powers of r, but as
we shall see below there is a more basic reason that sup-
ports this. %'ithout loss of generality, we deal with the
case [O,a] = [0, ~ ).

Theorem 4 (Stieljtes's moment problem I28J). (i) The
sequence of real numbers ak (k ~ 0) are the moments of a
positive measure p(r) on [0, ~ ) [ai, = f 0"r"dp(r)] if and

only if the ak satisfy

tion of every moment (r") (k~0) turns out to be
correct.

Although the calculation of all moments is not possible
in practical situations, we can say that a sequence t 1(|„jis
indeed reliable if every moment can be reached by the
limiting procedure (2.3). As we shall see in Secs. III and
IV, this is possible with the DWF gz" and the ADWF

obtained by several methods.

lim E,"=E," (3.1a)

and

»m II@'tI' —@i'll~ =o (3.1b)

where Ett'~ =Ett (hatt'I ) and Ett'=Ett (g"), E„being the
energy functional defined by the self-adjoint operator Hz
associated with Eq. (1.4) in Lz(O, R). Numerous algo-
rithms of the above methods with high computational
eScience have been proposed in the literature [8—12].
We can say that the numerical solution of Eq. (1.4) is a
not dificult task in this day of high-speed computers.

In this section we apply the results of Sec. II to show
that if the numerical solutions of Eq. (1.4) satisfy Eqs.
(3.1) and (3.1b), then they are reliable to compute the ex-
pectation value (1('t,',Septi')z of most operators Sz by
means of the limiting procedure

Sti 'PA (3.2)

Our first result is a trivial application of Theorem 2. If
s (r) is function in [0, oo ), which is bounded on each finite
interval [O,R), then it defines a bounded operator Sz in

L2(0 R) [IISti @Ilia —max. ~(o,~) ls «) l'll@ll~ ].
gether with Eq. (3.1b), immediately implies (3.2).

To guarantee the correctness of (3.2) with some un-
bounded operators in L2(O, R) such as r 2 or the momen-
tum operator, we apply Theorem 3. Accordingly, if S~ is
relatively form bounded by Hz, then Eqs. (3.1a) and
(3.1b) imply (3.2).

Remark 1. Since the correctness of (3.2) with the
operators S& described above is obtained from Theorems
2 and 3, upper and lower bounds of the error

III. COMPUTATION OF EXPECTATION
VALUES (f'g', Sg f'jj" )g IN [O,R]

The numerical solution of the Dirichlet eigenproblem
(1.4) has been a subject extensively studied in the past.
The correct convergence of approximating sequences

, and [Ett' j ",obtained from methods such
as projection methods (which include the Ritz method),
as well as the finite-element and finite-difference methods,
has been rigorously proven [22—25]. The basic property
of these methods is that they supply numerical solutions
of Eq. (1.4) that converge to their correct limits according
to
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(3.3)

can be constructed as in Sec. II and clearly this includes
any positive power of r. Therefore, the numerical solu-
tions of Eq. (1.4) that satisfy Eqs. (3.1a) and (3.1b) are
indeed reliable to compute accurate values of most physi-
cal operators Sz.

Numerical examples

We now solve the equation (1.4) corresponding to the
He+ ion with the Ritz method. The motivation for using
the Ritz method instead of finite-element or finite-
difference methods, for example, is twofold: (i) This
method can be applied in both finite and semi-infinite in-
tervals [0, ~ ), allowing a good comparison with Ritz-
type calculations in [0, oo ) as we will see in Sec. V. (ii) As
is known [1—S], the calculation of expectation values may
be particularly sensitive to the ability of duplicating the
local peculiarities in the exact state. Thus a good test of
the correctness of Eq. (3.2) is the application of Ritz
method with basis functions whose analytic structure
substantially di8'ers from that of the exact states.

The basis sets of L2(O, R) to be used are

y~k(r)=e "(R r)r", —k =1,2, . . .

@~I,(r) =NkPk '(2r/R —1), k =2, 3. . .

y&I, (r)=(2/R)'~ sin(vrkr/R), k =1,2, . . .

q)Itk(r)=e "(R r)r " '—
, k =1,2, . . .

y~j, (r)=e " (R r)r ', k =—1,2, . . . ,

(3.4a)

(3.4b)

(3.4c)

(3.4d)

(3.4e)

where Pk '(r) denotes the associated Legendre polynomial
with normalization constant Nk. The completeness of
basis sets (3.4a) —(3.4c) is well known and that of (3.4d)
and (3.4e) follows from the completeness of {r "e
and Ir "e "

]k~o in Lz(0, 0c) [21]. Every basis set
presents numerical difhculties in computing the states of
He+ in [O,R]: Since the overlap integral (yak, yak)z
between basis functions of type (3.4a), (3.4d), or (3.4e) in-
creases rapidly as k increases, the overlap matrix

{(yak, yzI )z ] is ill conditioned and this introduces nu-
merical problems in solving the corresponding matrix
eigenproblem. In particular, any orthonormalization

and by using (3.1b) one has that the equation

itm II@'R' —@'"ll~ = life' —@'"ll~ (3.Sb)

must be true independently of the basis set used. This is
confirmed in Table II, which shows that the Ritz expan-
sions gI" obtained from the basis sets (3.4a) —(3.4c) yield

procedure applied to these basis sets will be numerically
unstable. This difficulty is partially solved by using the
exponent a =2, which gives the correct asymptotic
behavior of the Is state P" ~ of the free He+ ion and in-
creases the rate of convergence of calculations with large
R [7]. The basis sets (3.4b) and (3.4c) are orthonormal in
L2(O, R), but they do not have the structural properties
that exact states gz"' and 1('" have at r =0 (the cusp ori-
ginated by the Coulomb singularity) as well as their ex-
ponential decay for large R. The latter property is partic-
ularly strong for the trigonometric basis (3.4c). Further-
more, these basis functions do not have optimization pa-
rameters that allow us to increase the rate of conver-
gence.

Matrix elements calculated with the basis sets (3.4a)
and (3.4b) are obtained in exact form and those from the
basis sets (3.4c)—(3.4e) are calculated by using N-points
Gaussian quadrature. The basis sets (3.4a), (3.4d), and
(3.4e) are orthonormalized by using the Gram-Schmidt
method. All calculations were done in a 16-digit pre-
cision machine and every wave function is normalized.

Tables I—V contain numerical results for the 1s state of
He+ in the box [O,R =1]. As we saw earlier, since
correct expectation values are obtained if Eqs. (3.la) and
(3.1b) hold, they will be used to verify the correctness of
our calculations. Table I shows the convergence of ener-
gies E'," obtained from basis sets (3.4) toward
—0.5000000, which can be considered as the exact ener-

gy E&" with all its exact figures. The results of Table II
require a more detailed explanation. As is known, the
Ritz expansion gI,'~ =gk, cz~yz& obtained from any
basis set (3.4) converges to g~z" in the Lz(O, R) norm as
m ~~. But since the exact function g~z" is unknown, we
compared g~" with the Is state wave function of the free
He+ ion, which is given by P"'=2Z ~ re ", through
the relation

(3.Sa)

TABLE I. Convergence of 1s energies Ez'" of He+ in the box [O, R = 1], for increasing values of the
number m of basis functions (3.4). The values —10ER" are reported.

Basis
(3.4a)

4.858 710
4.998 247
4.999 989
5.000 000
5.000 000
5.000 000
5.000000
5.000000

Basis
(3.4b)

4.833 148
4.997 973
4.999 988
5.000 000
5.000000
5.000 000
5.000 000
5.000000

10
20
30
40
50
60
70
80
90

100

Basis
(3.4c)

4.966 542
4.995 329
4.998 565
4.999 384
4.999 681
4.999 814
4.999 882
4.999 921
4.999 944
4.999 959

5
10
15
20
25
30
35
40
45
50

Basis
(3.4d)

4.931 488
4.985 113
4.989 910
4.989 942
4.990064
4.990 156
4.990 190
4.990 195
4.990 196
4.990200

10
20
30
40
50
60
70
80
90

100

Basis
(3.4e)

4.981 481
4.988 236
4.988 359
4.988 385
4.988 423
4.988 431
4.988 432
4.988 445
4.988 441
4.988 444
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TABLE II. Convergence in the I.z(0, 1) norm of eigenfuuctious fI'' corresponding to the eigenval-
ues E'," of Table I. The values 10~~/I" —g"'~~& are reported, where lt"' is the Is wave function of the
free He+ ion [Eqs. (3.5)].

Basis
(3.4a)

6.1179
6.0324
6.0291
6.0290
6.0290
6.0290
6.0290
6.0290

Basis
(3.4b)

6.0499
6.0296
6.0290
6.0290
6.0290
6.0290
6.0290
6.0290

10
20
30
40
50
60
70
80
90

100

Basis
(3.4c)

6.0284
6.0290
6.0290
6.0290
6.0290
6.0290
6.0290
6.0290
6.0290
6.0290

5

10
15
20
25
30
35
40
45
50

Basis
(3.4d)

6.026 89
6.028 58
6.028 96
6.029 02
6.029 18
6.029 17
6.029 12
6.029 10
6.029 10
6.029 12

10
20
30
40
50
60
70
80
90

100

Basis
(3.4e)

6.028 50
6.029 36
6.029 21
6.029 31
6.029 31
6.029 29
6.029 29
6.029 30
6.029 31
6.029 31

values of (~/It
' —g" ~~z converging to 0.602 90 and there-

fore gz" l converges correctly in the L2(O, R) norm. An
incorrect L2 convergence appears with 45 and 40 basis
functions of type (3.4d) and (3.4e), respectively, which
can be attributed to the numerical errors introduced by
the orthonormalization procedure. This is more evident
in the calculation of density moments, as we shall see
below.

In what follows we will use the notation
)R ( PR r PR )R nd ( )R (l R PR )R'

Tables III—V show the convergence of [(r"), ] &, for
k = —2, 5, 9. In agreement with the convergence of ener-
gies and wave functions, we observe a correct conver-
gence of moments obtained from basis sets (3.4a) —(3.4e),
which give properties that converge toward a limit value
that can be considered as the exact moment (r"),. As
occurs with energies and wave functions, the moments
obtained from basis sets (3.4d) and (3.4e) do not converge
correctly, although the percentage error of the larger
basis values with respect to the best (3.4a) value is quite
small. The rate of convergence of (r )& obtained
from the basis sets (3.4c)—(3.4e) is slow because these
basis functions do not have the analytic structure of gI"
at r =0 originated by the Coulomb singularity [2—5].

Tables VI —XI contain numerical results for He+ in the
box [O,R =5]. Table VI shows the convergence of ener-
gies E5" obtained from basis sets (3.4a) and (3.4b) toward

—1.999997053, which can be considered as the exact
value E5 ' with all its exact figures. In Table VII we have
monitored the L2 convergence as in Table II. Correct I 2

convergence is obtained from the basis sets (3.4a) —(3.4c)
and we observe that 9.6X10 can be considered as the
true limit value ~~g~" —f'"~~~ [Eqs. (3.5)]. An incorrect
L2 convergence appears with 15 and 25 basis functions of
type (3.4d) and (3.4e), respectively. This is comprehensi-
ble since, for example, the overlaps ( q&5 „@5,) 5

=1.9X10 and (y5 5o, p5 50)~=2.02X10 obtained from
the basis function (3.4e) produce a rapid loss of precise
figures in the numerical calculations. The rate of conver-
gence of both energies E5" and wave functions $~5" ob-
tained from the basis sets (3.4c) —(3.4e) is slower than that
with R =1 because for R =5 these basis sets must now
duplicate two structural properties of lt~&". one originat-
ed by the Coulomb singularity and the other by the ex-
ponential decay of t//It' (Fig. 1 shows how ltIt' duplicates
the exponential decay of g'" as R increases).

Tables VIII —XI show the convergence of moments
(r )~ for k = —2, 0, 5, 9 and confirm the results of
Tables VI and VII. The incorrect convergence of mo-
ments obtained from the basis sets (3.4d) and (3.4e) be-
comes more evident. To understand this result it is
enough to distinguish between the exact function ttjIt" as-
sociated with the basis set Iyz„]„, and the function
p7Pz' obtained numerically with such a basis set. The er-

TABLE III. Convergence of moments (r ) &
corresponding to the eigenfunctions ttI" of Table II.

In the last row the percentage error of the larger basis value with respect to the best (3.4a) value is ex-
hibited.

Basis
(3.4a)

16.4515
16.4220
16.4220
16.4220

Basis
(3.4b)

16.349
16.422
16.422
16.422

20
40
60
80

100

Basis
(3.4c)

16.3443
16.4024
16.4132
16.4171
16.4188

10
20
30
45
50

Basis
(3.4d)

16.607 50
16.564 43
16.562 04
16.561 86
16.561 78

20
40
60
80

100

Basis
(3.4e)

16.241 350
16.243 021
16.243 550
16.243 558
16.243 641

0.0 —0.02 0.85
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TABLE IV. Convergence of moments (r ), corresponding to the eigenfunctions P'," of Table II.
The values 10 (r'), are reported and the percentage error of the larger basis value with respect to the
best (3.4a) value is given in the last row.

Basis
(3.4a)

5.088 99
5.101 00
5.10100
5.10100

Basis
(3.4b)

5.0931
5.1010
5.1010
5.1010

20
40
60
80

100

Basis
(3.4c)

5.101 55
5 ~ 10106
5.10101
5.10100
5.100 99

10
20
30
45
50

Basis
(3.4d)

5.102 87
5.102 02
5.101 88
5.10193
5.101 92

20
40
60
80

100

Basis
(3.4e)

5.101 91
5.101 93
5.101 94
5.101 93
5.101 93

0.0 0.0 0.02 0.02

TABLE V. Convergence of moments (r ), corresponding to the eigenfunctions g'," of Table II.
The values 10 (r )1 are reported and the percentage error of the larger basis value with respect to the
best (3.4a) value is given in the last row.

Basis
(3.4a)

1.424 77
1.434 33
1.434 33
1.434 33

Basis
(3.4b)

1.4348
1.4343
1.4343
1.4343

20
40
60
80

100

Basis
(3.4c)

1.434 51
1.434 35
1.434 33
1.434 33
1.434 33

10
20
30
45
50

Basis
(3.4d)

1.434 940
1.434 673
1.434 634
1.434 647
1.434 643

20
40
60
80

100

Basis
(3.4e)

1.434 650
1.434 657
1.434 659
1.434 656
1.434 655

0.0 0.0 0.02 0.02

TABLE VI. Convergence of ls energies E'," of He+ in the box [O,R =5], for increasing values of
the number m of basis functions (3.4). The values —E&" are reported.

3
6
9

12
15
18
21
24
27
30

Basis
(3.4a)

1.999 896 785
1.999995 850
1.999997 031
1.999 997 053
1.999 997 053
1.999 997 053
1.999 997 053
1.999997 053
1.999997 053
1.999 997 053

2
4
6
8

10
12
14
16
18
20

Basis
(3.4b)

1.222 586 399
1.849 446 033
1.993 305 030
1.999918948
1.999996 699
1.999997 052
1.999 997 053
1.999 997 053
1.999997 053
1.999997 053

20
40
60
80

100
120
140
160
180
200

Basis
(3.4c)

1.979 759
1.997 000
1.999065
1.999 595
1.999 788
1.999 875
1.999 920
1.999 945
1.999 960
1.999 970

3
6
9

12
15
18
21
24
27
30

Basis
(3.4d)

1.997 869
1.999017
1.999 397
1.999 599
1.999 642
1.999644
1.999 645
1.999 646
1.999 647
1.999 648

10
15
20
25
30
35
40
45
50

Basis
(3.4e)

1.983 249
1.990 117
1.990 173
1.990 179
1.990 227
1.990 310
1.990 327
1.990 328
1.990 332

TABLE VII. Convergence in the Lz(0, 5) norm of eigenfunctions g'," corresponding to the eigenval-
ues E'," of Table VI. The values iig',"—g'"ii, are reported, where P"' is the ls wave function of the
free He+ ion [Eqs. (3.5)]. The notation 6.7[ —3] signifies 6.7 X 10

3
6
9

12
15
18
21
24
27
30

Basis
(3.4a)

6.762 30[ —3]
1.284 10[—3]
9.740 94[ —4]
9.61602[ —4]
9.615 36[—4]
9.615 26[ —4]
9.615 23[ —4]
9.615 22[ —4]
9.615 21[—4]
9.615 21[—4]

Basis
(3.4b)

2 6.819[—1]
4 1.704[ —1]
6 2.369[—2]
8 2.345[ —3]

10 9.695[—4]
12 9.613[—4]
14 9.613[—4]
16 9.613[ —4]
18 9.613[—4]
20 9.613[ —4]

20
40
60
80

100
120
140
160
180
200

Basis
(3.4c)

1.606[ —2]
2.964[ —3]
1.382[ —3]
1.072[ —3]
9.977[—4]
9.757[ —4]
9.679[ —4]
9.647[ —4]
9.633[—4]
9.625[ —4]

Basis
(3.4d)

3 1.543[—2]
6 6.332[—3]
9 3.981[—3]

12 2.769[—3]
15 2.794[—3]
18 2.820[ —3]
21 2.870[—3]
24 2.921[—3]
27 2.961[—3]
30 2.990[—3]

Basis
(3.4e)

10 2.941[—2]
15 9.072[ —3]
20 8.716[—3]
25 8.754[ —3]
30 8.554[ —3]
35 5.197[—3]
40 2.058[ —3]
45 1.711[—3]
50 1.309[—3]
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2 n

1.6 —:

1.2-I

0.8

0.4

—R=0.5
-- R=2.0

-- — --- R=1.0
R=3.0
R=5.0

—R=10.0

and

hm E"=E"R
R —+ oo

(4.1a)

form. In what follows we consider that l()R"(r)=0 for
r )R. It is not difficult to see that this extension of gR('

belongs to D (h) and satisfies ER'= h (gR', fR'). As shown
in [6], for potentials of physical interest the bound states
of Eqs. (1.3) and (1.4) satisfy

3
R (a.u. )

lim Il@R(')—y(')II=0. (4.1b)

FIG. l. ADWF ((i(i(' (r) of He+ ion in the box [O, R]. Every
wave function is obtained from a Ritz-type expansion with a
suitable number m of basis functions (3.4a), as in Tables II, VII,
and XIII ~

ror of gz' originated by round-off 'errors is given by
e increase of llew" II as

is made larger follows from Table IX: Each value of
(r )~ obtained from the basis set (3.4d) or (3.4e) might
be equal to 1 by the "normalization" of each t7jz", but
Table IX shows that this is not the case, since the corn-
puted values decrease with (3.4d) and increase with (3.4e)
as m increases. The equation

l&p'R', r"g'R )R (fR re )RI

=I2&y~,'), r "Sy~," ), +O(ISq," I')I

clearly shows how the right-hand term (g, r 6$R )R
(&) k (1)

increases the round-off error of (ttjR, r ttiR )R as k m-
creases. The values from the basis sets (3.4d) and (3.4e)
reported in Tables X and XI confirm this result. Never-
theless, we see that the percentage of errors with respect
to the exact values [obtained from (3.4a)] are quite
reasonable.

The above numerical results con6rm that correct or
reasonable expectation values can be obtained even when
the analytic structure of the basis functions radically
diff'ers from that of the exact state, provided that Eqs.
(3.1) hold (Remark 1).

IV. COMPUTATION OF EXPECTATION VAI.UKS
( y(i) Sy(J) ) IN [P

Let H be the Hainiltonian associated with Eq. (1.3) in
L2(0, ~ ) and let h(, ) be the corresponding sesquilinear

We now show the correctness of equation

( y(i ) sy(g) ) ( y(i ) sy(j ) )
R~oo

(4.2)

for most operators S for which ( 1t",Sg(i) ) exists, includ-
ing r with k & —2.

By Theorem 3, if S is relatively form bounded by H,
then Eqs. (4.1a) and (4.1b) imply that (4.2) is true, a result
that includes r with —2(k 0 and the momentum
operator. This is not a surprise since there are other nu-
merical methods that satisfy conditions (4.1) and there-
fore guarantee (4.2) for relatively form-bounded opera-
tors. The strong result is the correctness of (4.2) with
operators S not relatively form bounded by H, such as the
higher power of moment operators r".

For simplicity we consider that V(r)~0 as r~ao.
Let s(r} be a real-valued function on [O, ao } that is
bounded on each finite interval [O,R] and for which
Ils(r}g"II

exists, for example, r" with k )0. According
to Theorem 2, to prove (4.2) with S =s (r) it is enough to
show that Ilslt('R'll remains bounded as R ~ oo. This
quantity can be expressed as

s@"II'= Ils@"II', + f
0

where Ro is a positive constant. From (4.1b) and the
boundedness of s(r) on [O, RD] it follows that
IISQR" IIR ~ Ils@"IIR as R ~ 00. It remains to show that

the integral is bounded for all R. Intuitively, since the
eigenfunctions of Eqs. (1.3) and (1.4) satisfy a differential
equation of type

d + V(r)f =Ef (4.3)
dl"

and ER'~E", the asymptotic behavior of g'R' tends to
that of P" as R ~ ao (see, for example, Fig. 1). From this

TABLE VIII. Convergence of moments & r ), corresponding to the wave functions g(5" of Table
VII. In the last row the percentage error of the larger basis value with respect to the best (3.4a) value is
exhibited.

6
12
18
24
30

Basis
(3.4a)

7.999 43
8.000 11
8.000 11
8.000 11
8.000 11

4
8

12
16
20

Basis
(3.4b)

4.7296
7.9745
8.0001
8.0001
8.0001

40
80

120
160
200

Basis
(3.4c)

7.7730
7.9446
7.9759
7.8866
7.9916

6
12
15
24
30

Basis
(3.4d)

8.19042
8.10400
8.096 18
8.095 53
8.095 20

15
25
35
45
50

Basis
(3.4e)

7.470 93
7.474 10
7.471 82
7.471 80
7.471 74

0.0 1.2 —6.6
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TABLE IX. Convergence of moments ( r ), corresponding to the eigenfunctions P'," of Table VII.

6
12
18
24
30

Basis
(3.4a)

1.000 00
1.00000
1.00000
1.00000
1.000 00

4
8

12
16
20

Basis
(3.4b)

1.0000
1.0000
1.0000
1.0000
1.0000

40
80

120
160
200

Basis
(3.4c)

1.00000
1.00000
1.000 00
1.00000
1.00000

6
12
15
24
30

Basis
(3.4d)

1.000 000 0
1.000 000 0
0.999998 4
0.999 997 6
0.999 997 1

15
25
35
45
50

Basis
(3.4e)

1.000 059
1.000 067
1.000 061
1.000084
1.000084

l Sj =(q',",Sqj ') &y"',Sy'i')— (4.7)

idea one can rigorously prove [29] that the set of DWFs
g'ii' is bounded basically by the asymptotic form of g":
There exist positive constants Ao", A'&', b;, and a large
enough Rc such that the function g "(r) given by

A (')' if r E [0,R c ]
g(')(r)— (4.4)

A 'i'exp( b; r ) if—r )R c

satisfies the inequality

it/rz'(r)i g"(r) for all r K[0, ao )

with every fixed R )Rc . (4.5}

Now, if s(r) satisfies

f is(r)g "(r)i dr &M & ~, (4.6)
0

then one immediately obtains that

f is/'z'i dr & f is(r)g "(r)i dr &M .
0 0

Thus we conclude that limz iisllt~z'ii & its@"iiz+M
and clearly this includes any positive power of r.

Remark 2. If V(r) +~ as—r ~ ac, the bound states of—b,.rEq. (1.3) decay more rapid than e ', so that the class of
functions s (r) for which Eq. (4.2) holds is larger than the
class of functions that satisfy (4.6}. For example, if
V(r) —r, then g "(r)-exp( —2r ) for large r In every.
case, the limiting procedure (4.2} is true for r" with
k & —2.

Remark 3. Since the correctness of (4.2) with the
operators S described above is obtained from Theorems 2
and 3, upper and lower bounds of the error

lim lim (f'„',Sfj'' &
= (g"',Sq"'),

gazoo m —+oo

where Sf& =SR/+ . We now show that the error

(4.9)

as'J=&q"' spy'' &
—&y"' sy'J'& (4.10)

can be made arbitrarily small by taking R and m large
enough. Let e)0 be a number arbitrarily small. By us-
ing (3.3) and (4.7) we obtain

can be constructed as in Sec. II. Therefore, the set of
DWFs gz' is reliable to compute the true expectation
value (g",Sg'J').

Equation (4.2) was shown in the particular case of a
linear potential V(r}=r by Fernandez et al. [14], who
obtained, in an analytic form, the transition moments
(g'z', r"Pj'') and recovered (g",r "g'i') when R ~ oo.

In the previous section we saw that ADWFs obtained
from several numerical methods are reliable to compute
the quantity (gz', Sz fg')z. We now see how this result
allows us to obtain accurate values of (g",Sg'J'). Let

and Eli' be numerical solutions of Eq. (1.4) that
satisfy (3.1). In what follows f'z' (r) =0 for r )R, so that

T»s together wit" Eqs
(3.1) and (4.1), leads to

lim iiy„" —y"ii=0. (4.S)
R~co m~oo R~oo m~oo

Let S be an operator among those described above for
which (4.2} is true. It is easy to see the action of S on g~'
defines an operator Sz [called the restriction of S on

L z(0, R ) ] for which the equations
(gz', Sg'i'') =(gz', Szgg')z and (3.2) are true. This, to-
gether with (4.2), leads to the correctness of the equation

TABLE X. Convergence of moments (r~), corresponding to the eigenfunctions $~5" of Table VII.
In the last row the percentage error of the larger basis value with respect to the best (3.4a) value is ex-
hibited.

6
12
18
24
30

Basis
(3.4a)

2.447 48
2.451 36
2.451 36
2.451 36
2.451 36

4
8

12
16
20

Basis
(3.4b)

7.0461
2.4527
2.4527
2.4527
2.4527

40
80

120
160
200

Basis

2.465 94
2.453 30
2.451 95
2.451 61
2.451 49

6
12
15
24
30

Basis
(3.4d)

2.467 17
2.453 84
2.453 45
2.453 41
2.453 38

15
25
35
45
50

Basis
(3.4e)

2.3887
2.3831
2.4587
2.4769
2.4826

0.0 0.005 0.08 1.3
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TABI,E Xi. Convergence of moments ( r9) 5 corresponding to the eigenfunctions gz" of Table &11.
In the last row the percentage error of the larger basis value with respect to the best (3.4a) value is ex-
hibited.

6
12
18
24
30

Basis
(3.4a)

70.2533
71.8357
71.8356
71.8357
71.8355

4
8

12
16
20

Basis
(3.4b)

1559.6
72.350
71.835
71.835
71.835

40
80

120
160
200

Basis
(3.4c)

72.5321
71.9247
71.8624
71.8469
71.8414

6
12
15
24
30

Basis
(3.4d)

76.2768
72.0219
71.9761
71.9665
71.9602

15
25
35
45
50

Basis
(3.4e)

54.3812
53.8326
66.4814
70.3595
71.9382

0.0 0.008 0.17 0.14

(4.9), in practical situations it is more convenient to solve
Eq. (1.4) in a sequence of boxes [O,R„](R„~ao as n in
creases) until physical properties are obtained with the
desired accuracy. For fixed R„ the convergence of nu-
merical solutions of Eq. (1.4) is monitored as in Tables
I—V and for increasing values of R„ the convergence can
be monitored by comparing the best result in the interval
[O,R„]with that of [O,R„+t]. Another way of verifying
the L2 convergence follows from the inequality (2.2b). If

tends to gz" in the L2(O, R„) norm then it con-
n n

verges to g" in the Lz(0, ac ) norm for increasing values
of R„and m; since the quantity IIOR„OR
(m' & m) provides a bound of the exact error

[Eq. (2.2b)], then @z" converges in the

L2(0, ao ) norm and is more accurate as
.II+ —+0 [we remark that @~+" (r)=0 for

r &R„]. Examples of this procedure can be found in
[7,27]. We now give an example that will be used in our
discussion about the analytic structure of approximating
sequences.

Numerical example

Continuing with the He ion, in Tables XII—XVIII we
give numerical results of the convergence of energies
Ez', the ADWF gz', and moments (r")z obtained

From Eq. (4.2) one has that there is a R& such that
I
b.S/ I

& E/2 for all R & R, . On the other hand, from Eq.
(3.2) it follows that for every R & R

&
there is an m (R)

such that IX'~ I
& e/2 for all m & m (R). Thus

IbS'JI &e for every R &R, and m &m(R). Therefore,
both the DWF PIt' and the ADWF /It' that satisfy (3.1)
are indeed reliable to compute in [0, ~ ) expectation and
transition values of most operators S for which
( P",Sg' ' ) exists.

Several authors [8—12] have applied methods, such as
finite-element or finite-difference methods, to solve Eq.
(1.3) by taking a suitable large R and replacing the
boundary condition lim„„g"(r) =0 by g"(R ) =0,
which is an implicit way of using Eqs. (4.8) and (4.9). The
classical turning points, given by the equationE"—V(R) =0, have been used to define a suitable large
R. Unfortunately, this definition depends on the exact
energy E", which is a priori unknown, and does not
guarantee that the errors IIgz" —g"II and Ez' E"are-
small. Other authors have applied particular techniques
to solve Eq. (1.4) and they found that Eq. (4.9) holds for
some operators S [13—16]. It is clear that these results
are special cases of Eqs. (4.8) and (4.9).

Since the correct convergence of energies, wave func-
tions, and other properties is guaranteed by Eqs. (4.8) and

TABLE XII. Convergence of 1s energies of He+. The first tree columns are values —E &0' obtained
from a Ritz-type expansion with m basis functions {3.4) in [O,R = 10] and the other columns are the en-
ergies from Fourier and Ritz expansions with m Gaussian functions (5.1). The exact energy of the free
He+ ion is E"'=—2.000000.

4
8

12
16
20
24
28
32
36
40

Basis
(3.4a)

1.999999989
2.000 000 000
2.000 000 000
2.000 000 000
2.000 000 000
2.000 000 000
2.000 000 000
2.000 000 000
2.000 000 000
2.000 000 000

20
40
60
80

100
120
140
160
180
200

Basis
(3.4c)

1.886 170
1.979 062
1.993 099
1.996 948
1.998 396
1.999056
1.999 399
1.999 594
1.999 713
1.999 790

10
15
20
25
30
35
40
45
50
55

Basis
(3.4e)

1.980 888
1.988 154
1.988 212
1.988 245
1.988 359
1.988 410
1.988 425
1.988 430
1.988 432
1.988 432

20
40
60
80

100
120
140
160
180
200

Fourier
Ref. [2]

1.947 02
1.978 57
1.987 71
1.991 78
1.99401
1.995 38
1.996 30
1.996 95
1.997 42
1.997 79

20
40
60
80

100
120
140
160
180
200

Ritz
Ref. [2]

1.949 73
1.979 20
1.987 96
1.991 91
1.99409
1.995 43
1.996 33
1.996 97
1.997 44
1.997 80
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4
8

12
16
20
24
28
32
36
40

Basis
(3.4a)

8.76[ —5]
6.37[—7]
1.22[ —7]
1.11[—7]
1.05[—7]
1.07[—7]
1.03[—7]
9.99[—8]
9.31[—8]
8.94[ —8]

20
40
60
80

100
120
140
160
180
200

Basis
(3.4c)

8.46[ —2]
1.66[ —2]
5.96[—3]
2.86[ —3]
1.61[—3]
1.01[—3]
6.81[—4]
4.84[ —4]
3.58[ —4]
2.74[ —4]

10
15
20
25
30
35
40
45
50
55

Basis
(3.4e)

2.89[—2]
1.14[—2]
1.25[ —2]
1.28[ —2]
1.19[—2]
1.02[ —2]
1.01[—2]
9.89[—3]
9.87[ —3]
9.88[ —3]

TABLE XIII. Convergence in the L2(0, 10) norm of the
ADWF lt",~' corresponding to the eigenvalues E",~' of Table
XII. The values llg~z' —f"'llio are reported, where P"' is the
exact ls state of the free He+ ion [Eqs. (3.5)]. The notation
8.7[ —5] means 8.7 X 10

lim hm WRm(r0) im 1('R (r0) 1( (r0)
gazoo m —moo g ~ oo

(4.11)

which is shown in Table XIX [a rigorous proof of (4.11) is
given in [29]].

(Theorem 2). The latter condition is a consequence of
(3.2) and Eq. (4.2), which is determined by the bounded-
ness of 1(z' by g"'(r) [Eqs. (4.4) and (4.5)]. The manner
in which gR' duplicates the asymptotic behavior of 1(t' '

is illustrated in Fig. 1, where the best wave functions tttz"

obtained from the basis set (3.4a) with
R =O. S, 1.0,2.0, 3.0, 5.0, 10.0 are plotted. We observe
how tp'z' tends toward the best 1t'io'40 which may be con-
sidered as the free 1s state since its exact error
lip'iii'4c —

hatt"'ll =8.9X10 is very small (see Table XIII).
The graphs obtained from the basis sets (3.4c) and (3.4e)
with the same values of R cannot be distinguished from
those of Fig. 1, because of the pointmise convergence,

from the basis sets (3.4a), (3.4c), and (3.4e) with R =10.
As in Sec. III, a correct convergence of all quantities
from the basis set (3.4a) and (3.4c) holds, whereas the
(3.4e) values diifer slightly with respect to the best (3.4a)
values, which can be considered as the exact ground-state
properties of He+ in the box [O,R =10].

The comparison made in Tables XII and XIII between
the energy E'io'4c and the wave function lt'iii'4c from the
basis set (3.4a) with those of the free He+ ion shows that
the ls state of He within the box [O,R = 10] is essential-
ly the 1s state of the free He+ ion, in agreement with Eqs.
(4.8) and (4.9). This result is reinforced by the conver-
gence of density moments (r")ic toward the free sys-
tem values as Tables XIV—XVIII show.

The correct convergence of Ez" and gz' for increas-
ing values of R and m guarantees the convergence of
(r )it to the free system value (r ) (Theorem 3) as
Table XIV shows. Convergence of ( r" )z with k ~ 0
follows from the L2 convergence [Eq. (4.8)] and the
boundedness of [ ll r "fIt '

ll j as R and m increase

V. RITZ-TYPE CALCULATIONS IN [0, 00 )

In Ref. [2] Kiahn and Morgan undertook a careful con-
vergence analysis of expectation values obtained from
both Fourier and Ritz-type expansions with the Gaussian
basis functions

y (r)=e " r '" ' k=122

The space in which Klahn and Morgan made their
analysis is the weighted Hilbert space Lz(0, oo;r ), whose
inner product (, ), in terms of that of L2(0, ac ), is given
by (f,g ) = (f, r g ) . The convergence analysis for expec-
tation values of operators S not relatively form bounded
by the Hamiltonian starts from the inequality

which shows that incorrect expectation values can be
computed when the sequence [lisp„ll j„,diverges. The
calculation of Fourier expansions 1(t„ for the ls state of

TABLE XIV. Convergence of approximate values of the ls moment (r ) of He+. The first three
columns are the values from the ADWF itI~O of Table XIII and the other columns are the values from
Fourier and Ritz expansions with m Cxaussian functions (5.1). In the last row the percentage error of
the larger basis value with respect to the exact free system value (r ) =8.0000 is reported.

4
8

12
16
20
24
28
32
36
40

Basis
(3.4a)

7.999 79
8.00000
8.00000
8.000 00
8.00000
8.00000
8.000 00
8.00000
8.00000
8.00000

20
40
60
80

100
120
140
160
180
200

Basis
(3.4c)

5.3064
7.1153
7.5917
7.7700
7.8537
7.8993
7.9265
7.9441
7.9561
7.9646

10
15
20
25
30
35
40
45
50
55

Basis
(3.4e)

7.254 35
7.404 113
7.410 288
7.409 346
7.407 884
7.407 310
7.407 082
7.407 043
7.407 073
7.407 070

20
40
60
80

100
120
140
160
180
200

Fourier
Ref. [2]

6.7774
7.3280
7.5347
7.6435
7.7107
7.7565
7.7897
7.8149
7.8346
7.8505

20
40
60

100
120
140
160
180
200

Ritz
Ref. [2]

6.3997
7.1193
7.3972
7.5436
7.6336
7.6944
7.7382
7.7712
7.7969
7.8175

0.0 —7.4 —1.9 —2.3
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TABLE XV. Convergence of approximate values of the ls moment (r') of He+. The first three
columns are the values from the ADWF /It' of Table XIII and the other columns are the values from
Fourier and Ritz expansions with m Gaussian functions (5.1). In the last row the percentage error of
the larger basis value with respect to the exact free system value (r') =2.46094 is reported.

8
12
16
20
24
28
32
36
40

Basis
(3.4a)

2.459 39
2.460 94
2.460 94
2.460 94
2.460 94
2.460 94
2.460 94
2.460 94
2.460 94
2.460 94

20
40
60
80

100
120
140
160
180
200

Basis
(3.4c)

5.6640
2.6443
2.5031
2.4774
2.4693
2.4658
2.4639
2.4629
2.4623
2.4620

10
15
20
25
30
35
40
45
50
55

Basis
(3.4e)

2.0642
2.1436
2.3827
2.3979
2.4533
2.4942
2.5107
2.5189
2.5166
2.5168

20
40
60
80

100
120
140
160
180
200

Fourier
Ref. [2]

3.1651
2.8S05
2.7297
2.6660
2.6267
2.6001
2.5808
2.5662
2.5548
2.5456

20
40
60
80

100
120
140
160
180
200

Ritz
Ref. [2]

6.401
6.102
5.803
5.560
5.362
5.198
5.060
4.942
4.839
4.748

0.0 0.04 2.3 3.4 94.2

TABLE XVI. Convergence of approximate values of the ls moment (r ) of He+. The first three
columns are the values from the ADWF ltjIt' of Table XIII and the other columns are the values from
Fourier and Ritz expansions with m Gaussian functions (5.1). In the last row the percentage error of
the larger basis value with respect to the exact free system value ( r ) =4.921 87 is reported.

16
20
24
28
32
36
40

Basis
(3.4a)

4.915 14
4.921 87
4.921 87
4.921 87
4.921 87
4.921 87
4.921 87
4.921 87
4.921 87
4.921 87

20
40
60
80

100
120
140
160
180
200

Basis
(3.4c)

27.666
5.8183
5.0693
4.9697
4.9437
4.9338
4.9292
4.9267
4.9252
4.9243

10
15
20
25
30
35
40
45
50
S5

Basis
(3.4e)

3.666
4.671
4.576
4.621
4.812
4.959
5.023
5.058
5.046
5.047

20
40
60
80

100
120
140
160
180
200

Fourier
Ref. [2]

10.51
9.796
8.607
8.168
7.855
7.617
7.430
7.276
7.148
7.039

20
40
60
80

100
120
140
160
180
200

Ritz
Ref. [2]

36.50
47.86
53.94
57.85
60.63
62.73
64.40
65.75
66.89
67.85

0.0 0.05 2.5 43.0 1278

TABLE XVII. Convergence of approximate values of the ls moment (r ) of He+. The first three
columns are the values from the ADWF g",0' of Table XIII and the other columns are the values from
Fourier and Ritz expansions with m Gaussian functions (5.1). In the last row the percentage error of
the larger basis value with respect to the exact free system value (r ) =11.07421 is reported. The no-
tation 17.53[2] means 17.53 X 10 .

4
8

12
16
20
24
28
32
36
40

Basis
(3.4a)

11.0452
11.0742
11.0742
11.0742
11.0742
11.0742
11.0742
11.0742
11.0742
11.0742
0.0

40
60
80

100
120
140
160
180
200

Basis
(3.4c)

196.917
17.2937
11.8642
11.2761
11.1517
11.1122
11.0959
11.0879
11.0835
11.0808
0.06

10
15
20
25
30
35
40
45
50
55

Basis
(3.4e)

7.0298
9.9679
9.6667
9.8120

10.4762
11.0141
11.2740
11.4226
11.3632
11.3656
2.6

20
40
60
80

100
120
140
160
180
200

Fourier
Ref. [2]

56.637
61.210
62.869
63.726
64.249
64.602
64.856
65.047
65.196
65.316
49.0[1]

20
40
60
80

100
120
140
160
180
200

Ritz
Ref. [2]

27.48[1]
52.91[1]
74.18[1]
92.67[1]
10.92[2]
12.43[2]
13.83[2]
15.13[2]
16.36[2]
17.53[2]
15.3[3]
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TABLE XVIII. Convergence of approximate values of the ls moment (r ) of He+. The first three
columns are the values from the ADWF g",0' of Table XIII and the other columns are the values from
Fourier and Ritz expansions with m Gaussian functions (5.1). In the last row the percentage error of
the larger basis value with respect to the exact free system value (r9) =76. 135 is reported. The nota-
tion 13.40[5] means 13.40 X 10'.

4
8

12
16
20
24
28
32
36
40

Basis
(3.4a)

75.S678
76.1340
76.1352
76.1352
76.1352
76.1352
76.1352
76.1352
76.1352
76.1352

20
40
60
80

100
120
140
160
170
200

Basis
(3.4c)

14.306[3]
51.871[1]
12.385[1]
85.738[0]
78.950[0]
77.199[0]
76.619[0]
76.388[0]
76.282[0]
76.227[0]

10
15
20
25
30
35
40
45
50
55

Basis
(3.4e)

30.664
56.877
53.734
55.323
63.830
71.399
75.866
78.862
77.393
77.419

20
40
60
80

100
120
140
160
180
200

Fourier
Ref. [2]

32.45 [2]
69.98[2]
10.78[3]
14.56[3]
18.35[3]
22. 15[3]
25.95[3]
29.73[3]
33.52[3]
37.32[3]

20
40
60
80

100
120
140
160
180
200

Ritz
Ref. [2]

19.111[3]
76.717[3]
16.420[4]
27.642[4]
41.018[4]
56.326[4]
73.401[4]
92.115[4]
11.236[5]
13.406[ 5 ]

0.0 0.12 1.7 48.9 [3 ] 17.6[5]

He+ gives sequences [(g„,r"+ f„)]„&„which con-
verge to their correct limit for k (7 and diverge for k )7
with k =7 the crossover from convergence to divergence,
and similar results are obtained from the Ritz-type wave
functions f„with the corresponding crossover value
k =5 (see Tables XIV—XVIII). The explanation of this
result lies in the generally accepted fact that the correct-
ness of the limiting procedure lim„„(g„,Sg )
=(g,Sg) is determined by the rate of convergence of
approximate energies E„ to the exact one (E conver-
gence) in a manner that the term ~iS1t„~i is dominated by
E„Eon —the right-hand side of (5.2). On the other
hand, Schwarz [3] pointed out that the rate of E conver-

1"p

0.10
0.20
0.65
0.80

Basis
(3.4a)

0.709 793
1.141 772
1.035 162
0.026 619

Basis
(3.4c)

0.709 792
1.141 772
1.035162
0.626 618

Basis
(3.4e)

0.711410
1.140 317
1.034 950
0.626 461

Exact
free state

TABLE XIX. Pointwise convergence of f'„" for increasing
values of R. The values lt'„" (ro) from the larger basis ADWF
of Tables II, VII, and XIII are reported. In the last column the
exact value P' "(ro ) of the free system ls state is reported.

gence depends on the ability to duplicate the analytic
structure of the exact state in the neighborhood of the
cusps (where the exact state is not analytic in Cartesian
coordinates [4]). Thus, if the basis functions have an ana-
lytic structure that differs too much from that of the ex-
act state, a slow E convergence occurs and hence the
right-hand term of (5.2) may diverge as n ~ ~.

Before we compare the numerical results of Klahn and
Morgan with those of the ADWF, the following facts
should be considered. In Ref. [2] the basis set (5.1) was
orthonormalized analytically and integrals were comput-
ed through recurrence relations or analytic formulas.
Thus numerical instabilities were eliminated as much as
possible. Since the exact ls state P" ' of He is obtained
from P7"=2Z i e "of Ref. I2] multiplying by r, the an-
alytic structure of g~'i and p7/' is similar at r =0, ~: they
have a discontinuous derivative at r =0 because of e
and the behavior for large r is similar.

The basis set (3.4e) is as Ilawed as (5.1) in terms of its
ability to duplicate the analytic structure of the exact 1s
state at r =0, ~. This is obvious for r —+ ~ and in the
neighborhood of r =0 the behavior

(r) gr2k —1 ~ (r) r2(k —1)

10

0.10
0.60
1.00
1.50
2.50
4.10

0.463 148
1.022 295
0.765 576
0.422 455
0.095 270
0.006 102

0.10 0.463 144
0.60 1.022 287
1.00 0.765 572
2.50 0.095 289
4.10 0.006 370
5.05 0.001 174

0.463 065
1.022 281
0.765 575
0.422 459
0.095 271
0.006 103

0.462 561
1.022 179
0.765 565
0.095 294
0.006 361
0.001 183

0.444 847
1.026 086
0.770 459
0.427 524
0.098 293
0.008 133

0.441 921
1.026 039
0.770 498
0.097 770
0.005 736
0.000 572

0.463 144
1.022 287
0.765 572
0.095 289
0.006 370
0.001 174

only diff'ers by the factor r [used to satisfy g~ (0)=0].
Obviously the analytic structure of the basis set (3.4c)
differs completely from that of the exact free system wave
function. Thus a slow E convergence holds with these
basis sets, as Table XII shows. This is confirmed in Table
XIII by the slow L2 convergence of the g~z' 's obtained
from the basis sets (3.4c) and (3.4e), whose error

—g"'ii is greater than that of g~z' obtained from
the basis set (3.4a). As expected, a correct, but slow, con-
vergence of the approximating values of (r ) is also ob-
served in Table XIV, since r is relatively form bounded
by the Hamiltonian.

According to the conjecture that slow E convergence
may cause divergences of approximating values of (r )
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with large k and the fact that the basis sets (3.4c) and
(3.4e) are as fiawed as (5.1), we might expect that the vari-
ational calculations with these basis sets exhibit similar
numerical results with high power moments r . Tables
XV—XVIII show that this expectation is false, since the
basis set (3.4c) gives a completely correct (but slow) con-
vergence toward the true moments and the values from
the basis set (3.4e) have a small percentage error (even
when the orthonormalization procedure together with
the numerical quadrature introduces a rapid loss of pre-
cise figures in numerical calculations), whereas the values
from the basis set (5.1) diverge. This supports our claim
that the possibility of obtaining divergences from the true
expectation values or computing wrong limit values be-
cause of the nonanalyticities in the exact states can be cir-
cumvented by using Dirichlet wave functions and their
numerical approximations, provided (3.1) holds.
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p(f g)=h. (f g)+(I —Eo)&f, g&. .

From Eq. (2.6) it follows that

I &~f,f &. I &p—(f,f)
for E =mx [ci +c2I 1 Eo—I, cz j and hence the form

q(f g)=&Sf g &, +(I+X)p(f g)

is positive, so that the Schwarz inequality holds

Iq(f g)l q(f f)'"q(g, g)'",
where, by using Eq. (A4), one has that

q(f f)'" [l&~f-f &. I(I+I~)p(f,f)]'"
~ [(2%+1)p(f,f)]'r

From Eqs. (A5) —(A7) we obtain

(A3)

(A4)

(A5)

(A6)

(A7)
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I &~f,g &. I
-(31''+2)p(f, f)'"p(g, g)'",

where lp(f, g)l ~p(f, f)'~ p(g, g)' was used. This leads
to

l&Slb" Sq' '&.
I (3m+2)p(bq" 51b")'"

APPENDIX: PROOF OF THEOREM 3

A straightforward calculation gives

les„'jl ~
I & s@(„",s@(j'&.I+1&s@"',n@(j'&.

I
.

Since the second term on the right-hand side is bounded

(y(j) q j )

Since 1b" is an eigenfunction of H„one easily obtains

p ( zy(i) zy(i) )
—E ( 1b(i) ) E ( 1b(i) )

+ [I—E,+E.(@(")]IIgib&„"II2

(AS)

1&s@"' sg"'&
I

it remains to prove that the first term is bounded. Con-
sider the positive form

and p(tti'„J', tti'„j')=E, (g'„~')+1 Eo. These —equations, to-
gether with Eqs. (Al), (A2), and (AS), immediately lead to
the assertion of Theorem 3.
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