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A direct integration of the Heisenberg equations of motion yields expansions of the position and
momentum operators x (z) and p(z), each as an infinite series in terms of the initial Weyl-ordered basis
set {S,, ,} formed from x (0) and p(0), with c-number time-dependent coefficients. This method is ap-
plied to the problem of tunneling in a symmetric and an asymmetric quartic potential. The expectation
values of the position and momentum operators with minimum uncertainty wave packet {0|x (#)|0) and
{0|p(2)|0) can be calculated accurately for a maximum time that is short compared to the period of os-
cillation of the wave packet. From the result of this calculation, with the help of Prony’s method one
can determine the level spacings for the low-lying states. In addition, in this formulation the wave pack-
et retains its shape; therefore, one can study the trajectory (O|x(#)|0) and (O|p(z)|0) as the quantal

analogue of the motion of the system in phase space.

PACS number(s): 03.65.Ca, 03.65.Bz

I. INTRODUCTION

Klein and co-workers in a series of papers have studied
the possibility of using Heisenberg’s equation of motion
to obtain the eigenvalues of simple one-dimensional sys-
tems such as those of quartic symmetric potentials [1-3].
From the equations of motion, the Hamiltonian operator,
and the canonical commutation relations they have found
that for these potentials the eigenvalues can be deter-
mined very accurately for weak as well as strong poten-
tials from the solution of a set of nonlinear algebraic
equations. This approach is different from the classical
way of solving these problems since it is formulated in
terms of a time-independent set of equations. A method
of integration of the operator equations, as an initial
value problem, has been recently proposed by Bender and
co-workers [4-8], where the position and momentum of
the particle at time ¢ is expressed in terms of an infinite
series of Weyl-ordered operators at =0, with time-
dependent c-number coefficients. The integration of these
operator equations enables one to investigate the details
of the motion of a wave packet describing the particle as
it tunnels between two potential wells or jumps over a
barrier [9-10].

In this work, we study some aspects of the solution of
the Heisenberg equations of motion for confining double
well potentials. In Sec. II we write the equations of
motion for a general quartic potential in terms of a di-
mensionless parameter that measures the strength of the
potential. The Hamiltonian operator in this case is the
generator of the unfolding of the system in the dimen-
sionless time variable 6. In Sec. III, we study the motion
of a Gaussian wave packet, which initially has its center
at the position of the minimum of one of the wells of the
double well potential. We determine the inequality that
must be satisfied by the potential parameter so that the
energy associated with the wave packet is less than the
height of the central maximum of the potential. Thus we
study the motion of the packet as it tunnels through the

1050-2947/95/51(6)/4365(8)/$06.00 51

barrier. Having obtained this condition, we find the
equation of motion for quartic potentials satisfied by the
Weyl-ordered set of operators {S,, ,(6)} of which the
Heisenberg equations are special cases. By integrating
the differential operator equations dS,,,(0)/d6, we ob-
tain the expectation values of position and momentum
operators of the center of the Gaussian wave packets as a
function of 6, but only for times short compared to the
period of oscillation of the wave packet between the two
wells, if quantum tunneling can take place. From this
partial knowledge of the motion of the wave packet we
want to obtain information about the observables of the
system. To this end we use the simplest version of the
Prony method [11] of determining the frequencies of a
finite sum of sinusoidal functions of time which gives us
the position of the center of the wave packet (Sec. IV).
Before applying this technique to our problem we test its
accuracy on an exactly solvable bistable potential. For
this potential we determine the matrix element of the po-
sition operator for a time that is short compared to the
known period of oscillation. Then we use Prony’s
method to invert the process and find the level spacings
from the time dependence of the matrix element. We ob-
serve that only for very strong potentials when the level
spacing is very small, the Prony method fails to give ac-
curate results (Sec. V). In Sec. VI, we apply this method
of inversion to quartic symmetric and asymmetric poten-
tials and obtain the level spacing for the low-lying states.
In addition to the matrix elements of x and p, in this ap-
proach, those of S, ,(0) are found. This enables us to
obtain the time dependence of the uncertainty product
Ax Ap and also study the quantal analogue of the motion
of the classical particle in the phase space.

II. EQUATIONS OF MOTION

Consider a typical asymmetric potential given by

Vix)=(1/2)mo*x*[(x /a)*— A(x /a)+B], (2.1
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where 4 and B are dimensionless constants and o and a
are constants having the dimensions of (time)™! and
length, respectively. This potential has two minima one
at x =x,=0, where V(x=x,)=0, and the other at
x=x,=[34+(94*—32B)"*)(a/8), where V.,
=V (x =x,). These two minima are separated by a bar-
rier with a maximum at x=x,=[34—(942
—32B)!"2](a/8), where the height of the barrier is
V(x=x,). The Hamiltonian for this system is

H=p2/2m)+V(x), 2.2)
where p, and x satisfy the commutation relation

[x,p, 1=iti . (2.3)

To simplify the problem let us first consider the dimen-
sionless coordinate &, and its conjugate momentum p,

defined by
§=x/a and p.=ap, , (2.4)

and then replace p. by a dimensionless momentum opera-

tor p, where
p=p§/(mcoa2) . (2.5)

With these changes the commutation relation (2.3) is re-
placed by

&pl=i/B*, B*=mwa®/#,

where 2 is also dimensionless. In terms of these dimen-
sionless operators the Hamiltonian (2.2) becomes

H=(mw?/2)[p?+EXE*— AE+B)] .

(2.6)

2.7

Finally let us introduce a dimensionless time by 8=wt
and its conjugate Hamiltonian by K =H /(#w) so that

K=(B2/2)[p?+EUE>— AE+B)] . (2.8)

The Heisenberg equations of motion derived from Egs.
(2.6) and (2.8) are

idE/do=[§,K1=[£Bpl=ip , 2.9)
and
idp/d0=[p,K]=[p, —B*EHE*— AE+B)]

=—i[26°—(3/2)AE*+BE) . (2.10)

III. MOTION OF A GAUSSIAN WAVE PACKET

From Eq. (2.8) it is clear that around £=x /a =0, the
potential can be approximated by a harmonic-oscillator
potential

V(E)=~(1/2)B*BE* . (3.1

The ground-state wave function for this potential is a
Gaussian wave packet;

WE)=(v/m)exp[ —(1/2)vE€*] , (3.2)
where
v=vVBp*. (3.3)
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The momentum p is given by the differential operator
p=—(i/Bd/d§ , (3.4)

therefore, K in (2.8) can be written as

K=(B*/2)[—(1/B*(d?/dE*)+EHE*— AE+B)] .  (3.5)

The expectation value of this Hamiltonian with the wave
function v, Eq. (3.2) is

(0|K|0)=[V'B /2+3/(88B)] . (3.6)

If the center of the wave packet (3.2) is displaced by &,
i.e., for the wave function ¥(£—§,) the expectation value
of K is given by

(0|K|[0)&,=V'B /2+3/(8B*B)
+E[ (B0 /2)(E3—E, A +B)
+(3/2VB X&—A4/2)] . (3.7)

For quantum tunneling, the expectation value of K which
is related to the energy of the wave packet (3.2) represent-
ing the particle should be less than the height of the bar-
rier at x; =a§,, i.e.,

(0|K|0) < V() . (3.8)

Now let us consider two specific cases:

(1) If A=2 and B=1, we have a symmetric double
well, V(£)=(B*/2)[EX£—1)*]. The maximum height of
the barrier is at £=(1/2), and V,,,, =B?/32. From Eq.
(3.6) and (3.8) it follows that for this case 82> 16.72.

(2) When 4 =14 and B =45, we have an asymmetric
well with a local maximum at £=3, and V,,,, =458%. For
this case from (3.8) we find that 8> must satisfy the in-
equality 82>0.0645. Similar results can be found from
(3.7) and (3.8) when £,70.

If the particle is initially located at £=0, then the clas-
sical motion will be oscillations about this point as long
as the kinetic energy p2/2 is less than the height of the
barrier (1/2)X£3— A&, +B). For the kinetic energies
larger than this the particle passes over the barrier and
enters the second well. Thus

p.=&(E]— A&, +B)'? 3.9)

defines the separatrix for this motion. In the case of the
symmetric double well with 82=20 the value of p, is
(1/4) with the corresponding energy K,=0.51875. For
an asymmetric well (B2=0.1), p.=6V'3, with
K_.=3.4374.

For integrating the operator equations of motion we
start with the wave packet (3.2) and calculate the expec-
tation values of K, Eq. (3.7), p(6=0) and £(6=0),

(0lp(0)|0)=0, (3.10)
and
(0l&(0)|0)=0.

Then we introduce the Weyl-ordered operator basis
{Sk,n} which is defined in terms of powers of p(6) and
£(9),

(3.11)
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Sma=(172)" 3 {m!/[(m —j)j1}pI&"p™ /. (3.12)

j=0

We note that S, , form an algebra closed under multiplication [7,8], and that the properties of this algebra can be de-
rived from the product formula

w Ny, ) .
SmaSps= 2 (i1/2Y 3 (=1 K1/ —kMKNB™ S 4y —jin 45—}
j=0 k=0

[C(n +1)I(m +1)I'(r +1)T(s +1)]

. 3.13
X —k +1)Tm +k —j + DD(r —k + )T(s +k —j +1)] G.13)

From this relation we calculate the commutation relation between two members of the set

© o 2j+1 .
(S, nsSy,s1=2 20<i/2>2’+‘k20 (=DM 1/2j + 1=Kk B™S, g1 pts—2j—1)
i= =
X{[T(n+DI(m +1DTr+ DG +1)]/
[Tm —k+1)(n+k—2j)I(r +k —2)I'(s —k +1)]} . (3.14)
We note that £ and p are expressible in terms of S ,,, i.e.,

§(9)=SO,1(9) and p(9)251,0(9) . (3.15)

Since K is the generator of motion in time (or 6 =wt), according to Egs. (2.9) and (2.10), we can write £(0+ A6) as a
Taylor series using the time derivatives given by these equations, i.e.,

EO+AO)=E(0)+[(—iA0) /1N[E,K]o+[(—iAO?/2[[E,K),K o+ [(—iA0?/3N[[[EK],K],K g+ - -+ (3.16)

Next we replace the commutators in this expansion in terms of S, ; and S o as given by Eq. (3.16). We also choose a
step size AG and write 0= jA6, where j is an integer. With these changes we can write

§(91+1)=§(01)+(A0/1')S1,0(01)+[(Ae)z/z!]f(SO,I(ej))+(1/2)[(A6)3/3!]{Sl,of’(SO,l)+f’(S0’1 )S1’0}6j+ tet

(3.17)

and

p(0j+1)=S1,0(6j)+(A6/1!)f(SO,1(9j))+(1/2)[(A6)2/2!]{Sl_of’(Sovl(Oj))+f’(So,1(9j))Sl,o} + e, (3.18)
where

fle)=—[26—(3/2) A&+ BE], (3.19)
and primes denote derivatives with respect to the argument.

From the definition (3.12), we can calculate the matrix elements of S,, , with the wave function ¥(§),
[@am g (mFm(B)m—m/4m —1)(n — 1] /2" M2 m and n even

(OIS, 10 = 0, otherwise . (3.20)
Thus we have

(018,,010Y=a®>V'B /(28%), (3.21)

(0|8, ,10Y=1/(2B'%a?p?) , (3.22)

(0[S,,410)=3/(4a*B*B) . (3.23)

In our calculations we choose #i=1 and a =1.
From the commutation relation (3.14) we can determine the time derivative of any member of the set S,, , of the or-
dered operators. To this end we note that

ids, ,/d0=[S,, ,.K]. (3.24)
Now according to (2.8), K can also be written in terms of S, ,
K=(B?/2)[S,0+S0,4— ASy3+BSy,] . (3.25)

Using the commutators
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[Sm,n’SZ,O]:(Zin/BZ)Sm+l,n~—l s (3.26)
[Sim,n»S0,21=—(2im /B*)S, _1 41 5 (3.27)
[Spmn>So31=(1/B) —3imS,, _y , 4, + (i /4B*)[m/(m —3M1S,, 3., } (3.28)

and
[SpnsS0.41=(1/B —4imS,, _y , 13+ /B m/(m =3NS, 3141} > (3.29)

we find dS,, ,/d6;
dS,, ,/d0O=nS,, (1 ,—1—2mS,, 1, 13+ (1/28)[m/(m —=3N[S,, —3, 11— (A/4)S,, _3,] (3.30)

+(3/2)mASm—1,n +2_mBSm—1,n +1 -

Thus using (3.30), the equations of motion can be written
in terms of §,, , in the following way:

dS,,/d6=S,, , (3.31)

and
dS,0/d0=(1/2)(—4Sy;+3A4S,, —ZBSOJ ) . (3.32)

These are the same as Eqgs. (2.9) and (2.10). Using Eq.
(3.30), we can also show that K defined by (3.25) is a con-
stant of motion.

IV. DETERMINATION OF THE EIGENVALUES
FOR THE LOW-LYING STATES

Suppose that by the integration of equations of motion,
we have obtained (0|x (¢)|0) as a function of time. This
time dependence of (0|x(#)|0) can directly be related to
the low-lying eigenvalues of the bound-state problem.
Let us consider the expectation value of the position
operator in the Schrodinger picture, i.e., start with a real
normalized time-dependent wave packet that describes
the motion

Y(x,t)= i c ¥, (x)exp(—iE, t /#) . 4.1)
v=0

Here E, and ¢, (x) denote the eigenvalues and the eigen-
functions of the Hamiltonian H. Using this wave packet
we calculate (W(x,?)|x|W(x,t)) in terms of the matrix
elements (¢;|x |4, ),

(W(x,0)|x|[W(x,1))= E‘, E‘, cpciexp(—iw,;t)(;|x [, )

n=0;=0

=3 3 cycicos(w,; 1) lx|¢, ),

n=0j=0
4.2)

where we have used the well-known fact that for this
one-dimensional problem the eigenfunctions are real.
Now let us assume that the initial wave packet W(x,0) is
given by a Gaussian wave packet, Eq. (3.2). Thus ¢, are
the coefficients of expansion of ¥(x,0) in terms of the set
of ¥, (x),

)

¥(x,0)=3 c,¢,(x).

n=0

(4.3)

f

In this expansion only the first few terms are important,
i.e., for large n, c, tend to zero rapidly. In fact for the
case of the wave functions of an exactly solvable double-
well potential one can show that in the expansion of a
Gaussian wave packet of the type given by Eq. (3.2) only
the first three or four terms in the infinite series (4.3) con-
tribute significantly to the sum. Thus we can define a
function f () in the following way:

F(O=(0lx ()]0} =(W(x,1)|x|¥(x,1))
=coe; {olx |, Ycos(v,0)
+cocy {Polx |1, ) cos(v,0)
+eye (Y, lx | deos(v,0)+ « - - (4.4)
where 0=wt and v, is the dimensionless frequency

defined by

VI=@1g/ 0, Va=Wy)/0 , Vi=w, /o,

Vy= w3/ 0, . .. . 4.5)

Here the matrix element {0|x(¢)|0) is calculated by the
integration of the Heisenberg equations of motion for a
finite time interval 0<¢ =<ty or in terms of 6, for
0=0=6y. The time dependence of the left-hand side of
Eq. (4.4) enables us to determine the approximate fre-
quencies vy, v,, v3, . . . and hence obtain the low-lying en-
ergy eigenvalues measured relative to the ground-state
energy E,. For obtaining the unknown frequencies v, we
use the simplest version of Prony’s method [11]. If we
know the N values

Fo=F0), f1=f(1), f,=F2),...,
fyo1=f(N—1), (4.6)

of a function f(0) which is expressible as
f(6)= A ,cos(v,0)+ B;sin(v,0)+ A,cos(v,0)
+B,sin(v,0)+ - -+ + 4, cos(v,, )
+B,sin(v,,0), 3m=N 4.7)

then cos(v;),cos(v,), ...
algebraic equation [11]

,cos(v,, ) are the roots of the

cos(mv)—a,cos[(m—1w]— -+ —a, _cos(v)

—(a,,/2)=0. (4.8
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In Eq. (4.8) a,, are defined as the solutions of the set of
linear equations

m—1

S fivk—1Hfomsi—k—1)0F Frmsi10p,
k=1

+ficit fam4io1=0, i=1,2,...,N—2m . (4.9)

Equations (4.9) form a set of m linear equations for m un-
knowns (aj), and from «, and Eq. (4.8) we find
V;Vy, . - .V,,. Note that in an exact calculation v, are
not all independent since we have relations of the form

(4.10)

a),-j

=C()jk—0)ik ) k <l,k <j .
These relations help us to connect all w;; to w;, and o,
etc., which we have determined earlier.

V. A TEST OF PRONY’S METHOD FOR OBTAINING
THE EIGENVALUES

In this section, we will show that if the matrix elements
of the position or the momentum operators are known
very accurately for a short time, then Prony’s method can
be used to find level spacings for the low-lying eigenval-
ues. To this end let us consider the double-well potential

Vp(x)=(1/8)b%cosh(4x)—4b cosh(2x)

—(1/8)b%+V, , (5.1)

where we have set (#*/2m)=1, x is a dimensionless vari-
able, and ¥, is a constant determined by the requirement
that the minimum of V},(x) is zero. Note that V,(x) has
the dimension of L ~2, where L is an arbitrary unit of
length. The eigenfunctions for the four low-lying states
of this potential and their corresponding eigenvalues are
known analytically [12]:

¥;(x)=N;exp[ —(b /4)cosh(2x)]¢,(x) ,

i=0,1,2,3, (5.2
where

¢o=23b cosh(x)
+[4—b +2(4—2b +b?)!"?]cosh(3x) , (5.3)

¢,=3b sinh(x)
+[4+b +2(4+2b +b5%)!"?]sinh(3x) , (5.4)

¢,=3b cosh(x)
+[4—b —2(4—2b +b2)""?]cosh(3x) , (5.5)

¢3=3b sinh(x)
+[4+b —2(4+2b +b2)"?]sinh(3x) . (5.6)

In these relations N ; are the normalization constants.
The eigenvalues for these four states are given by [12]

Eo=—[5+b+2(4—2b+b%)2]+V,, (5.7
E;=—5+b—2(4+2b+b%)2+V,, (5.8)
E,=—5—b+2(4—2b+b>)'2+V,, (5.9
E;=—5+b+2(4+2b +b2)'2+ vV, , (5.10)
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where all E; have the dimension L "2 Using these four
wave functions we can construct a wave packet localized
around one of the minima of the potential ¥, (x) which
we denote by x,,, where

X,, =(1/2)cosh™'(8/b) . (5.11)
Around the point x = —x,, we expand Vp(x) with the re-
sult that

V,(x)=(1/2)Q%x +x,,)?, (5.12)

where Q is a function of the parameter b of the potential.
The form of the potential V,(x) suggests that a Gaussian
wave packet of the form

W, (x)=(Q/m)exp[ —(Q/2)(x +x,,)*] (5.13)

can be used to study oscillations about x =—x,,. The
wave packet (5.13) can be approximated by ¥,(x) which
is a linear combination of ¥;(x)

3

Y, (x)=3 c;¢;(x) .

Jj=0

(5.14)

Thus the time evolution of this wave packet is given by
Eq. (4.1), and the matrix element (¥, (x,?)|x|¥,(x,t)) is
found from (4.2), but now the sums are finite

g(1)=(W,(x,1)|x|¥,(x,))

3
=3 3 cucjcos[(E,—E)tly;lx|y,) , (5.15)

n,j=0
where ¥, and ¢, are given by Egs. (5.2)-(5.6). For
x, =1, i.e., b =[8/cosh(2)], the two wave packets are
shown in Fig. 1.

First we compute g (z) for the time interval 0=¢ =<1.1,
where ¢ is in the units of L2 This time interval is much
shorter than the period of oscillation of the wave packet
which is about 27/(E,—E,)~5.08L% Using Prony’s
method with 12 points in this range we find

E,—E,=1.2368, E,—E,=7.0277,
E,—E,=15.5334 .

P (x)

¥,00

2 1.5 -1 0.5 o0 0.5 5 1

FIG. 1. The exact Gaussian wave packet W,(x) and its ap-
proximate form ¥,(x) obtained from the superposition of four
eigenstates, Egs. (5.2)—-(5.6).
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These energy differences agree with the exact result to the
last decimal point given above. However, the potential
given by the Hamiltonian (2.7) and (2.8) with =20 is by
a factor 0.07 smaller than Vj(x). Let us consider the ac-
curacy of Prony’s inversion when it is applied to a small-
er potential (or a set of eigenvalues). For this purpose we
replace g (z), Eq. (5.15) by f(z) in which the eigenvalues
are five times smaller, viz.,

3
f=3 3 cycjcos{[(E,—E;)/5]t} (;b,-lx |y, ) (5.16)
n,j=0

but at the same time we consider the interval
0<¢<2.2L2% Again this time interval is much shorter
than the period of oscillation of the wave packet which is
about 26L? (see Fig. 2). By first calculating f (¢) and then
inverting the process using Prony’s method with N =12,
we find

E,—E,=1.2101, E,—E;=7.3296,
E,—E;=15.5334 .
Thus for smaller eigenvalues the method is not as reliable
as with the larger eigenvalues; nevertheless the
differences between the energies of the lowest states are
predicted reasonably well by this method.

Before leaving this discussion let us also use the semi-
classical method of obtaining the level spacing E; —E,.
This is given by the expression [13]

X
E,—E,=QEq/mexp{— [ [Vp(x)—E,]"dx}
1
(5.17)

where x, and x, are the two classical turning points. Us-
ing the potential (5.1) and E, given by (5.7) we find

El —E0= 1.0919
which is smaller than the exact result.

VI. LEVEL SPACING OBTAINED FROM THE MOTION
OF THE CENTER OF THE WAVE PACKET

Let us now return to the solution of the Heisenberg
equations of motion. These equations can be integrated

0.75
f(t)
0.5

0.25

-0.25
-0.5

-0.75

-1

0 5 10 15 20 ¢ (L2)

FIG. 2. The time dependence of the center of the wave pack-
et Eq. (5.16) for the period 107/(E,—E,). Only the part
shown in the interval 0<¢ <2.2(L?2) is used to test Prony’s in-
version. Thus if f(#) is known accurately in this interval then
the complete curve can be constructed.
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for a maximum time 6,,, which is considerably shorter
than the period of the oscillation of the wave packet. For
longer times, accumulation of round-off errors makes the
solution unstable. We have two tests to verify the accura-
cy of the integration; the energy (O0|K|0) obtained from
Eq. (3.25) and the expectation value of the commutator
given by Eq. (2.6). These are calculated at each stage of
integration, and as long as they remain close to their ini-
tial values (here within one part in 10%), we consider the
result of integration acceptable. We start this calculation
with Egs. (3.17) and (3.18) with j=0, and we use either
the fourth-order expansion, i.e., by keeping terms up to
and including (A8)* or the sixth-order expansion with
terms including (A6)S. The results of calculation of the
matrix elements (0|£(6)|0) and {0[p(6)|0) for the sym-
metric quartic potential

V(E)=104(1—¢&)? (6.1)
are shown in Fig. 3. Up to a maximum time of about
0~1.8 the energy (O|K|0) and the commutator
(0|[&(6),p(6)]|0)=i/B* do not change. Substituting
these results in the Prony method, Eq. (4.9) with 36 input
points (i.e., N=12), at the intervals A6=0.05, we find
the following values for v;:

v;=0.2618 , v,=0.7933, v;=1.2803,
and
v,=1.5579 .

For comparison we note that the semiclassical approxi-
mation for the splitting of the lowest level is given by [13]
X
vi=(1/mexp{ = [ [x*(1—x)?
1
—(1/8)1"2dx} ,
where x; and x, are the two turning points. This ap-
proximation yields a value of v, =0.1806 which is smaller
than the value calculated by Prony’s method. The exact
solution of the Schrédinger equation with the quartic po-

tential (6.1) yields the following results for the first three
eigenvalues:

(6.2)

<0[p(0)|0>

<0lg(®0>

0 0.25 0.5 0.75 1 1.25 1.591.75

FIG. 3. The position and the momentum of the center of the
wave packet for symmetric potential plotted as a function of the
dimensionless time 6. For the values of 6 shown here the ma-
trix elements have been determined very accurately.
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A=0.7701 , A,;=0.9927 , and A,=2.1239 .

Hence the lowest-level splitting is given by
A, —Au=0.2226. Noting that Eq. (4.8) has multivalued
solutions, therefore, only when we have accurate results
from Prony’s inversion, we can associate each v, with the
corresponding A, ,;—A; as we did in the last section.
For higher barriers, i.e., for larger 3%, the splitting be-
comes smaller, and when v is very small, then the simple
Prony’s method discussed here fails to predict the energy
differences accurately, and a more elaborate method such
as the one discussed by Whittaker and Robinson [14]
must be utilized.

For the asymmetric potential
V(£)=0.05£%(E2—14£+45) 6.3)

the integration of the Heisenberg equations of motion
yields the time evolution of the position and momentum
of the wave packet as is shown in Fig. 4. Again using
Prony’s method with 36 points of the values of the matrix
element {(0|£(0)|0) calculated at intervals §=0.01 we
obtain the following values for level spacings:

v;=0.1309 , +,=0.3921, v;=1.0480,
and
v, =1.3494 .

However, in this case, the semiclassical method, Eq. (6.2)
is not valid and we can only compare our results with the
exact solution. The exact results for the first few eigen-
values are given by

Ap=—13.177, A,=1.175, A,=6.060,
A3;=11.946 , and A,=17.187 .

Here we note that
vy=27—(A;—A,)=0.387,
V3=2m—(A,—A;)=1.042 ,

and

Vi=4m—(Ay—A,)=1.4290

1.5 <0lp(8)|0>

<0IE(0)D>

0 0.05 0.1 0.15 0.2 g 0.25

FIG. 4. The position and the momentum of the center of the
Gaussian wave packet for the case of asymmetric potential is
given as a function of dimensionless time 6.

as the exact frequencies associated with the v, obtained
from the solution to the Heisenberg equations. However,
in this case unlike the symmetric potential the difference
between the two lowest eigenvalues Ay, and A; does not
appear in the first few terms of the expansion (4.4). The
reason for this seems to be that whereas in the symmetric
potential A, ., —A, increases as the integer k becomes
larger, for the asymmetric potential this is not the case,
and thus in Prony’s inversion v; which is large can only
show up if we include many more points in our calcula-
tion, i.e., extend the range of integration of the operator
equation.

The essential difference between the motion of the
wave packet in the symmetric and asymmetric double-
well potentials is that in the former case the position of
the center of the wave packet oscillates between the two
wells with an approximate period of 27 /v,, but for the
latter except for ‘“‘resonance” cases such an oscillation
does not take place [15]. Thus for the potential (6.1),
(0|£(6)|0) moves from the first minimum, i.e.,
(0|£(6)|0) =0, to the second at {0|£(6)|0)=1. Howev-
er, for the asymmetric potential Eq. (6.3) the motion is
confined in the first well and (0|£(6)|0) cannot reach the
other side of the barrier. By comparing the level spacings
for these two potentials, we observe that from these data
alone we cannot infer whether or not a wave packet tun-
nels through the barrier. In fact it can be shown that this
difference persists even for symmetric and asymmetric
potentials with identical sets of energy levels [16].
Among other features of the present approach is the pos-
sibility of the calculation of some of the other time-
dependent physical quantities such as the rate of change
of the kinetic or the potential energy as a function of
time, and the time dependence of the uncertainty relation
ApAE. These are calculated along with the matrix ele-
ments of p and § from the integration of the Weyl-
ordered products S, ,(6), Eq. (3.30) which is the basic
equation in our approach. Figure 5 shows how the un-
certainty relation Ap A& changes as a function of 0 for the
symmetric double well. We have a similar time depen-
dence for the asymmetric well. Finally, we note that in
this approach the wave packet does not change with

Ap AE

0 0.2 0.4 0.6 0.8 1 9 1.2

FIG. 5. The time dependence of the uncertainty ApA¢ ob-
tained from the solution of the Heisenberg equations. This un-
certainty is normalized so that its value at =0 is one.
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2.5
<0[p(6)|0>

0 0.1 0.2 0.3 0.4
<0|&(0)|0>

FIG. 6. Parametric plot of {(0|p(8)|0) versus {0|&(8)|0)
which shows the motion of the center of the wave packet in
“phase space” for asymmetric potential.

time; therefore, the parametric curve {{0|£(6)|0),
(0|p(6)|0)} can be regarded as the quantal analogue of
the motion of a classical particle in phase space. Figure 6
shows this motion for the asymmetric potential, given by
Eq. (6.3).

VII. CONCLUSION

As we have seen in the preceding sections the operator
equations of motion can be integrated very accurately for

M. HRON AND M. RAZAVY s1

a maximum time 6,, which is much smaller than the
period of oscillation of the wave packet in the symmetric
potential (6.1). These accurate results enable us to use
the inversion method of Prony to find the level spacings
at least for low-lying states. By comparing Figs. 3 and 4,
we observe that this 0,, is much smaller for a strong and
asymmetrical well than the weak symmetric quartic po-
tential. Because of this limitation on the range of integra-
tion, we cannot give a definite answer to the interesting
question raised and discussed by Nieto et al. [15] con-
cerning the possibility of tunneling in an asymmetric po-
tential. However an extrapolation of our best fit to the
position of the center of the wave packet in the range
0<6=0.3 using four level spacings obtained in the last
section showed that {0|£(8)|0) does not pass the center
of the barrier, i.e., §=3. But because of the extrapolation
this result is not conclusive. We hope that by improving
the method of integration we can study this feature of
quantum tunneling and also the motion of the localized
and time-independent wave packet in the phase space.
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