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Core polarization in Kr VIII
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The etfect of core polarization on fine-structure splitting for the nf Fz levels in Kr'" is investigated in

order to explore further the fine-structure inversion of these levels. Core-polarization effects are includ-

ed via two distinct methods, namely, by performing multiconfigurational Dirac-Fock calculations and
single-configuration Dirac-Pock calculations including a core-polarization potential. Both sets of results
are compared with presently available experimental values.

PACS number{s): 31.25.—v, 31.50.+w

I. INTRODUCTION

The spectrum of an atom consisting of a single valence
electron outside a closed core should qualitatively be
similar to that of a hydrogen atom, i.e., the fine-structure
splitting should be normal (higher J level above lower J
level). However, the fine-structure splitting for the excit-
ed states of some alkalilike and copperlike ions shows an
inverted, or anomalously narrow fine-structure splitting
(see Moore [I]).

Beck and Odabasi [2] successfully calculated inverted
fine structure for several alkalilike atoms using a nonrela-
tivistic approach which incorporated relativistic effect via
the low-Z Pauli approximation. However, fine structure
is a relativistic effect so the problem of doublet inversion
has also been treated using relativistic wave functions.
Luc-Koenig [3] was able to show that a relativistic cen-
tral field reproduces inversion effects in alkali-metal spec-
tra, while Cheng and Kim [4] predicted inversions in the
3d' nf doublets for a range of Cu-like ions. A possible
connection between the nonrelativistic and relativistic
theories was postulated later by Detrich and Weiss [5].

Reader et al. [6] first drew attention to the fine-
structure inversion of the 4f FJ levels of the Cu-like
spectrum of Kr + and compared their data with the ex-
tensive Dirac-Fock calculations of Cheng and Kim [4].
The data of Reader et al. [6], see Table I, suggested that
while the 4f levels were inverted the levels of 5f were
normal.

Recent experiments (Boduch et al. [7] and Jacquet
et al [8]) hav.e produced new measurements for the fine
structure of the doublets 3d ' nf F (n =5, 6, 7) in Kr +.
A comparison of these recent results with earlier experi-
mental ones and theoretical calculations (see Table I) sug-
gests that the nf inversion may persist beyond n =4, a
finding already suggested by the results of Cheng and
Kim's earlier work.

Although single-configuration Dirac-Fock calculations
predict that all the nf n =4—7 levels of the Kr + ion are
inverted, these theoretical inversions are so small that
correlation effects, especially core polarization, could
easily change them. The aim of this work was to under-
take a series of more elaborate Dirac-Fock calculations
including core polarization in order to explore whether

TABLE I. Fine-structure intervals for Kr + ion (in cm '). An asterisk denotes fine-structure inter-
vals obtained via different transitions.

4f' F

5f F
2F

2F

Expt. '
—26+6

( —38+2)*
13+5

Expt. '

—27+24

Expt. '

—14.4+ 16.5
—24.4+ 16.8

( —36.8+ 16.0)*
—16.0+5.8

Dirac-Fock

—35.14

—22. 19
—12.62

—7.66

'Reader et al. [6].
"Boduch et al. [7].
'Jacquet et al. [8].
Table II, this paper.
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Single configuration Single manifold

TABLE II. Dirac-Fock fine-structure intervals {in cm '). TABLE III. Fine-structure splittings {in cm ) using CP po-
tential.

4f ~F

5f F
6f ~F

7f F

—35.14
—22. 19
—12.62
—7.66

—37.07
—22.79
—12.65
—7.65

4f F
Sf F
6f F

DF-AL

—35.14
—22.19
—12.62

Fixed core 8z, CP

—44.30
—23.79
—12.15

or not the predicted theoretical inversions remain un-
changed.

Core-polarization effects can be included in theoretical
calculations in two distinct ways, either by including a
core-polarization potential or via a multiconfiguration
approximation. Results of calculations using both of
these methods are presented, and a comparison is made
in order to determine which method is the most effective
for incorporating core-polarization effects.

multiconfiguration approximation explicitly including the
most important core excitations.

A. Core-polarization potential

Core-polarization effects can be introduced explicitly
into the Dirac-Fock approximations by including a core-
polarization potential of the form

II. RESULTS AND CALCULATIONS

The first stage of these calculations involved perform-
ing both single-configuration and single-manifold average
level (AL) —type calculations using the GRASp MDCF
package (Grant et al. [9]). In the single-configuration
calculations a separate calculation was performed for
each J value, while in the single-manifold calculation
both J values were included in the same calculation. The
results of these calculations are shown in Table II.

The difference between the single-manifold and single-
configuration calculations arises from the use of a com-
mon set of orbitals in the single-manifold calculation for
both J levels; clearly this effect becomes less important as
the mean radius of the valence electron becomes much
larger than that of the core electrons.

These Dirac-Fock calculations predict a doublet inver-
sion for all the nf, n=4 —7 doublets of Kr +, even
though core polarization has not been included explicitly.
The fact that the Dirac-Fock approximation predicts
doublet inversion can be ascribed to the use of different
wave functions for / and 1 electrons (Detrich and Weiss
[5]), which leads to implicit inclusion of the exchange po-
larization of the valence electron due to the np —+p and
nd ~d excitations of the core, which is known to cause
doublet inversion.

&d (rlr, ) &q 3P (rl, )
Vcp(r)= (1—e ' )+ (1—e ' ),4 27

where ad and nq are, respectively, the dipole and quadru-
pole polarizabilities of the core, r, is the cutoff radius for
the potential, and P is a dynamical parameter.

In the first set of calculations a core-polarization po-
tential of the form described above was included in
single-configuration AL calculations of the fine-structure
splitting in 4f F, 5f F, and 6f F. The calculations
were carried out in the following manner. First, Dirac-
Fock orbitals were obtained for the core electrons
Is, 2s, . . . , 3d; these orbitals were then kept fixed while
the outer valence electron orbital was calculated. At this
stage the core-polarization potential of the valence elec-
tron was included, the values of ad(Kr ) and r, used be-
ing 0.307 and 0.54 a.u. , respectively (Migdalek and Bay-
liss [10]); the second term was neglected as its contribu-
tion to the potential is negligibly small. The results of
these calculations are shown in Table III.

It can be seen from the results in Table III that the ex-
plicit inclusion of core-polarization effects via a core-
polarization potential does not change the sign of the
fine-structure interval, i.e., an inversion is still predicted,
but in the cases of 4f F and Sf F the magnitude of the
inversion is somewhat increased.

III. CORE-POLARIZATION EFFECTS

B. The multicon6guration approximation

The second stage of these calculations involved the in-
clusion of core-polarization effects by two different
methods, i.e., a core-polarization potential and a

Core-polarization effects can also be included in
Dirac-Pock calculations through the multiconfigurational
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TABLE IV. Fine-structure splittings (in cm ) from MCDF calculations.

MCDF configurations

3d "nf
3d' nf X3d nsnp
3d' nf X3d nsnf
3d' nf X3d ndnf
3d' nf X3d nsnp X3d9nsnf X3d ndnf

4f F
—37.07
—32.08
—29.81
—39.26
—31.34

5f F
—22.79
—18.24
—20.64
—25.42
—20.65

6f 2F

—12.65
—10.54
—12.87
—15.67
—16.58

7f F
—7.65
—6.44
—8.23

—10.02
—13.45

approximation which allows the inclusion of the most im-
portant core excited states. Therefore a series of
multiconfigurational Dirac-Pock calculations were per-
formed which included the major core-polarizing
configurations.

The most important correlation effects arise from one-
electron core excitations such as 3d nsnp, 3d nsnf, and
of course 3d ndnf Aser. ies of calculations were per-
formed including each of these one-electron core excited
states in turn, and then a full MCDF calculation includ-
ing all of these configurations was performed. When per-
forming these MCDF calculations care had to be taken to
correct for errors arising from the fact that the radial
parts of the l and l may not always converge to the same
nonrelativistic limit (Wood and Pyper [11]). The results
are shown in Table IV.

The MCDF fine-structure calculations in Table IV
show a different trend from those obtained by including
an explicit core-polarization potential. Although n inver-
sion is still predicted for all the nf F doublets, the 4f
and 5f inversions have now decreased.

Since only a small number of configurations are includ-
ed in the MCDF calculation, this difference in behavior
could arise from the fact that the core-polarization poten-
tial models the effects of many more correlation
configurations. Therefore as a final test of the use of
multiconfiguration wave functions for calculating fine
structure, calculations were made including nine mani-
folds, i.e., 3d' nf X3d' np X3 7 complex. [The com-
plex 3 I includes all configurations with nine electrons
in n =3 subshells and two electrons in m =n subshells
(Layzer [12]).] The results of these calculations are
shown in Table V. The nine manifold calculations shown
in Table V show a marked decrease in the fine-structure
interval compared with the single-configuration and
single-manifold calculations. This indicates the strong
effect of electron correlation on the nf levels. However, a

fine-structure inversion is still predicted. The estimate
for the 5f interval is in close agreement (perhaps fortui-
tously) with the experimental result of Jacquet et al. [8].

IV. CONCLUSION AND DISCUSSION

It has been shown that single-configuration Dirac-Fock
calculations predict fine-structure inversion for the nf F
(n =4, 5, 6, 7) doublets in Kr +. The Dirac-Fock pro-
cedure is able to do so because it includes the effect of
core-valence correlation on the atomic wave function.
These calculations confirm explicitly the conjecture of
Detrich and Weiss [5] that the Dirac-Fock procedure au-
tomatically includes the major core-polarizing
configurations.

Core-polarization effects (i.e., core-valence correlation)
are strong but their inclusion via multiconfiguration
Dirac-Fock calculations or by the inclusion of a core-
polarization potential leads only to a change in magni-
tude of the inversion and does not affect its sign.

The present results lend good qualitative support to the
inversions suggested by the work of Jacquet et al. [8] but
as yet there is insufficient accuracy in the experimental
data to make worthwhile any further attempts to recon-
cile them with theory.
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TABLE V. Results of FS (in cm ') from nine manifold MCDF.

3d' 4f X3d' 4p X3 4
3d' 5f X3d' 5p X3 5
3d' 6f X3d' 6p X3 6'
3d' 7f X3d' 7p X3 7

AL (each J)

88.87
—25.31

—110.11
—136.38

Nonrel. limit

121.08
—10.68

—101.85
—131.81

Corrected fs

—32.21
—14.63
—8.26
—4.57
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