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Heisenberg-picture approach to the exact quantum motion
of a time-dependent harmonic oscillator
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The generalized invariant and the exact quantum motions are found in the Heisenberg picture
for a harmonic oscillator with time-dependent mass and frequency in terms of classical solutions. It
is shown that the Heisenberg picture gives a relatively simpler picture than the Schrodinger picture
and also manifestly exhibits the time independency of the invariant. We apply this method to the
system with a linear sweep of frequency and Paul trap and study the squeezing properties.

PACS number(s): 03.65.Fd

The explicitly time-dependent harmonic oscillators
have been of great interest in various branches of physics
with the coherent and squeezed-state formalism. There
have been many methods for finding the exact quantum
states, such as the generalized invariant method, path in-
tegral method, direct method to find quantum states in
the Gaussian form, and Hermite polynomials, etc. , and
the solutions are found in many interesting cases. As one
of the most typical and powerful methods, the general-
ized invariant method first introduced by Lewis [1], and
Lewis and Riesenfeld (LR) [2] finds a generalized invari-
ant, a quantum mechanical invariant in whose eigenstates
the exact quantum states are found. Even though the
generalized-invariant method has an advantage in pro-
viding the Fock space of number states easily compared
with other methods, the generalized invariant does not
rely on the Heisenberg picture, which is to play an im-
portant role in time-dependent quantum systems; in the
original articles the generalized invariant and the Fock
space are constructed in the Schrodinger picture. Thus
the generalized invariant is still lacking in the Heisenberg
picture.

In this paper, we shall establish the generalized invari-
ant method. in the Heisenberg picture to find the exact
quantum motion in the general cases, where the mass
and. frequency change in time explicitly. We shall also
find the exact quantum evolution of the position op-
erator q(t) and momentum operator p(t) explicitly by
solving Heisenberg equations of motion, where we use
the generalized invariant in the Heisenberg picture. The
coherent and squeezed-state formalism &om the gener-
alized invariant point of view [3] will be developed in
the Heisenberg picture. Finally, we shall find the time
evolution operator that converts the Heisenberg picture
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into Schrodinger picture. In this paper, all operators are
Heisenberg-picture operators unless mentioned otherwise
(using subscript S to denote the Schrodinger-picture op-
erators) .

Consider a time-dependent harmonic oscillator of the
form

H(t) = p'(t) + ™(t)~'(t)q'(t)1 2

2~(t)

whose mass and angular frequency depend on time ex-
plicitly. By introducing the Hermitian basis,

L (t)
="'(')

2

p(t) q(t) + q(t)p(t)
2

L+(t) = q'(t)

(2)

We look for the generalized invariant of the form

I(t) = ) g&(t)L„(t). (4)

(Note that in this paper we are working in the Heisenberg
picture, but in the original LR invariant method [2] in
the Schrodinger picture. ) The generalized invariant is
truly a quantum mechanical conserved quantity in the
Heisenberg picture and satisfies the Heisenberg equation
of motion (in units of h = 1)

—I(t) = —I(t) — [I(t) II(t)l = o.
dt

This basis forms the Lie algebra su(2) with the following
group structure:

i f'i

2 q2 )
—Lp, L* =+L~, [L+,I ]=2~ Lp ). —
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From the Lie algebra (3), Eq. (5) leads to a linear system
of the first-order difFerential equations

2
g —(t) = —

t gp(t),

g() (t) = m(t)pf (t)g (t) — g+(t),

g+(t) = 2m(t)~'(t)gp(t).

(6)

Recently, we obtained the most general form of g~(t) [3],

g (t) = ci fi (t) + c2fi(t) f2(t) + cs f2 (t),

go (t) = —m(t)f(cifi(t)fi(t) + —fi(t)fs(p

+f~(~)f~(~) + '~f~(')f~(P)

g+. (t) = m (t) cifi(t) + c2fi(t) f2(t) + csf2(t)

Kp (t) =

A'(t)
2

At(t)A(t) + A(t)At(t)
4

(14)

A~'(t)
K+(t) =

where

hp(t) = '( ) + '( ) '( ) '-( ) +
g (t)m(t)&ur

H(t) = ) h, (t)K, (t)
j=o,+

in terms of the spectrum generating algebra su(1, 1) of
the harmonic oscillator

—
~

m(') —f (')
l
+ m(t) ~'(t) ~(t) = 0.d r d

dt ( dt
(s)

Since the generalized invariant thus obtained has still
the same algebra as a harmonic oscillator, it can be ex-
pressed in terms of the creation and annihilation oper-
ators. By introducing the time-dependent creation and
annihilation operators of the form

where fi(t) and f2(t) are two independent solutions of
the classical equation of motion h~ t gp(t) + m'(t)~'(t)g' (t) —~r' p 2zg, (t)~r

16
2g (t)m(t)~r

A direct calculation using Eq. (6) and [q(t), p(t)] =i,
results in the Heisenberg equations of motion of the cre-
ation and annihilation operators:

dA (t) uur
A t,

dt m(t)g (t)
dA(t) i~r-At,

dt m(t)g (t)

At(t) =
2g (t)

(di

2g (t)

+i p(t),g t

go(t) &(t)
2~rg —(t) )

2pfr g (t)
go(t) ~ &(t)

whose solutions are given by

At(t) = e'"~'lA~, A(t) =.-'"~'lA

where A and At denote the creation and. annihilation
operators at some initial time to and the integral of gen-
eralized &equency is defined by

Ot = dt
m(t)g (t)

Then we can write the generalized invariant in the form

where ur = gg+(t)g (t) —gp2(t) is a constant of motion,
we can rewrite the generalized invariant in the following
form:

I(t) = err
~

AtA+ — ~,
(

I(t) = pfr
~

At(t)A(t)
2)

The eigenstates are the number states

(n, t)r = ~0, t)r,
At" (t)

where the ground. state is defined, as usual, by

(10)

~n, t), =.'"(')("+-:)~n)„ (20)

which clearly exhibits the time independency. This is
a remarkable feature of the invariant in the Heisenberg
picture but not in the Schrodinger picture. By applying
Eq. (17) repeatedly and after fixing the phase of the ~0) r
state properly, the eigenstates of the generalized. invariant
are given by

A(t) io, t), = o. (12)

On the ether hand, the Hamiltonian can be re-expressed
as

where ~n) r is an eigenstate at the fixed time tp
Furthermore, equating the Hermitian and anti-

Hermitian parts of both sides of (17) separately, we de-
duce the quantum evolution of the Heisenberg operators
q(t) and p(t):
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q(t) = q(tp)
l

cos O(t) + sin O(t) l

g-(t) & go(tp)
g-(tp) E (dg

(, )
V —(t) —(to) .

O(,)
hPg

1
(t) = (t ) [ (t ) — (t)] o O(t)

g—(to)g —(t)

g (t) = (1/m)(cos mt+ s sin art),

gp (t) = (s —1)ur cos ut sin ~t,
g+(t) = mu (sin ~t+ s cos wt).

The second case is the harmonic oscillator considered
in Ref. [4] with a constant unit mass and the frequency
changing linearly for some finite interval, i.e. ,

+ go(to)go(t) &
for —oo &t(0,

~2(t) = ( ufo~(1+ Ppt/T) for 0 & t & T,
—cd&(1 + Pp) for T & t & Oo.

(27)

+p(tp)
l

cosO(t) — sinO(t)
l
.g (to) & go(t) .

)4Jg

(21)

When the oscillator has an asymptotic region, where
the mass and frequency are constant in time, the gen-
eralized invariant can be set equal to the Hamiltonian
itself and the invariant eigenstates become the energy
eigenstates in this region. In this case, if the oscillator
is initially in the ground state at the asymptotic region,
then using Eq. (9) and Eq. (17) we can get the following
result:

g-(t)
2

In addition, if the oscillator is initially in the state

(23)

Eq. (22) remains valid. However, the expectation value

(q(t)) oscillates with the generalized frequency

If the oscillator is initially(t & 0) in the ground state, we
set two independent solutions to be coscuot and sinuot
and adjust parameters cq ——c3 ——1 and c2 ——0, so
that g (t) = 1 and ur = up and, therefore, l0)& is
the ground state. However, the oscillator passes through
the intermediate sweeping-frequency region, where the
classical solutions are described by the Bessel func-
tions of order 1/3, ~&J&ys(z) and ~wYq/s(z), where

~ = (~ot+ ~pT/Pp) and z = 2/3(Pp~ /~pT)'~ . Fi-
nally, the two classical solutions evolve into the form
C cos ~qt + D sin cuqt, where the constants C and D are
determined by the boundary condition at t = 0 and t = T
and the sweeping parameters Pp and T. In the spe-
cial case where two independent classical solutions evolve
into cosecant and sinuqt separately (this case will seldom
or never occur), g (t) may settle down to a constant
and gp(t) may vanish, and we find &om Eq. (22) that
Aq(t) and Ap(t) are constant in time; however, since
g (t) suffers a certain amount of change, we find a sig-
nificant amount of squeezing. In the general case, neither
C nor D vanishes; as a result, g (t) is the linear combi-
nation of cos uqt, sin cuqt and cos uqt sin ~~i. Thus, the
variance of the quadrature q(t) presented numerically in
Ref. [4] can be found analytically here. In the particular
case of sudden jump (T = 0), we obtain explicitly

(~lq(t) l~) =
I l

cos[O(t) + ~l (24)
r'2lccl'g (t))

)
the shape of the wave packet being changed by the
squeezing. The physical properties of the state (23) will
become apparent in the following.

Now we apply our method to several interesting har-
monic oscillators. First, in the case of the harmonic oscil-
lator with a time-independent mass m and frequency u,
by adjusting three parameters —or, equivalently, by ad-
justing two linearly independent solutions —we can set
g (t) = 1/m and ur = ~, then the quantum motions
become

q(t) = q(tp) cosm(t —tp) + sinn(t —tp)
&(tp)

p(t) = —murq(tp) sin~(t —to) + p(to) cos~(t —tp), (25)

which are the same as the classical motions, and Eq. (23)
becomes a coherent state. In addition, by adjusting those
parameters we can also get the quantum motion of the
squeezed state. For example, by setting cq ——1/m, c2 ——0
and cs ——s /m, and selecting two independent solutions
to be f~(t) = c snoot and f2(t) = si urtn, we get

and therefore

cos~pt for t & 0,
cos ~qt for t ) 0,

sin upf for t & 0,
(~o/cd') sin~qt for t ) 0,

1 fort&0
(up/urq) +[1—(wo/wz) ] cos went for t ) 0.

It is remarkable that although the states evolve into
cosine and sine functions separately, g (t) is time-
dependent and thus the squeezing shape changes in time.
Even in the case of adiabatic change, it is not evident that
g (t) = 1 (t ) T) and it is expected that the squeezing
is produced, but slowly.

Our method also applies to the Paul trap, which is de-
scribed by an oscillator with a constant mass m and peri-
odic frequency w2(t) = a+6 cos upt . It is straightforward
to get the quantum motion of the Paul trap, because its
classical solutions are known to be Mathieu functions.
In Ref. [5], its quantum state has been expressed as the
eigenstates of the transformed Hamiltonian
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H =, i A'(t)A(t)+ —i,
W ( t 11

2) (28)

K„, =U KjdU +U, i~.OU,

t
~.AU= H ig(p„, , q„, ) + U, i

Bt

Therefore, the eigenstates (called quasienergy eigenstates
in Ref. [5]) of (28) are not those of Hamiltonian H(t)
itself, but correspond to ~n, t)I, which are the eigenstates
of the generalized invariant. So one should pay attention
to the fact that: H(t): ~0, t)I g 0, where:: denotes
the normal ordering for the omission of the zero-point
energy, and this is easily understandable &om the form
of Eq. (13).

Finally, we wish to find the time-evolution opera-
tor U(t, to). In the Heisenberg picture, the position
and momentum operators transform according to q(t) =
Ut(t, tp)q(tp)U(t, to) and p(t) = Ut(t, t )p(t )U(t, t ).
By expressing these in terms of the creation and annihi-
lation operators at tp and using the Eq. (9) and Eq. (17),
we obtain

U'(t, t, )A'(t, )U(t, t, ) = u,'e'"(') At(t, ) —u, e-'"(')A(t, ),

U (t, tp)A(tp)U(t, tp) = uze ' (' A (tp) —uie' ' A(tp),

where

1 ( g (t) g (to)l
g-(tp) g-(t) )

where the definition of A(t) and At(t) are equivalent
to Eq. (9) provided that f(t) and its complex con-
jugate f'(t) are chosen for two independent solutions
and cq ——c3 ——0 and c2 ——1. Then the Wronskian
W is found to be W = ul/m. In fact, the expres-
sion (28) is the generalized invariant (11) divided by
mg (t). This result arose &om the wrong transformation
H„, = Hpis(ppig, qpig)+U, i &~' (where U is a unitary
operator), while the correct transformation should take
the form

g —(t)
g-(to)

t (go(tp)
2 ( (dI

g-(to) ~

g-(t) )
g (t) g- (to)

g (t)
~

g-(t)
g (tp)

(30)

Using disentangling theorems for the su(1, 1) [4], we can
find

U'(t t ) e 'pyA (tp)A(tp)
~

—'(pg —t p) A/2 (t )2'

——e'(~' 4")A'(t, ) ~,2'

where Pi, P2, and v are related to g;(tp) and g, (t) by

u', (t, tp)e' "' = (coshv)e
—u2(t, tp)e '" '" = (sinhv)e *~'. (32)

And this time-evolution operator is the same form as
Ref. [6], and is related to the squeeze operator of Ref. [3]
as

U(t t ) St(t t )
—iBA. (tp)A(tp)

where the squeeze operator S(t, tp) is defined by

(33)

Ats(t) = St(t, tp)At~(t )S(t, to)

= u, (t, tp)As(tp) +uz(t, tp)As(tp). (34)

The state vector in Ref. [7] can also be found easily from
]@(t))= U(t, tp) ~4'(tp)) with the global phase fixed prop-
erly.

In summary, we have found exactly the quantum mo-
tions of a time-dependent harmonic oscillator in the
Heisenberg picture in terms of its classical solutions. The
descriptions of this problem are given in Ref. [6]. In addi-
tion, our method enables one to find quantum motions in
analytically closed forms, and to establish a connection
between classical and quantum motions.

i (go(tp)+—
I2
I &dr

g-(t) gp(t) g-(to) ~

g-(t ) . g-(t) )
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