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Optical phase conjugation by four-wave mixing in a Kerr medium is considered. Two strong counter-

propagating lasers pump a nonlinear medium in which they excite the third-order polarization. Mixing
with a weak incident field then generates the phase-conjugated image of that field. It is shown how the

polarization of the pumps and the tensorial nature of the nonlinear interaction can be accounted for by a
geometrical polarization tensor. The electric field is shown to obey two coupled wave equations, which

couple a positive- and negative-frequency component of the field. These wave equations allow plane-

wave solutions, and we derive the dispersion relation for the wave vectors of these modes. By matching
the field of such a mode across the boundaries of the medium to an external incident field, we are able to
obtain analytically the Fresnel coefticients for reAection and transmission. Our expressions reduce to
earlier results in the appropriate limits.

PACS number(s): 42.65.Hw, 41.20.8t

I. INTRODUCTION

Phase conjugation of an optical wave front was first
demonstrated experimentally by Zel'dovich and co-
workers [1]. The wave front of a laser beam was distort-
ed by letting it pass through an etched glass plate, and
subsequently this wave was sent into a Brillouin cell with
methane gas. When the backscattered light was passed
through the same glass plate, the distortions disappeared.
From this it was concluded that the Brillouin mirror
operated as a phase conjugator (PC). This conclusion is
based on the fact that complex conjugation of the phase
of a wave front is formally identical to time reversal
[2—6]. After this experimental milestone, the field of op-
tical phase conjugation has developed rapidly. Phase
conjugation is liquid CS2 by Brillouin scattering [7] and
Raman scattering [8] was observed, and later it was pro-
posed to construct a PC based on four-wave mixing
(FWM) in nonlinear liquids or crystals [9,10]. The ad-
vantages of four-wave mixing, as compared to Brillouin
scattering, are that the response time of the medium is
negligible, the frequency shift with the acoustic frequency
of the medium is absent, and the required laser power is
much less. Four-wave mixing PC's were demonstrated
shortly afterwards [11—13]. The most favorable non-
linear media for phase conjugation are photorefrective
crystals like BaTiO3 or LiNbO3, and their operation has
been studied extensively [14—25]. Although four-wave
mixing and the generation of phase-conjugated radiation
in this process are well understood in principle, the
theoretical developments rely on many simplifying as-
sumptions. Most notable approximations are the slowly
varying amplitude approximation for the waves in the
medium, the neglect of the vector character of the elec-
tromagnetic field and the tensorial nature of the non-
linear interaction, and the dependence on the polariza-
tion and the angle of incidence (by assuming near-normal
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FIG. 1. Schematic setup of a PC operating by F%'M. The
crystal is bounded by the z =0 and z = —6 planes and irradiat-
ed by two strong laser beams, propagating parallel to the xy
plane, and they illuminate the medium at y =L /2 and

y = —L/2. Also shown is the weak incident field which will be
phase conjugated by the PC.

incidence). Also the inhuence of a nonunity dielectric
constant E is usually not taken into account (by assuming
perfect transparency for the crystal) In. this paper we do
not make any of these simplifications, and present an ex-
act and analytical solution of Maxwell's equations for a
four-wave mixing PC. We shall also allow the incident
field to have evanescent components, as is, for instance,
the case of radiation emitted by a dipole near the surface
of the medium [26,27]. The dielectric constant will be as-
sumed to be real, so that there is no loss in the medium.

The setup under consideration and the choice of coor-
dinate system are illustrated in Fig. 1. Two strong mono-
chromatic laser beams (the pumps) illuminate the sides of
a nonlinear medium with thickness 6 and length I. in the
propagation direction of the pumps. A weak field is in-
cident on the layer from the positive-z direction, and the
FWM process inside the medium generates the phase-
conjugated image of this field. Since the coupling of the
various waves through the nonlinear interaction is ten-
sorial, the operation of the PC will depend on the polar-
ization of the pumps. We shall assume the pumps to be

1050-2947/95/51(5)/4250(14)/$06. 00 51 4250 1995 The American Physical Society



THEORY OF OPTICAL PHASE CONJUGATION IN KERR MEDIA 4251

linearly polarized in the z direction, and for the electric
components of the two fields we take, respectively,

E(r, t), =e ReEe

E(r, t)2=e, ReEe'"

with to=ck and E the (complex) amplitude. Since the
amplitudes are taken to be equal, both pumps have the
same intensity, but this also implies a phase-matching
condition. It can be shown that a phase shift beween the
pumps reduces the eKciency in case of a nonunity dielec-
tric constant.

II. MAXWELL'S EQUATIONS

Radiation inside and outside the PC is represented by
its electric and magnetic field components E(r, t) and
B(r, t), respectively, and charges and currents in the
medium are accounted for by a polarization field P(r, t)
It is convenient to work with the Fourier-transformed
electric field, defined as

Other time-dependent quantities transform similarly.
Maxwell's equations in the Fourier domain, relating the
three fields, can be written as

A.

VX [V XE(r,co)]— E(r, co) = 2 P(r, co), (2.3)
C EpC

B(r,co) = ——V XE(r,co) .
CO

(2.4)

This set of two equations is equivalent to the more com-
mon set of four equations [28]. In the next section it will

be shown that the polarization is a function of E(r, co ) in-

side the medium, and outside the material we set P(r, co)
equal to zero. Then Eq. (2.3) becomes an equation for
E(r, co) only, and its solution determines the magnetic
field through Eq. (2.4). At z =0, z = —b„y = L /2, a—nd

y =L/2 the components (E+P/Eo)i, E~~, and B must be
continuous across these boundaries. Furthermore, the
solution for E(r, co) is restricted by condition (2.2).

E(r, co)= f dt e' 'E(r, t), co real . (2.1)
III. POLARIZATION

Since E(r, t) is real, it follows that its Fourier com-
ponents at positive and negative frequencies are related as

E(r,co)*=E(r,—m) . (2.2)

The polarization in a nonmetallic medium is induced
by the electric field, and the most general (local and
causal) relation in the Fourier domain is [29,30]

00

P(r, ai) =Eo g, f dao& f dao„5(co co, — —co„)g'"'(co„.. . , co„):E(r,co&) E(r, co„) .
„=i (2m)"

(3.1)

Here, g'"'(co&, . . . , co„) is the n fold Fou-rier transform of
the nth-order susceptibility function, which is a Cartesian
tensor of rank n +1, and the colon in Eq. (3.1) indicates
the tensor product with the n electric-field vectors follow-
ing the colon. It is assumed that the medium is homo-
geneous, so that y'"' is independent of r.

As a first simplification we assume that the medium is
inversion invariant, which implies that the even suscepti-
bilty functions g' ',y' ', . . . are identically zero. Fur-
therrnore, the values of y'"' decrease very rapidly with in-
creasing n, so we only need to retain the n = 1 and n = 3
terms in Eq. (3.1). We write

P(r, co) =P(r, a3)'"'+P(r, co)' ', (3.2)

in obvious notation. The two remaining tensors g' ' and
y' ' have 9 and 81 Cartesian components, respectively,
which are all different functions of one and three frequen-
cies, respectively. As a second assumption we take the
medium to be isotropic. Then it can be shown that y"'

has only three nonzero components, which are all equal,
and that y' ' has 21 nonzero components. Among these
21 components there are only three different ones, which
are not even independent. It can then be shown that the
two tensor products reduce to

(3.3)

(~1 ~2 ~3) bc + yy(~1 ~2 ~3)(b

+g'y'y(co„co2, co3)(a c)b.
+p~~ (yea coiso2)(a3b )c, (3.4)

for arbitrary vectors a, b, and c. These two expressions
are substituted into Eq. (3.1), and we use the intrinsic per-
mutation symmetry of tensor components to change in-
tegration variables. We then obtain for the two contribu-
tions to the polarization

P(r, co)~'~=E~'„'„'(co)E(r,co), (3.5)

P(r, co)' '=
2 f de& f dc02 f dc@35(to co& co2 co3)gx—„' (co&—, co2, c—o3)E(r, co&)[E(r,co2) E(r,co3)],

4m 00 00

(3.6)
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e(co) = 1+g„'"(co), (3.7)

which obeys the relation e(co)'=e( —co). Equation (2.3)
for the electric field inside the medium then becomes

which only involves two tensor components, and a dot
product rather than a tensor product. This great
simplification was derived from symmetry only.

It is convenient to introduce the dielectric constant of
the medium,

~(3)p(r)= IXxxyy(~~~~ ~)+Xxxyy(~&
4

X [e(r).e(r)*]e(r)
3E

+ y' '
( co—, co, co)[e(r) e(r)]e(r)*,

q(r)= zy'„„' (co, co,co)[e(r) e(r)]e(r) .
4~2 ""»

(4.3)

(4.4)

A A.

V X [V XE(r,co)]—s(co) E(r, co) = 2 P(r, co)' ',
C CpC

(3.8)
(3)

with P given by Eq. (3.6). This nonlinear term couples
every Fourier spectral component E(r, co) with every oth-
er one.

IV. WEAK INCIDENT FIELD
(3)

A major complication with expression (3.6) for P is

that E represents the total electric field at position r in
the medium. It contains contributions from (i) the exter-
nal pump fields which propagate through the medium, (ii)

multiple rejections of these fields at the boundaries
y =+I./2 due to e%1, (iii) the field incident from the re-
gion z) 0, and (iv) any radiation which is generated by
the nonlinear interaction. The strong pumps have only
nonzero Fourier components at co=+co, and hence these
are represented by 6 functions. The linear interaction in
the medium does not shift these frequencies, and the non-
linear interaction couples these fields to other spectral
components, but such that the generated fields are weak
compared to the pump fields. In contrast, the weak in-
cident field can have any spectral composition, but both
the linear and nonlinear interactions can only produce
new weak fields inside the medium. Consequently, the
electric field inside the layer must have the form

E(r, co)=E(r, co)'+e(r )5(co co)+e(r )'5(—co+co), (4.1)

with E' weak and both e terms strong, although the form
of e(r ) has yet to be determined.

Then we substitute expression (4.1) into Eq. (3.6) for
the three different values of co. This yields terms of the
form (E'), (E') e, E'e, and e . Under the assumption
of a weak incident field we can then neglect the terms of
the form (E') and (E') e, since they will be small com-
pared to the remaining terms. If we then carry out the
integrations over the three frequencies, we obtain

P(r, co)' '=p(r )5(co—co)+p(r )*5(co+co)

The p terms in Eq. (4.2) have 5 functions at the same fre-
quencies as the pumps, and they represent a nonlinear
contribution to the polarization at these frequencies, in
addition to the linear part which is already accounted for
by the dielectric constant. The q terms occur at co=+3co,
and they are responsible for third-harmonic generation
by four-wave mixing in the medium. The remaining
twelve weak-field terms will generate the phase-conjugate
image of the incident field, among additional side effects.

From Eq. (4.2) it follows that P ' ' has the form

P(r, co)' '=P(r, co)'+p(r )5(co co)+p(r —)'5(co+co),

(4.5)

and
—2 —2

Fpc
(4.7)

hold simultaneously. The last equation only contains the
pump frequency, and its solution has to be matched
across the boundaries y =+I./2 to the pump fields. The
solution for e(r ) can then be substituted into Eq. (4.2) to
yield P'. In this fashion, the equations for the weak and
the strong fields are decoupled, and P' in Eq. (4.6) de-
pends only parametrically on the pump fields. Since this
will yield P' ~ E'e, the induced nonlinear polarization in
the medium is proportional to the pump intensity, and
such a medium is called a Kerr medium.

V. NONLINEAR POLARIZATION

As a slight approximation we shall use Kleinman's
conjecture [31] for the elements of the susceptibility ten-
sor. It states that these elements are invariant under a
permutation of their arguments. Then we introduce the
abbreviation

just as the electric field in Eq. (4.1). Then Maxwell's
equation (3.8) is certainly satisfied if both

A.

V X [VXE(r, co)'] —e(co) E(r,co)'= P(r, co)'
C2

'
6 C2

0

(4.6)

with

+q(r)5(co 3co)+q(r) 5(—co+3co)

+(12 terms of order E'e ), (4.2)

(3)
X Xxxyy (co~ co~ (5.1)

We shall also assume that co is not too close to a reso-
nance of the medium, which makes both y and e = e(co)
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e(r)=~e,f (y), —~ &y & ~, (5.2)

real.
Since the pumps are assumed to be linearly polarized in

the z direction, we try a solution of the form

with

(1/2)ikL ( +c—1)4e
A

&a+1—(v e —1)e'"
(5.6)

which yields for the polarization in the medium

P(r) = ', x~s-oe. lf (y) l'f (y)

Then Eq. (4.7) reduces to

d2
, +k'[e+-', xlf (y) I'] f (y) =o,

(5.3)

(5.4)

f (y) =aE cos(ky le), (5.5)

and the boundary conditions at y =+2/2 are that f and
df/dy must be continuous. A typical value of a third-
order susceptibilty is y-10 m /V and a very strong
laser has an electric-field strength of 10' V/m. This
gives pl f l

-0.01. For moderate cw lasers or
nanosecond pulses, values in the range of
yl fl —10 —10 are more realistic. In any case, this
parameter is always small compared to the dielectric con-
stant and can therefore be neglected in Eq. (5.4). Then
the problem reduces to the situation where two beams
counterpropagate through a linear medium, and this can
be solved in a straightforward way. With the phase con-
vention (1.1) for the two pumps, the solution is found to
be

As shown below, the parameter u determines the
strength of the nonlinear interaction. It depends on the
optical wavelength, the dielectric constant, and the
length L of the medium. By choosing I, carefully, the
strength of the interaction can be optimized.

Maxwell's equation (4.6) is a wave equation for
E ( r, co )', which has I'( r, co )' as a source term. We shall
assume that the incident field on the PC has a frequency
distribution which is reasonably centered around B.
The nonlinear interaction then couples the frequency
bands around +6,+3',+5', . . . , but there is no cou-
pling to spectral components in between. Under the as-
sumption that y is very small when one of its frequency
arguments is of the order of +3', it then follows that the
wave equations for co-+co decouple from the equations
for the higher harmonics. This does not imply that there
is no higher-harmonics generation due to the incident
field and the pumps (the q terms), but only that these
wave equations do not couple to the evolution of the radi-
ation in the ranges around co and —co. Then we substi-

tute the solution for e(r ) into expression (4.3) for P and
write out explicitly the "12 terms. " With Eq. (4.5) we ob-

tain for P'

P(r, co)'= '
yoEoP[ 2E(r, co)' +e ~E(r, co 2')'] f—or co-co,

yosoP[2E(r, cg)'+e ~E(r, co+2co)'] for co- —co,

(5.7)

(5.8)

Pv = v
II
+ 3v (5.9)

where we have neglected terms that oscillate spatially
with half an optical wavelength. The complex coupling
parameter y is defined as y= ', y(aE), whic—h will be
written as y=yoexp(i8~), with yo= lylsgn(y) and 8&

real. The operator P is defined by its action on an arbi-
trary vector v according to

CO

C2

yE(r, co 2') for co-co, —

y E(r, co+2co) for co ——co .

2

VX [VXE(r,co)]— (E+2yoP)E(r, co)
C

(6.1)

where v~I and v~ indicate the parallel and perpendicular
parts of v, respectively, with respect to the plane z =0.
Operator P accounts for the polarization of the pump
beams, which we have chosen as the z direction. For oth-
er polarizations the form of this operator will be di6'erent,
but the structure of Eqs. (5.7) and (5.8) remains essential-
ly the same.

VI. COUPLED WAVE EQUATIONS

For the remainder of this paper we shall only be con-
cerned with the weak fields, and therefore we drop the
primes on E' and P'. Substituting expressions (5.7) and
(5.8) into the wave equation (4.6) yields

Suppose we have a given frequency co, )0, with co, -co.
Then the first equation couples the field at co, to the field
at cob =co, —2' which is negative and around —B. On
the other hand, if we set co=cob in the second equation,
then this spectral component couples to the field at co, .
Hence the set (6.1) only couples frequencies in pairs.
With Eq. (2.2) it follows that efFectively co, couples to
—~b. It will turn out to be a computational advantage to
work with the negative frequency cob rather than the pos-
itive frequency —cob. Notice that co, and —cob are locat-
ed symmetrically around the pump frequency co. There-
fore the electric field obeys the set of wave equations
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V'X [V'XE(r, co, )]—
2

(E+2yoP)E(r, co, )
C

x b (—v b )~=p (e+2yoP)b =y*p Pa, (7.3)

VX [P'XE(r, co&)]—

for each pair (co„coq ).

2
Mb=y' PE(r, coI, ),c2

2
Q)

=y PE(r, cob ),c2

2

z (c, +2yoP)E(r, col, )
c

(6.2)

(6.3)

where we have introduced the dimensionless wave vector
a=ck/co, and the frequency parameter p= —co&/co, .
Due to the appearance of the operator P, each of the vec-
tors a, b, and K separates into its parallel and perpendicu-
lar components with respect to the plane z =0. This im-
plies that the set (7.2) and (7.3) is essentially a set of four
equations with six unknowns. The requirement that the
set has nontrivial solutions will then yield two restrictive
relations. These are the dispersion relations for the wave
vector K.

VII. DISPERSION RELATIONS A. Transverse solution

The coupled wave equations (6.2) and (6.3) admit
plane-wave solutions of the form

E(r, co, ) =Eae'"'", E(r, co& ) =Ebe'

with E arbitrary and vectors a, b, and k to be determined.
Both plane waves have the same wave vector k. The co,
wave propagates into the k direction (for k real), but the
cob wave propagates into the opposite direction because
co& is negative. Hence this solution consists of two coun-
terpropagating waves with the same wavelength but
difFerent frequencies. Substitution of the ansatz (7.1) into
(6.2) and (6.3) yields [~, —(c,+2yo)][lr, —p (E+2yo)] —y~~~=O, (7.4)

In a linear medium, electromagnetic waves are trans-
verse. It appears that also for the Kerr medium under
consideration there are transverse solutions, e.g., solu-
tions for which z a =a"b =0 From. Eqs. (7.2) and (7.3) it
then follows that a&=bc =0, which implies that the po-
larization vectors a and b are parallel to the surface of the
PC. Such waves are called surface polarized, or s polar-
ized. The set of equations then reduces to a dispersion re-
lation for the magnitude of the wave vector, a.= ~inc, and
the subscript s will indicate the solution for s waves. We
obtain

v a (Pc a )~=—(s+2yoP)a =yPb, (7.2) with solutions

' 2 1/2 1/2

(7.5)—(s+2yo) p +1+5 (p —1) +
2 8 +2gp

where 5=sgn(p —1). This gives the two branches ~,'" and a,' ' of the dispersion relation as a function of the frequency
(parameter) p. Both solutions are shown in Fig. 2. We have chosen to define the branches with a discontinuity at the
resonance frequency p= 1. In this way, we have a.,'"~&E and a,' '~p&s for y0~0, which are the dispersion relations
for the co, wave and cob wave, respectively, in the absence of the nonlinear interaction.

B. Nontransverse solution

In a nonlinear medium, a traveling wave is not necessarily transverse. It appears that there exists a second class of
solutions, in addition to the one above, for which the polarization vectors a and b are not
perpendicular to the wave vector K. The vectors a and b lie in the plane through K and e„and therefore these waves are
plane (p) polarized. Solving the set (7.2) and (7.3) for this situation yields the dispersion relation for these solutions.
We find

a~' = yo(2E+9yo)y+ —,'(s+2yo) p +1+5 (p —1) + 2/o
c, +2yp

(1+sy)(p +Ey)
1/2 ' 1/2

(7.6)

where we introduced the abbreviation

If
2K

(e+3yo)(E+9yo)
(7.7)

This solution is very similar to (7.5), with the exception

that K~ depends on KI~, the magnitude of &~I. %'e shall take
vector ~~~ as an independent parameter. If O is the angle
between K and the z axis, then we have KI~

=K sinO. There-
fore

K~~ represents the propagation direction with respect
to the z axis. It then follows that the dispersion relation
for p waves depends on the direction of K, which makes
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VIII. AMPLITUDES QF THE COUPLED VfAVES

2
S

Now that we have the solution for the wave vectors,
given the frequency, we can solve the set (7.2) and (7.3)
for the vectors a and b. For s waves, both vectors are
parallel to the plane z =0, and Eqs. (7.2) and (7.3) reduce
to

0
0.75 1.0 0 1.25

[Ic, (E—+2y o ) ]a =y b,

[K, p—(E+2yo)]b =y "p a .

(8.1)

(8.2)

FIG. 2. This figure shows the two branches of the dispersion
relation for s-polarized waves, as given by Eq. (7.5). Plotted is
the square of the wave vector versus the frequency in units of
the pump frequency, for c= 1 and yo =0. 1 . The dashed lines in-
dicate the corersponding relations for a dielectric ( yo =0 ). e =(K(( X e )/K()

For the branch ~,'" of the dispersion relation we set

(8.3)

These equations are dependent by construction. Both a
and b are perpendicular to both ~~~ and e„and therefore
proportional to the unit vector

the medium efFectively anisotropic. The material itself
was assumed to be isotropic, but the polarization of the
pumps destroys the symmetry Since we took the pump
polarization to be linear and in the z direction, the medi-
um is still invariant for a rotation about the z axis. For
~~~

=0 the distinction between s and p waves disappears.

1S es~ b 1S 3 91 s

and for ~,' ' we take

a2, =yg2e„b2, =e,

Substitution into Eq. (8.1) or (8.2) then gives

(8.4)

(8.5)

(E+2yo) Ip —1 +5+(p —1 ) + [2pyo/(a+ 2yo)] ]

'Qi = P '92 ~

(8.6)

(8.7)

The amplitude ratio of the co, wave and the cob wave is

~ yrl t ~
or

~ yg2 ~, and close to resonance (p = 1 ) this ratio
approaches unity. In that case, both waves have equal in-
tensity. For y ~0 (linear medium) or far off resonance,
the ~b wave in the first solution and the co, wave in the
second solution disappear. Typical behavior of these pa-
rameters is illustrated in Fig. 3 .

The polarization vectors for plane-polarized waves can

be found along similar lines, although the computations
are more involved. The vectors a and b lie in a plane
through e, and x

~~,
and can therefore be written as

Q (p
=CX;fez +CX

g
( (

K
) (
/K

i
(8.8)

(8.9)

with i = 1 or 2, corresponding to the two branches of the
dispersion relation. We choose the parameters such that
for y ~0 or far o6 resonance the cob wave disappears for
i = 1 and the co, wave for i =2. The other two vectors
will be normalized as

Q )~ 'Q
)p

= (8.10)

just as for s waves. The a and P parameters are fairly
complicated, and listed in Appendix A.

—1

0.7 5 1.0 0 1.2 5

IX. INCIDENT FIELD

FIG. 3. Plot of yoq2 as a function of co, /co for c= 1 and

y o
=O. 1 . At resonance this parameter is discontinuous, with

~ yp'gz ~

= 1, and far off resonance it goes to zero.

Two counterpropagating waves E ( r, co, ) and E ( r, co& )

inside the medium have the appearance of a plane wave
and its phase-conjugate image, apart from a slight fre-
quency shift. When a plane wave with frequency co, is in-
cident upon the medium from the region z )0, then this
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(9.2)

and we use the value for which the argument of the
square root is positive. Then we let ~~~=k~~/k. For
0 K~I & 1 we have a traveling incident wave and
sinO, =K~~, with 0; the angle of incidence. For KII) 1 the
wave is evanescent. The dimensionless z component is
defined by K, =k, /k, which is explicitly

Ka— (9.3)

wave will (partially) propagate into the medium and, due
to the nonlinear interaction, couple to the corresponding
co& wave. This field will exit the medium again and travel
into the positive-z direction, counterpropagating the in-
cident wave. In this fashion, a phase-conjugate replica of
the incident field is generated. In the remainder of this
paper we shall study this process in detail.

The incident field is assumed to be a monochromatic
polarized plane wave of the form

E(r, co, );„,=Ee e'" ", (9.1)

with cT =s or p, k =co, /c, and k.e =0. Given k (or co, )

and k~~, the z component of k is determined up to a minus
sign. The sign must be chosen such that for a traveling
wave the propagation direction is in the negative-z direc-
tion, and for an evanescent wave the amplitude must de-
crease exponentially into this direction. Therefore we
must take

k, =k(x.
~~

+/cbe, ),
with

(10.2)

(10.3)

Recall that co& is negative, which means that this wave
travels in the direction opposite to its wave vector. The
various wave vectors are shown in Fig. 4 for traveling
waves and in Fig. 5 for evanescent waves. Due to the
small difference between co, and mb, the wave vector of
the pc wave is not exactly parallel to the incident wave
vector and the wavelength is also slightly different.

The region z & —6 is also vacuum, and this allows four
different waves, given k~~. However, only two of them are
causal. The co, wave which travels or decays in the
negative-z direction is the transmitted (t) wave with wave
vector k, =k. The possible cob wave, called the nonlinear
(nl) wave, must have wave vector

(10.4)

As seen in Fig. 4, this wave travels in the direction oppo-
site to the specular wave. This wave is generated by the
nonlinear interaction, and disappears in the limit @~0
(as does the pc wave).

For a given polarization o.=s or p and a given k~1, the
dispersion relation inside the medium has two branches,
labeled (1) and (2), and for each of these the z component
of the wave vector can have two values which differ by a
minus sign. Therefore the four possible wave vectors are

emanates from the medium, and only the causal solution
is acceptable. This wave is the phase-conjugate image of
the incident field, called the pc wave. The wave vector is

X. SET OF COUPLED WAVES k*, =k(~(( /c e ), (10.5)

k„=k(a(~ —/c, e, ) . (10.1)

We sha11 call this the r wave. At frequency co& the disper-
sion relation is k; =co& /c, which admits two solutions for
the z component of the wave vector. However, this wave

The incident wave couples to other waves inside and
outside the medium, in a way which is determined by the
boundary conditions at z =0 and z = —A. Each plane
wave will have an r dependence of the form exp(ik; r).
At z =0 this reduces to exp(ik; ~~. r ), and it is easy to see
that the boundary conditions can only be satisfied if this
factor cancels out. This implies that each wave vector
must have the same parallel component, which is equal to
k~~ of the incident wave. The magnitude of each wave
vector is determined by the dispersion relation, either in
the medium or in vacuum, and this fixes the z component
of each wave vector, apart from its sign.

In the region z & 0 the incident wave with frequency co,
can couple to a specular wave at the same frequency, just
as in linear optics. Since the incident wave vector equals
k =k (~~~+/c, e, ), the specular wave must have wave vec-
tor

k2 =k(/c~~+/c& e, ), (10.6)

inc

1+
qh 2+ 1 1 — / 2 — /

/ /

FICx. 4. Schematic representation of the various traveling
waves which can be excited simultaneously by the incident Geld.
The solid arrows indicate a principal wave, which can either be
an m, wave (for 1+) or an cob wave (for 2+), and the broken ar-
rows represent the waves which are coupled to the principal
waves via the nonlinear interaction. A double arrowhead indi-
cates a wave vector of an cob wave, which travel into the direc-
tion opposite the wave vector (because cob is negative).
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inc p c

z (—4 the field has the form

I I I I I
Q E(r, a), ) =ET e,e (11.5)

nl

FIG. 5. Same as Fig. 4 but for evanescent waves. The co,
waves travel into the direction of kII, whereas the cob waves trav-
el to the left. Two waves in a pair travel in opposite directions
but decay in the same direction.

in terms of the dimensionless wave numbers

lk i'rE(r,cob)=EN e „,e

with T and N to be determined.
Inside the medium we have eight waves, and their po-

larization vectors were determined in Sec. VIII. It was
shown that the relative strength of two waves in a pair is
determined by the dispersion relation, and therefore not
by boundary conditions. Hence a Fresnel coefficient for a
pair of coupled waves determines the relative intensity of
the pair with respect to the incident wave. Explicitly, the
field is

K( )

2 (1) 2

(2) 2 2

i K2 K(2) 2
II

(10.7)

(10.8)

k 1+ ~
E(r, co, )=E'Z'+a'+e +Z~ a~ e

'k + 'k

+Z 2+~2+ ' rr "+Z2 —~2—a e ~a~e

(11.7)

Since each of the four wave vectors represents a pair of
coupled waves, there are eight difFerent waves possible in-
side the medium, as illustrated in Fig. 4. There is no
causality requirement in a layer with finite thickness, and
therefore all possible solutions for the dispersion relation
will contribute. The boundary conditions then couple all
13 waves shown in Fig. 4 or Fig. 5.

XI. THE FIELDS

ik r ~ ik -r+Z'+b'+e' "+Z' b'

(11.8)

with the four Fresnel coefficients Z'*,Z * to be deter-
mined.

All waves have a spatial dependence of the form
exp(ik;. r ), with the wave vectors k; given in the previous
section. Next we have to choose a phase convention for
the polarization vectors. In vacuum we take for s waves

e, ,
=

(v(( X e, ) /v((,

as in Eq. (8.3), and for p-polarized waves we take

e~, =(k, Xe, )/k, . (11.2)

Both vectors are unit vectors, and are perpendicular to
the corresponding wave vector. We note that e, is com-
plex for evanescent waves. The field in the region z &0
then attains the form

E(r, co, )=E[e e'" "+R e „e ' I,
E(r, cob)=EP e ~,e

(11.3)

(11.4)

representing the incident wave, the specular wave, and
the phase-conjugated wave. The factor E is common for
all waves. The relative strength of the various waves with
respect to the incident wave is given by the Fresnel
coefficients R and P . These will be determined by im-

posing the boundary conditions. Similarly, in the region

XII. FRESNEL COEFFICIENTS

Maxwell's equations require that at the boundaries

z =0 and z = b, the fields E~~~, 8, a—nd (eE+P/Eo)i are
continuous, for both co, and cob. This yields two sets (one
for each value of cr ) of 12 linear equations for the eight
unknown Fresnel coefficients, which shows that the sets

are overdetermined. If we consider the continuity of EII

and B only, then we have two sets of eight equations with
eight unknowns. It can be shown that then also

(eE+P/Eo)i is continuous at both boundaries. For s
waves this is obvious, because all fields are parallel to the

surface so that (sE+P/Eo)i=0 For p. waves the third
boundary condition yields a set of equations which is
identical to the set that is derived from the continuity of
the magnetic field.

For each E field the corresponding magnetic field is
found with Eq. (2.4). After writing out the first two
boundary conditions it follows that each set of eight
equations separates into two sets of four equations. The
Fresnel coefficients for the waves inside the medium fol-
low from the solution of
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Z'
F

Z2o

0
0
0

(12.1)

with F 4X4 matrices, which are given explicitly in Ap-
pendix B (one for each cr). After that, the remaining
Fresnel coefficients are found from the solution of

p waves simplify to

g i =i/i =q4 =$4 = 1

e~ =q2 = —e3 = —e3 = —&/yo

(13.4)

(13.5)

Z' =Z =R =N =0o o o o (13.6)

and the matrices for p polarization are identical in form
to the matrices for s polarization. The solution is then
easily found to be

R

P

T e
—ip

N e

0
0
0

zi+
Z1-

o.

+6 z2+

Z2o.

(12.2)

ip
1 1+e
2 I+cosP

Z2+ —g
' P(z1+ )e

—iOP = —i5e 'tanI —,'P I,

(13.7)

(13.8)

(13.9)

with the matrices 6 given in Appendix B. The phases
are defined as P; =2m.a;d for each wave number v; (i =a,
b, acr, or Po ), and d =kA/2m is the layer thickness,
measured in wavelengths of the incident field. Solving
Eq. (12.1) requires the inversion of the 4X4 matrices,
whereas Eq. (12.2) is a simple matrix product. The equa-
tions can be solved analytically, but the resulting expres-
sions are awkward and will not be given here. The illus-
trations below are numerical solutions.

XIII. RESONANCE IN A TRANSPARENT MEDIUM

The nonlinear interaction enters the equations for the
Fresnel coefficients through the parameter y, which is al-
ways very small compared to unity. In what follows we
take yp to be positive, in order to simplify the notation a
little. Since yp is so small, it is tempting to simplify ex-
pressions like (8.6) for qz by letting yo~0. Care should
be exercised, however, in this procedure. For instance,
for yp~0 the expression for gz reduces to

1'92=
E(p' —1)

(13.1)

whereas close to resonance (co, ~co, or p —+ 1) we have

'Qz=&/yo . (13.2)

K —K —K =K — COSO.a b ao Po. i (13.3)

with 8; the angle of incidence. The q parameters for the

This shows that near resonance ypg2 remains finite, and
Eq. (13.1) does not give the correct behavior. Therefore,
the resonance condition is ~p

—
1~ && yo, and we could call

yp the bandwidth of the PC as a function of p. As a func-
tion of co the bandwidth is then yoco/2, which is of the or-
der of 10 MHz —10 GHz. It is easy to show that for
~p

—
1~ ))yo all cob waves disappear, and the remaining

Fresnel coefficients are the Fresnel coe%cients for a
dielectric layer.

In this section we consider the limit p~1, yp~0, but
such that ~p

—l~ &&yo. We shall assume that all waves
are traveling waves and that the medium is transparent
(E= 1 ). Then the wave numbers which appear in the ma-
trices of Appendix B become

ip
i(p —p ) 1+eT =e

1+cosP
(13.10)

2'rtd yo
,=5

cos8;

27Td y p=5 (1+2sin 8, ) .
cosO;

(13.11)

(13.12)

Both phases are proportional to 5 =sgn(p —1 ), and so
this 5 cancels the 5 in Eq. (13.9). Therefore there is no
discontinuity in the phase of P at resonance. For
8;~90' we have cos8; ~0 which makes the phases P
grow very rapidly, and consequently P oscillates very
rapidly. This feature is illustrated in Fig. 6. From Eq.
(13.9) it follows that P lies in the range 0& ~P
and ~P

~

can easily exceed unity, as is also evident in Fig.
6. This corresponds to amplification of the phase-
conjugated wave with respect to the incident wave.

where we have set P =P P&~. E—quation (13.6)
expresses that all the waves on the right-hand side in Fig.
4, which are associated with the specular wave, disappear
in a transparent medium. The remaining Fresnel
coefficients are determined by the phases P =2vrd~~
and P& =2rrda& (and the phase 9& of y). According to
Eq. (13.3) we have ~ =v&, which seems to make both
phases equal. With Eq. (13.9) this would give P =0, so
that there would not be any phase-conjugated wave.
However, the wave numbers are multiplied by the dimen-
sionless layer thickness d, which is large. For 6 a few
centimeters we have d —10 . Both wave numbers are
equal in the limit yp~0, but this means that their
difference is of the order of y. Multiplied by d, this can
yield any value for P —

P& . This also implies that a
sufficient layer thickness (interaction length) is required
in order for the medium to generate a phase-conjugated
signal. This has been known for a long time [32,33]. At
resonance, the two waves in a pair have equal strength, as
shown in Sec. VIII, and with Eq. (13.8) we find that

~

Z '+ =
~
Z + . This gives all four waves in the medium

equal intensity.
The dependence on the angle of incidence is contained

in P, and we have to lowest order in yo
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co, sin8; =co,'sinO, , (15.1)

pagate. This leads to interference fringes, which have
been observed experimentally [36,41]. The angle of in-
cidence O; is determined by the wave vector according to
sinO, =KI~. With O, the angle between the propagation
direction of the pc wave and the normal to the surface
z =0, we have sin8~, =1(~~/p. Therefore the two angles
are related by

or sinO; =psinO, . The angle of reAection of the r wave
is, of course, O;.

APPENDIX A

The a and P parameters for the polarization vectors of
p waves can be expressed in terms of the auxiliary param-
eters

3p'(s+ yo)(s+ 3yo) —2s[(~p")' —~~~1

[(v~ ') —p (E+6yo) ](s+yo)(E+ 3yo)+2yo(2e+ 3yo) [(I('I,") —
tc~~ ]

3(E+yo)(E+3yo) —2E[(a' ') —
1()~ ]

[(~,'")'—(E+6yo) ](e+yo)(E+ 3yo)+ 2r o(2e+ 3yo) [(~,"')'—
~~~ ]

'

which contain the two solutions of the dispersion relation. We then obtain

(Al)

(A2)

+ j~',
~

—a+6y, ) —3yo'g, ]'/
K

2J
'l/ K~~+ [K~~

—
p (e+6yo) —3yop g2] /[(Kp ') —

I('~~]

P( =y'gia

a2i=r(Ai
For the parallel components we find

CK1g 2„, [~~~
—(E+6yo) —3rok(]

KiiKp

(A4)

(A5)

(A6)

(A7)

(, ) [&([&~~
—p'(&+6ro) ]—3p']

KtiKp J

(AS)

a2~~
=y, , [ /~[1(~~

—( E+6yo) ]—3],
K((Kp y

(A9)

K()Kp g

(A10)

The quantity a ~ follows from the dispersion relation according to ~ ~=+ [~ —~~~]' . Due to the + sign there are two
solutions which differ in their propagation direction with respect to the z axis.

APPENDIX 8

The two matrices which determine the Fresnel coeKcients for s waves are found to be

F, =

K, +K,
y*g, (~b —I(. , )

(I(, —I(, )e

Kg K~~

y*g((1(b+I(, )

'&as(I(, +I(, )e

7)((Kb+K, )e ' y'g, (l(b —~, )e

yg~(a, +~p, )

Kb KPs

yg2(~, —ap, )

Kb +KP~

(~b+~p, )e
—

imp

—i /ps i /ps
gr(lc2Kp )e ' y'()2(I(, +xp, )e

iP s
(1(b —1(p, )e

(Bl)

G, =
e

r I1

'&ase

r 7l2

1

—i Pp imp,r'92e r'92e
(B2)

—ip ipr'~1e
—i /pse

i /pse
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with all the parameters defined in the text. For p waves the situation is more involved due to the more complicated ex-
pressions for the polarization vectors. We obtain for the matrices

q1Kg +q1K~p

(qzKb qzlc )

(qltc, —
q&tc )e

1Ka q 1Kap

2Kb +q2Kap )

(qttc, +q, a. q)e

y(q3tc, +q&trit& )

q4Kb qgKPp

y(q3tc, —
qstc& )

q4~b +q4~&

y(q&tc, —
q3tc&z )e s~ y(qstr, +q3trt3& )e

(83)

(qzKb+qzK ~ )e y*(qztrb qztr—~ )e (q4trb+q4trt3& )e (q4Kb q4Kpp )e

q1 q1 Tq3 rq3

7 qz
—i i'

q1e

'v qz
i i'

q1e

q4 qg
—ip ip

yq3e ~~ yq3e
(84)

y'qpe y*q~e q4e

which contain the parameters

q4e
i alt

2
I &+6yo+3yoki I

II

(85)

z
= p I g—,(E+6yo)+ 3 I,

II

(86)

I gz(a+6yo)+ 3 I,
11

2lq4= —
)o I &+6yo+3yokzI

(87)

(88)

(&+6yo) —3yoki I
K

II
K~p

(810)

q3 z I (z[ l
(a+6'yo)]

KIIKPp

(811)

z I l &"+6yo)
KIIKP~

(812)
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