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Reconstruction of the quantum state of multimode light
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Phase-controlled homodyne 2(N+R)-port detection with R local oscillators is analyzed with
the aim of reconstructing the quantum state of a correlated N-mode signal field. It is shown that
both the (N+R)-fold joint count distributions and the N fold j-oint difFerence-count distributions
contain all knowable information on the state of the field. ln any case, the minimum number of
local oscillators is given by the number of difFerent signal-field frequencies. Two Fourier integrals
per mode are found to be required to reconstruct the density matrix of the signal field from the
joint difFerence-count distributions measured in balanced homodyning. To illustrate the theory, it is
applied to balanced homodyne 4N-port detection (R =N). In this scheme, the joint difFerence-count
distributions directly yield the joint field-strength distributions of a correlated N-mode signal field.

PACS number(s): 42.50.Dv, 42.50.Ar, 03.65.Bz

I. INTRODUCTION

Photoelectric detection plays an important role in
gaining insight into the statistical properties of light. It is
well known that in direct detection the photon statistics
can be measured [1—3]. However, this knowledge does
not comprise the phase information required for the de-
termination of the quantum state of light.

Information on phase-sensitive light properties can be
obtained by means of homodyne detection, where in the
simplest case a signal-field mode whose properties are de-
sired to be observed and a strong local-oscillator mode
are combined by a beam splitter. Detecting the superim-
posed light, fieM strengths of the signal-field mode can
be measured [4,5].

Optical homodyne detection has been studied inten-
sively and applied successfully. The e8'ect of detection
efficiencies has been analyzed [6] and various multiport
detection schemes have been considered [7). A detailed
analysis of balanced homodyne four-port detection has
been given with special emphasis on the quantum prop-
erties of the local oscillator, the detection efficiencies, and
the relation between the measured di8'erence-count dis-
tributions and the field-strength distributions (also called
rotated-quadrature distributions) of the signal-field mode
[8,9]. Moreover, homodyne detection has been applied to
the measurement of phase-sensitive properties of light,
such as squeezing [10,11]and the phase statistics of quan-
tized light modes [12—14].

Balanced homodyne four-port detection with input-
phase control can be used to obtain the quantum state
of the signal-field mode. It is well known that knowl-
edge of the field-strength distributions of a radiation-
field mode for all phases within a m interval is equivalent
to knowledge of the 8-parametrized pseudodistributions
[15,16], which contain all information on the quantum
state of the mode. Since the field-strength distributions

are given by the difference-count distributions measured
in (phase-controlled) balanced homodyne four-port de-
tection (cf. [8,9,17]), the quantum state of the signal-
field mode can be reconstructed in terms of pseudodis-
tributions. It has further been shown that the measured
field-strength distributions can also be used to directly
reconstruct the quantum state of the signal-field mode
in terms of the density matrix in a field-strength rep-
resentation [18],without introduction of pseudodistribu-
tions. Alternatively, more complex homodyne detection
schemes have been proposed to measure 8-parametrized
pseudodistributions (with s (—1) [19—22] or the positive
P distribution [23,24].

Recently, experimental reconstruction of the quantum
state of a radiation-field mode has been performed by
using optical homodyne tomography [25]. The Wigner
function of the signal mode has been reconstructed from
the diBerence-count distributions measured in balanced
homodyne four-port detection using inverse radon trans-
formation [26], and the density matrix of the field has
been obtained as the Fourier transform of the Wigner
function. Although the results clearly demonstrate the
experimental feasibility of the reconstruction of the quan-
tum state of a radiation-field mode, there have been some
open questions, such as the efFect of the additional noise
introduced by nonperfect detection and the inHuence of
the multimode structure of the light pulses used in the
experiments.

Apart from pulses, correlated multimode fields play an
important role in a number of nonlinear optical processes,
such as parametric down conversion and four-wave mix-
ing. When the modes of a field are correlated to each
other, single-mode measurements are not sufhcient to ob-
tain the full information on the quantum statistics of the
field. In the present paper the problem of reconstruc-
tion of the quantum state of a correlated %-mode radi-
ation field in phase-controlled homodyne 2(N+R)-port
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detection (with a R-mode local-oscillator field) is consid-
ered. It is shown that the measured (N+R)-fold joint
count distribution as a function of the phase parameters
contains all knowable information on the quantum state
of the N-mode signal Geld and can, therefore, be used
to reconstruct the state of the field. In particular, the
density matrix of the signal field can be obtained &om
the count distributions by Fourier-transformation tech-
niques, which, in principle, enables one to also include
the efFects of non-perfect detection. It is further shown
that the desired information on the quantum state of the
signal field can also be obtained kom the N-fold joint
difference-count distributions measured in balanced ho-
modyning. This may be more suitable for practical ap-
plications, due to the elimination of classical excess noise
of the local oscillators. In this case the reconstruction of
the signal-field density matrix can be accomplished with
two Fourier integrals per mode.

The paper is organized as follows. In Sec. II the
multimode-field density matrix is related to the expecta-
tion value of the (coherent) multimode-field displacement
operator, which is shown to be a characteristic function
of the density matrix. The relation between this charac-
teristic function of the density matrix and the joint count
distributions measured in multiport homodyne detection
is studied in Sec. III. In Sec. IV the theory is extended
to balanced multiport homodyning and illustrated by an
example. A summary and some concluding remarks are
given in Sec. V.

1V

F =).F, (V., ) (2)

where

F~((p ) = E~ a~ +F,*at, E~ = ~E~) e

The eigenkets of E may be written as

(4)

where the ~X~, p~ ) are the eigenkets of the single-mode

operators Fz(p~ ),

is described in terms of the density operator g. As we
will see later, the density matrix of an N-mode signal
field and the joint (difference-) count distributions that
can be measured in (balanced) 2(N+R)-port homodyn-
ing (R being the nuinber of local-oscillator modes) are
directly related to each other through their characteris-
tic functions expressed in terms of the expectation value
of the (coherent) multimode-field displacement operator.
We first show that the expectation value of the (coherent)
multimode-field displacement operator is a characteristic
function of the density matrix of the field.

For this purpose we represent the density operator j
in the basis of the field-strength operator

II. MULTIMODE-FIELD DENSITY MATRIX IN
FIELD-STRENGTH REPRESENTATION

To calculate the density matrix elements in the E basis,

Let us consider a quantized N-mode radiation field,
with the creation and destruction operators a, and a, ,
respectively,

J-a, , a. = bj, i, j=l, 2, . . . , N.

Using standard quantum mechanics, the state of the Geld

(6)

we note that Ez(p~ ) and F~(p~ +vr/2) satisfy the same

type of commutation rule as position and momentum,
so that standard concepts of quantum mechanics apply.
Using in Eq. (6) the relations

and

straightforward calculation yields

) N ( &v

dyi. . . dy~ exp i ) y~X~— exp i,) y~F~(rp )
(27l p j—1 j—1

X D —
2 +gj+~ )
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where

N N

D~(P~) = exp ) (P, at —P,
*

a~) (10)

is the familiar (coherent) multimode-field displacement
operator, and

(1) + ~(2) ~~ ~(a) &(2)
2 j j j=

Equation (9) indeed reveals that (for appropriately
chosen arguments) the expectation value of the (coher-
ent) displacement operator of a multimode radiation field
is a characteristic function of the density matrix of the
field. Knowing this characteristic function, the density
matrix in a field-strength basis can simply be obtained
by Fourier transformation, where one Fourier integral
per mode must be performed. In this way we find that

I

any measurement scheme that enables one to determine
(D((P~))) for all complex values of P~ (j = 1, . . . , N)
yields all knowable information on the quantum state of
a N-mode radiation Geld. Note that if we let T. = 0

(j g k) in Eq. (9) and integrate over all X ) (j g k), we
obtain the single-mode density matrix of the kth mode
(k = 1, . . . , N) [18], which of course does not comprise
information on the quantum correlations of the modes.

The state of the field in terms of pseudoprobabilities
can also be obtained from (D((P~))), since this quan-
tity is uniquely related to the characteristic functions of
s-parametrized pseudodistributions [16]. However, one
more Fourier integral per mode must be performed, be-
cause of the complex integration variables.

Finally, it should be noted that when W. = 0 (j =
1, . . . , N) from Eq. (9) the joint field-strength distribu-
tion p((Wz j, (p~ )) is given by

(
dyi. . . dy~ exp i )—y, X, @((y,), (p )), (12)

where the characteristic function @((y~),(p )) of the
distribution p((X~.), (y~ })can be obtained from the ex-

pectation value of the (coherent) displacement operator
as

@((y,), (y )) = (D((iy, E;H).

vices fall on photodetectors and the (N+B)-joint count
distribution is measured.

Since the rth subdevice is a linear lossless 2(N +1)-
port apparatus that transforms N„+1 input modes into
N„+1 output modes, we may write

III. MULTIPORT HOMODYNING where a&") and bk" are the photon destruction operators

In this section we show that the characteristic func-
tion of a N-mode-field density matrix as introduced in
Eqs. (9) and (10) can directly be related to the character-
istic functions of the (N+B)-fold joint count distributions
measured in homodyne 2(N+B)-port detection.

Let us suppose that the N modes of the field under con-
sideration can be separated &om each other so that each
mode can be used as an input-signal mode in a multiport
linear device. In particular, to detect a field that consists
of modes of different frequencies w (r= 1, . . . , B), we as-
sume that the set of modes can be subdivided into A
groups, N=g„ i N„, where the N modes belonging toR

the rth group are equal in &equency. We further assume
that the coherent reference field consists of B modes of
f'requencies m, (r = 1, . . . , R), so that each group of the
signal-field modes can be assigned to a local oscillator
(whose frequency is equal to the frequency of the modes
of the group). This implies a detection scheme, where a
linear lossless 2(N+R)-port apparatus that consists of
B subdevices is used as shown in Fig. 1. The N„signal
modes of the rth group and the associated local-oscillator
mode are combined by the rth subdevice to give N„+1
output modes. The N+B output modes of all the subde-

M(R)
1

(R)
MN +,

- (1) - (1)
QZ QN( )

-(R) -(R) -(R)
Ql Qz

FIG. 1. Scheme of homodyne 2(N+R)-port detection. For
chosen r (r = 1, . . . , R) the signal modes az (k = 1, . . . , N )

-(~)

of frequency u " and a strong local oscillator a~ +~ =a&" of
frequency u l are combined by a lossless linear 2(N„+I)-port
device to give N +1 output modes (U&"„,, unitary transforma-

tion matrix of the rth device; (p " },phase control of the rth
device). Simultaneous detection of the N+R output modes

(N = P ) yields the (N+R)-fold joint (scaled) count dis-

tributions p„((M„"},, (y " }).
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of the input and output modes, respectively, and Uk(k, is
a unitary matrix,

N„+1 N„+1() () * - () ()).U- (U ') = ).U. .(U. .) =~ '
kll =1

Note that any discrete finite-dimensional unitary matrix
can be constructed in the laboratory using devices, such
as beam splitters, phase shifters, and mirrors [27].

Altogether, N +R input modes are transformed into
N+R output modes, which can be detected using stan-
dard photoelectric detectors to obtain the joint count dis-
tribution

(r) & i (1) (1) (R) (R)
p((me ))—:p mc, . . . , mx c, . . . , mc, . . . , mx ec) .

ent state [n„) (n, = fn„fe'~ ) with large values of fa„f
(strong local oscillators). To obtain the asymptotic be-
havior of the joint count distribution for large values of
~n„~, it is convenient to introduce scaled counts

(„) m„(r) (r) (r) 2 2

Mkr ——
( )

(20)

(k = 1, . . . , N„+1, r = 1, . . . , R) and to consider the joint
scaled count distribution

P„Mk") ——P gk" O.„Mk" +gk" Uk"N +1 O;„

(21)

Its characteristic function is given by

n..({e'„"'))= ) p..(~M„'"'))

From photodetection theory [2,3] it is well known that
the characteristic function of p((m&" )), N„+1

xexp i) ) xI; M&'
r=1 k=1

(22)

(17)

can be represented as

- R N„+1
n((e )) =:exp ) ) (e' " —I) ct„ li„

r=1 k=1

(Is)

Here nk are the photon-number operators of the output(r)

modes,

~(p) (b(p)) t j,(p) (19)

and gk" are the efBciencies of the associated photodetec-
tors. The notation:: indicates normal order.

We now assume that the (1V„+1)th input mode in
the rth subdevice (r = 1, . . . , B) is prepared in a coher-

where for large values of ~n„~ the Fourier sums may be
performed as Fourier integrals. Using Eqs. (17) and (20),
the characteristic functions A„(jx& )) and O((x&" )) are
related to each other as

(r)

R N„+1
(r) 2 (r)X exp —'L Uk N +1 0!r xk

r=1 k=1

(23)

Note that the xk" are real variables. We now combine
Eqs. (23) and (18) and use Eq. (19) together with (14).
Following Ref. [7], we expand in the resulting expression
for A„((x& )) the exponential exp[ixI, /g&' ~n, ~] into a
power series (~x&" (/(g&" ~n ~) && 1) and omit terms of

higher than second order in ~x&" ~/(gI,
"

~np~). After some
calculation we obtain, on keeping only the leading terms,

R N„+1
())) 1) )- U()

r=1 k=1

( (p))~

()
~k

N„N„+1
x:ex ) ) ) ce*e "ee Uex+c(Ue"„)*(e~"~)t —H.c. ):r=1 n=1 k=].

(24)

which may be rewritten as

R N„+1
II-((&~"')) =exp -2). ). U~'N„+i

r=1 k=1

( (p))2

()
~k

R N„N„+1
X exP —) ) ) UIcN„+i( lcm ) A:

r=1 n=1 k=1

2-

D ie'+ "z(")
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R N„

DHP„' j) = exp ) ) (P~"~(c~"~)t —H.c.)
v =1 n=l

(26)

[cf. Eq. (10)], and

(27)

(k = 1, . . . , K„+1,r = 1, . . . , B).
Recalling Eqs. (9) and (10), from Eq. (25) we see that

where D((P~" = ie'~ z '
f) is the (coherent) displace-

ment operator of the N-mode signal field,

the characteristic function of the joint (scaled) count dis-

tribution, B„((x& )), can directly be obtained from the
characteristic function of the density matrix of the N-
mode signal Beld, (D((P" })).

To obtain the characteristic function of the density ma-
trix from the characteristic function of the joint count
distribution, we invert Eq. (27), on using the relations
(»),

N„+1
() ~ UrI. ()

XQ g ( )
zg/ )

k=1 UkN„+1

and rewrite Eq. (25) as

U()
(

x" = " ' z", exp —— z("
A. "=1 A, N„+1 ) v =1 n=l

R N„+1 fN„+1 (7) ( (7) 3 ~

7 —1 Al k / )
(29)

(~)
zN-+1 = 0 (30)

(r = 1, . . . , B), otherwise the z~ +z would give rise to
a growing exponential leading to an artificial enhance-
ment of experimental inaccuracies even in perfect detec-
tion (gI; = 1). Note that the conditions (30) correspond
to

N„+1
(~) (~)) U~~+, xA.

——0
A:=1

(31)

[see Eq. (27)], which means that for each r one of the x&'

is given by the remaining ones, e.g. ,

() ) I N+1
k„

1=1
l /k'

(32)

(1 & k„& N„+1), and Eq. (28) reduces to

(n= 1, . . . , K ). From inspection of Eq. (29) we see that
the left-hand side of this equation does not depend on
the zIv +z (r = 1, . . . , B) With. regard to high-precision
state determination we, therefore, let

are restricted to those satisfying the condition that the
expression on the left-hand side in Eq. (33) is real.
This means, from a single measurement performed by
an apparatus with chosen mode-mixing properties the
characteristic function of the state of the signal field,
(D((P(") = ie'~ z " j)), can only be obtained for cer-

tain complex values of its arguments P
' .

To obtain the characteristic function for arbitrary ar-

guments, the z" must of course be allowed to attain
arbitrary complex values. This can be achieved by appro-
priately varying the transformation matrices U&&, , which
implies measurement of a set of count distributions, for
example, by using phase shifters in the apparatus and
varying the phase parameters &om measurement to mea-
surement. As mentioned, any discrete Gnite-dimensional
unitary matrix can be constructed in the laboratory [27].
In this scheme we may, therefore, regard the U&A. , as being

given in a parametrized form U&&, ((p )) (n= 1, . . . , N„)
and choose, for a given set of complex values of z, the()
parameters y

") in such a way that the left-hand side- in
Eq. (33) is real for all values of l (f gk„).

In particular, starting with real U&&, , the situation is
rather simple. In this case, insertion of phase shifters in
the input channels of the signal modes, e.g. ,

N (~}

) '" z~ ) =*," (I gk).
l N„+1

(33) U( ) ( ) '~,'",'U( ) (34)

In other words, to obtain the characteristic function of
the N-mode signal Geld, we may restrict attention to
a N-dimensional hypersurface in the space of the N+
R variables of the characteristic function of the (scaled)
joint count distribution A„((xI," )).

Since the x&" are real, for chosen unitary matrices

U&1,, the allowed complex values of the z in Eq. (29)

(yIv +z
——0), obviously implies that the expression on the

left-hand side in Eq. (33) is always real, provided that

z(") = exp —ip(") y(

Hence, if the characteristic functions of the joint (scaled)
count distributions are known for all values of the phase
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parameters p within vrintervals, the characteristic function of the density matrix of the signal-radiation field is
known as well.

For simplicity we assume that the photodetectors used have equal efficiencies (qI; = qI, , —q). From Eq. (29)

[U&&, ~ U&&, ({yI"j)] together with Eq. (30) and the relations (15) we see that

D ie'&-- z(") = exp " z(")
r=1 n=1 -U(~) ( (~)) " ' "

)
'

which in the case of perfect detection (q = 1) reduces to

( ' ~ U(~) (~)

ie'~ "z
n=l k 1V +1 (+n' j

(37)

Here the notation n„((x&" j, (y j) is used to explic-

itly indicate the dependence on the y(" of the measured
distributions and their characteristic functions.

Equation (37) shows that the characteristic function of
the density matrix of the N-mode signal field can directly
be obtained, for appropriately chosen arguments, from
the characteristic functions of the joint (scaled) count
distributions measured in perfect homodyne 2(N +R)-
port detection with phase control. Hence, the quantum
state of the signal field expressed in terxns of the density
matrix can be reconstructed by straightforward Fourier
transformation [Eq. (9)].

tA'hen the count distributions are measured by pho-
todetectors whose eKciencies are less than unity, the
characteristic functions of the count distributions must
be corrected by an inverse Gaussian [according to
Eq. (36)], which obviously corresponds to a deconvolu-
tion in the Fourier space. It should be pointed out that
the appearance of the inverse Gaussian requires a very
careful consideration of the experimental inaccuracies.

U()
D(r) M( ) l N„+1

lk„ l („)
Uk N +1

(3s)

(")
l N„+1

()
k„N„+1

2 k„ ( k„

with the characteristic function

n, (~*(")j)

(39)

R N„+1

) p ((~( ))) ~xp () - ) ( l~(") (40)

(/ = 1, . . . , k„—1, k, +1, . . . , N„+1, r = 1, . . . , R) and con-
sider the joint scaled diBerence-count distribution

IV. BALANCED MULTIPORT HOMODYNING

Prom Sec. III we know that when the characteris-
tic function of the density matrix of the N-mode signal
field is related to the characteristic functions of the joint
count distributions, n(fxI,

" j), the originally (N+R)-
dimensional space of independent variables xk" can be
reduced to a N-dimensional hypersurface in this space.
To reconstruct the quantum state of the N-mode signal
field, it should, therefore, be suKcient to measure N-fold
joint count distributions in place of (N+ R)-fold ones.
As it is shown below, the reduction conditions (30) used
in Sec. III just imply that the characteristic functions of
N-fold joint difference-count distributions are picked out.
Since the joint di8'erence-count distributions can be mea-
sured in balanced homodyning, both a reduction of data
and, similarly to balanced four-port homodyning [28—31],
an elimination of classical excess noise of the local oscil-
lators are feasible.

Let us return to Eq. (20) and introduce N =P„zN
scaled difference counts

In Eq. (39) the notation (..., M& j is introduced to in-

dicate that (for given r) the k„th argument in p„ is not
changed. Combining Eqs. (40), (39), and (22), we easily
see that

with

n...(~ (")j) = n..((*(„'j), (41)

N„+1
(.)

(r)
k„N„+1

(42)

(recall that t = 1, . . . , k„—1, k, + 1, . . .N„+ 1 whereas k =
1, . . . , N„+1).

Since the relations (42) are just the conditions (30)
given in the form (32), Eq. (41) implies that the results
obtained in Sec. III using the conditions (30) remain valid
when the characteristic functions of the joint (scaled)
count distributions, 0„,are simply replaced by the char-
acteristic functions of the joint (scaled) diff'erence-count
distributions, n, g, . In particular, in place of Eq. (36) we
obtain
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R N„

D ie'+ "z(") = exp z(")
r=l n=l

( rv „p~() (( (")))
U() ( ()) " " )'

which reveals that the characteristic function of the density matrix of the N-mode signal field can directly be ob-
tained from the characteristic functions of the N fold-joint (scaled) diff'erence-count distributions measured in phase-
controlled balanced homodyne 2(N+B)-port detection. Knowing the joint difference-count distributions, two Fourier
integrals per mode must be performed to obtain the density matrix of the signal field. For example, starting with an
apparatus that performs real transformations U&&, , Eq. (43) reads as, on using Eqs. (34) and (35),

R N

r=l n=l

N„(r)
(.)

~
(.))

ra=1 +l N„+1
(44)

(y(, real). For each chosen set of input-phase param-
eters p„" the joint difFerence-count distribution can be
measured and its characteristic function can be obtained
by an N-fold Fourier transformation. Varying the y"
(—oo ( y„' & +oo), the arguments of the characteris-
tic function of the count distribution can be assigned
to the arguments of the characteristic function of the
density matrix as indicated in Eq. (44). In this way

(D((P" ))) is obtained for the arguments P" along the
lines P' ) = ze'(~ ~ )y( ) in the complex P )-planes.()
Varying the phase parameters p

" within vr intervals and
repeating the procedure outlined above, (D((P(")))) can
be obtained for all arguments. Now the N-fold Fourier
transformation of (D((P" ))) may be performed to ob-
tain the signal-field density matrix [cf. Eqs. (9) and (10)].

Although at least one local oscillator per group of
signal-field modes of equal frequencies is needed to recon-
struct the quantum state of the signal field, in practice
it may be advantageous to increase the number of local
oscillators and accordingly reduce the dimensions of the
transformation matrices Uk&, (r = 1, . . . , B).(r)

To illustrate the theory developed let us consider a
scheme where each signal mode is assigned to a local os-
cillator, so that N„= 1 and B =

¹ In this case the
overall detection scheme simply consists of N four-port

devices (N unitary 2 x 2 matrices), which can be real-
ized by single beam splitters (Fig. 2). Supposing that
a phase shifter is inserted in the second input channel
(local-oscillator) of each four-port device, we may write

(r) (r) '~'„",' r T(r) (r) ~, (r)
UI a &2 = "'

aI (45)

V„=e» U„, (46)

(r = 1, . . . , N; k, k' = 1,2,). The condition that the U&&,
(r)

are unitary matrices obviously implies that

U12 + U22 =1,(r) (r) (47)

(r) (r) (48)

(r) (r) (r) (r)
+11 ~21 + ~22 ~12 (49)

In particular, when the photodetectors have equal efB-
I

ciencies (z)k ——z)&", = z)) and the four-port devices are

50%:50% (~Uiz ~

= ~U2& ~
=1/2), application of Eq. (43)

yields (k„=2)

(5o)

Choosing

(51)

(x("), real), where where

(r) (r) (r) (r)
+11 + +12 + +2 (52)

P —z+ exP z(&P» —@11 + P12 + V&2
(r) (r} -( (r) (r) (r}

we easily see that [according to the condition (33)] the ar-
guments of O,~, are real. Hence, Eq. (50) may be rewrit-
ten as

from which we see that the phase control by the phase
shifters (which corresponds to a change of the local-
oscillator phases) effectively reduces to a variation of the

yz within zr intervals. Recalling Eqs. (20) and (38), in
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the case under consideration the scaled diBerence counts
Di2) are related to the observed (unscaled) difFerence

counts d" =m" —m" as

(~)
D(~)

i2

which implies that the corresponding distributions are
related to each other as

D(1)
(5

1 2

~g U(&I

~ d.((D12'3 (V 2"'))

D(N)
12

,„,(iM,

(N)

~Q p(~)

M(N)
2

psdc D] 2 r p2 @dc 'Q ~r D12 & p2
a()al aI aA(N)

Hence, the characteristic functions of the joint scaled
difFerence-count distributions are given by

~sdc +
& pg = psdc Dig q (lp2

(D(~) )

"-. "--(-}D(;)

= ) u'(«'J&, (~'"'))

FIG. 2. Scheme of balanced homodyne (Xx 4)-port detec-
tion. Each signal mode a(") (r = 1, . . . , K) and an associated
strong local oscillator a&" of the same frequency are com-
bined by a lossless linear four-port device to give two output
modes [U&&, , unitary (2 x 2) transformation matrix of the rth
four-port device; p~~", input-phase control of the rth local
oscillator]. Simultaneous detection of the N (scaled) differ-

ence counts Di2 =Mi" —M2" yields the N-fold joint (scaled)
difference-count distributions p,q, ((Di2 ), rp~" )

R
x exp i), diz

rI c(.'I )
(57) &(2)

~
'

+ (~'I+. I)'

Equation (53) together with Eqs. (54) and (57) shows
that when the joint di8'erence-count distributions are
known for all values of the phases y2" (r = 1, . . . , N)()
within vr intervals, then the characteristic function of the
density matrix of the %-mode signal field is known for all
complex values of its arguments. Note that the Fourier
sums in Eq. (57) are effectively Fourier integrals, because
of the large values of In„I.

To explicitly obtain the signal-field density matrix in
the form (9), in Eq. (53) together with Eq. (54) we may
let (r m j, p(') M p. ),

y-(2) y *

(i) + (i) + (i))

(j=1, . . . , N), so that

v,' = g —,z, + ~, l+, I

'

(i) (~)

It is worth noting that the joint difference-count distri-
butions measured in the 4N-port scheme under consid-
eration can be used to characterize the multimode sig-
nal field in a physically very illustrative way. To show
this, we recall that according to Eq. (13) the charac-
teristic function 4 of a joint field-strength distribution
is given, for appropriately chosen arguments, by the ex-
pectation value of the corresponding multimode-Beld dis-
placement operator. Comparing Eqs. (53) and (54) with
Eq. (13), we find that the characteristic functions of the
joint (scaled) difference-count and joint field-strength dis-
tributions are related to each other as

).( ) I~(.)I & v-. + v' —
v —v.''j,

which in the case of perfect detection (ran= 1) reduces to

~(~)

( ) + ++11 +12

(61)

(62)

In this case the characteristic function of each joint (scaled) difFerence-count distribution is equal to the characteristic
function of a joint field-strength distribution of the signal field. Hence we obtain the result that the measured joint
difference-count distributions are joint field-strength distributions of the N-mode signal field:

ps dc D12 ) I+'"'I p ((~"= I~'"'ID ) ( —& +& (63)
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Equation (61) clearly shows that for rl (1 the measured
joint difference-count distribution is a convolution of the
true joint Beld-strength distribution with a Gaussian.
This is a consequence of the additional noise introduced
by the detectors.

V. SUMMARY AND CONCLUSIONS

In the present paper we have studied the reconstruc-
tion of the quantum state of a radiation Geld consisting of
N (correlated) modes of R difFerent frequencies (R ( N)
&om the data that can be recorded in appropriate mul-
tiport homodyning. Because of the complexity of the
problem, let us summarize the main aspects of the the-
ory and refer to some basic equations.

The full information on a (correlated) multimode ra-
diation field is contained in the mean value of the
multimode-field displacement operator D((Ps )) defined
in Eq. (10). For example, any moment of the annihila-
tion and creation operators of the modes can be derived
&om (D((Ps))) by appropriate difFerentiation with re-
spect to the variables Ps. In this manner also the cross
correlations of the modes are specified. Generally speak-
ing, the density matrix of the N-mode field is uniquely
related to (D((Ps))). In particular, the density matrix in
a field-strength basis can be obtained f'rom (D(jP~))) by
N-fold Fourier transformation [Eq. (9)]. Thus the prob-
lem of the reconstruction of the quantum state of the
field may be reduced to that of the determination of its
characteristic function (D((Ps))).

This characteristic function can be obtained from the
count distributions measured in multiport homodyne de-
tection. If there are R groups of modes of diferent &e-
quencies, for the rth group (r = 1, . . . , R) a linear multi-
port device can be used to combine N„signal-Geld modes
of equal &equencies (P„N = N) with a local oscilla-
tor mode of the same frequency to obtain N„+1 output
modes [Eq. (14)]. Simultaneous detection of the N+R
output modes of the R devices then yields a (N+R)-
fold joint count distribution. Its characteristic function
is obtained by Fourier transformation of the count dis-
tribution [Eqs. (17) and (23)] and can be related to the

characteristic function (D((Ps))) of the signal field at
certain values of the arguments P~. [Eq. (29)]. To obtain

(D((Ps))) for all (relevant) values of the Ps, a succes-
sion of measurements with appropriate phase control is
required, for example by inserting phase shifters in the
input channels and varying the phase parameters f'rom
measurement to measurement.

To obtain the characteristic function of the state
of a N-mode signal field, R reduction conditions can
be imposed on the (N + R) fold -joint count distribu-
tions. In particular, it is sufBcient to measure N-
fold joint difFerence-count distributions. In this way
both a reduction of data and an elimination of the dis-
turbing eKects of classical excess noise of the local os-
cillators can be achieved. Fourier transformation of
the (phase-controlled) joint difFerence-count distributions
yields again their characteristic functions [Eq. (40)], &om
which the sought characteristic function of the state of
the signal field can directly be obtained [Eqs. (43) or
(44)].

In the special case of all mode frequencies being dif-
ferent &om each other the determination of the quan-
tum state needs as many local oscillator modes as sig-
nal modes are present. Thus a combination of N bal-
anced four-port homodyne detection schemes can be
used. Clearly, such an approach is also possible when
some of the mode frequencies are equal, but it then re-
quires more local oscillator modes than would be neces-
sary. However, such a measurement scheme is of inter-
est since it allows a direct physical interpretation of the
measured joint difFerence-count distribution as a (scaled)
joint field-strength distribution [cf. Eq. (63)] of the N-
mode signal field under study.

Finally, it should be pointed out that the theory also
applies when some of the input ports are unused, which
simply means that the corresponding modes can be re-
garded as being signal-Geld modes in the vacuum state.
In particular, unused input ports may be useful to obtain
the count distributions in terms of pseudodistributions of
the signal field similar to the (smoothed) single-mode Q
function observed in balanced homodyne eight-port de-
tection when two input ports are unused [19—22).
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