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Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator

B. Yurke, D. S. Greywall, A. N. Pargellis, and P. A. Busch
ATHT Bel/ Laboratories, Murray Hill, ¹wJersey 0797$

(Received 7 November 1994)

Resonators driven into self-oscillation via active feedback often form the basis of clocks and other
sensitive measurement instrumentation. The phase stability of such an oscillator is ultimately limited

by the noise associated with the resonator s intrinsic losses. However, it is often the case that
amplifier noise is the dominant cause of the oscillator's phase diffusion. Here it is shown that when

the resonator possesses a suitable nonlinearity, the phase diffusion due to amplifier noise can be
suppressed, allowing one to achieve a long-term phase stability comparable to the ultimate noise
limit.
PACS number(s): 42.50.Ne, 05.40.+j, 06.20.Dk, 03.65.Bz

I. INTRODUCTION

Oscillators based on resonators maintained in self-
oscillation via active feedback are of tremendous tech-
nological importance. Included are devices such as lasers
and masers, and a variety of radio-&equency and low-
&equency oscillators. Not only are these used for time
keeping and signal generation, but they also often pro-
vide the basis for other types of sensitive and precise
measurement techniques [1, 2]. The long-term phase or
frequency stability of such devices is, in principle, ulti-
mately determined by noise associated with loss mecha-
nisms intrinsic to the resonator itself. However, amplifier
noise also contributes to phase diffusion and can be, in
some circumstances, the dominant source of &equency
jitter. It is shown in this paper that even when the feed-
back amplifier or gain medium is very noisy, oscillators
employing resonators with suitable reactive nonlineari-
ties can exhibit a long-term phase stability comparable
to that characteristic of the resonator's loss.

The presence of a cubic nonlinearity in the resonator's
restoring force causes a distortion of the resonance curve
away &om the purely Lorentzian line shape. This dis-
tortion takes the form of a pulling of the &equency, and
at suKciently large drives, leads to a resonance curve
that is a multivalued function of the &equency. Con-
sequently, there are &equencies where the slope of the
amplitude-versus-&equency curve is infinite. The drive
at which the resonance curve first exhibits a single point
of infinite slope is referred to as the critical drive and
this point as the critical point. The phase difference be-
tween the response and the drive exhibits points of infi-
nite slope at the same &equencies, and so here the oscil-
lation &equency is insensitive to the phase of the drive.
A resonator operated at a point of infinite slope there-
fore might be expected to be immune to Huctuations in
the feedback signal. Indeed, it is demonstrated in this
paper that an oscBlator employing phase feedback can
exhibit enhanced long-term phase stability even though
short-term stability remains unchanged.

The method described here for enhancing an oscilla-
tor s long-term phase stability provides a nondemolition
method for tracking a resonator's phase. In a subse-

quent manuscript [3] a quantum analysis will be pre-
sented demonstrating that the technique, in fact, pro-
vides a quantum-nondemolition method [4, 5] of tracking
this phase. That back-action evasion or squeezed-state
techniques could be used to enhance the performance of
an oscillator was recognized by Caves [6]. For work on
electromechanical systems in which squeezing or back-
action evasion is employed to reduce the noise of quan-
tities other than the phase or &equency, the reader is
directed to Refs. [7] and [8].

A schematic of the oscillator circuit studied is depicted
in Fig. 1. It consists of a resonator coupled to an ampli-
fier. The output of the amplifier is fed into a phase shifter
and then into an amplitude limiter before being returned
to the resonator as its drive. It will be shown that this
oscillator is stable at all operating points which are set
by adjusting the phase and the amplitude of the limiter's
output. In particular, stable operation is achieved at the
special points on the resonance curve where the slope is
infinite. The bulk of this paper is devoted to the analysis
of the noise behavior of this oscillator specialized to the
case of the particular mechanical resonator that was used
to provide an experimental demonstration of the general
concepts [2]. A schematic of the silicon beam resonator
is given in Fig. 2.

The root-mean-square deviation bf of the measured
frequency away &om the mean &equency for an oscilla-
tor employing a linear resonator scales as w ~ where 7

is the time interval over which the &equency is measured,
i.e., the &equency counter time interval. This behavior
arises due to the unconstrained random walk of the res-
onator's phase as it is perturbed by the various sources
of noise. Optimum &equency stability is achieved with
a linear resonator when it is operated at resonance, i.e.,
at the peak of the resonance curve. Under conditions for
which the amplifier's input port noise and the noise &om
the limiter are negligible, the long-term behavior of (h f)z
can be written in the form

(hf) = (D~z+Dl, )/47r r,
where D~2 and DL, are, respectively, the diffusion con-
stants characterizing the diffusion of the oscillator's phase
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plitude and phase fluctuations of the resonator. In Sec.
V the steady state solution is discussed and expressions
for the resonator amplitude, the drive amplitude, and de-
tuning frequency at the critical point are obtained. The
stability of the oscillator is discussed in Sec. VI. In Sec.
VII a general expression for the phase diffusion of the
oscillator is obtained. This general expression is special-
ized to various cases of particular interest in Sec. VIII.
Section IX provides a demonstration that the enhanced
phase stability can be observed in the signal at the out-
put port of the amplifier even though this signal may be
severely contaminated with broadband noise. Finally, in
Sec. X various expressions for the mechanical properties
of the example beam resonator are derived.

FIG. 1. Schematic of the oscillator analyzed in the
manuscript. The oscillator consists of a resonator whose mo-
tion is monitored by an amplifier. The output of the ampliBer
is phase shifted and then passed through an amplitude lim-
iter. The output of the limiter drives the resonator. Arrows
are shown indicating the signal Bow and the How of noise both
from the amplifier's input port and the output port.

(bf) = DI, /vr r . (1.2)

The phase difFusion is now independent of amplifier noise
and driven entirely by resonator loss noise. The subject
of this paper is the derivation of Eqs. (1.1) and (1.2) along
with the expressions for the diffusion constants.

The equations of motion governing the various compo-
nents of the oscillator are presented in Sec. II. In Sec.
III the slowly varying envelope approximation is made.
In Sec. IV equations of motion are obtained for the am-

due to the amplifier's output port noise and due to the
noise associated with the resonator's intrinsic loss.

For a nonlinear resonator operated at its critical point
the expression for the variance in the frequency is

II. THE SYSTEM

Here we consider a mechanical resonator consisting of
a mass M and a spring with a nonlinear restoring force
F. This force is given by

I' = Ki Y + K3Y', (2.1)

where Y is the displacement of the mass &om its equi-
librium position.

The resonator's motion is both excited and detected
using a scheme that depends on the resonator being lo-
cated in a uniform magnetic field B. The field, the di-
rection of motion, and a conductor of length E attached
to the mass are mutually perpendicular. An alternat-
ing current passed through the conductor provides the
drive via the Lorentz force. An amplifier of infinite in-
put impedance monitors the electromotive force devel-
oped along the moving conductor.

The resonator's equation of motion is

dY dYM, + pT +KiY+K3Y' = FD+F~+FL, .
dt2 dt

(2.2)

Here, ED is the Lorentz force generated by the drive cur-
rent IDg flowing through the conductor. This force has
both coherent and fluctuating components and is given
by

ED ——ZBIDg .

F~ is the fluctuating force exerted on the resonator be-
cause of current noise I~~ emitted f'rom the input port
of the amplifier. This Lorentz force is given by

FIG. 2. Mechanical resonator used in the experiments of
Ref. [2] with dimensions defined and the direction of the
magnetic Beld B indicated. The beam vibrates transverse to
the magnetic Beld. The black area indicates the region of
metallization which provides the path for the drive current.
The voltage induced along the conductor is a measure of the
resonator's motion.

E~ ——EBI~~ . (2.4)

The force EL, is the fluctuating force associated with the
resonator's intrinsic loss and can be thought of as a force
exerted on the resonator by a dashpot. The constant

pT is the total damping experienced by the resonator
and arises &om power loss within the resonator and &om
power dissipated in the drive current source. Let p de-
note the damping constant for the resonator when the
drive is disconnected (called the intrinsic resonator loss)
and let p~ denote the damping due to the power loss of
the resonator into the drive. The constant for the total
damping is then
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(2.5)

with pD given by

PD = (2.6)
RD

where the output impedance RD of the drive is taken to
be purely resistive. In this case, in add. ition to the damp-
ing due to internal power loss, the resonator will exhibit
damping due to power lost into the output impedance of
the d.rive.

The electromotive force VR developed across the res-
onator conductor is given by

VR ——EB
dt

(2.7)

This voltage appears across the input port of the am-
plifier. The voltage V q at the output of the amplifier
is

Ei
M (3.2)

We write the displacement in the form

Y = [A(t)e ' '+A*(t)e' '],
y'2Kj

(3.3)

where 0 is the drive &equency which in general di8'ers
from the natural &equency by a small detuning

4P=O —Op (3 4)

8 =iAi (3.5)

The amplitude A varies slowly on the time scale of the
resonator's oscillation period and is normalized so that
~A~ has units of energy. In fact, the energy stored in a
linear resonator is given by

V„& ——G(Va+ Vxm), (2.8)
as can be verified by substituting Eq. (3.3) into

where G is the voltage gain and. V~~ is the voltage noise
(referred to input) appearing at the output port of the
amplifier. For simplicity we will assume that this noise
is independent of the current noise I~~ emitted from the
input of the amplifier. To d.escribe the action of the phase
shifter and the limiter we write V „q in the form

V „(t)= V(t) cos[Ot + P(t)], (2 9)
where 0 is the self-oscillation frequency, V(t) is a time
varying amplitude, and P(t) is a time varying phase. The
phase shifter shifts the phase of this signal by the amount

Hence, letting Vy denote the voltage at the output
of the phase shifter, one has

Vy(t) = V(t) cos[At+ P(t) + Pc] . (2.iO)

The limiter strips away the time varying amplitude V(t)
and replaces it with a constant amplitude. A limiter
might be realized. by a clipping circuit or a high gain
amplifier driven to its rails, or possibly a phase-lock os-
cillator locked to the phase of its input signal. Hence,
the current emitted by the limiter is given by

Ig)s = Ip cos[At + P(t) + Pc] + I~D (2.1i)
where Ip is the constant amplitude and IND is the fluc-
tuating noise current emitted from the output of the lim-
iter. The constants Pc and Ip are set by the experimenter
and allow the experimenter to choose the system's oper-
ating point.

M (dY) Kg
2 (dt) 2

The current IDS is written in the analogous form

(3.6)

IDS = [A'"(t)e ' '+ A'"*(t)e' '] .
D

(3.7)

Here the normalization has been chosen so that

PzV = l&PV I' (3 8)

is the average available power from the drive. This is
demonstrated by substituting Eq. (3.7) into the expres-
sion for the instantaneous available drive power PD

av RD DS
4

(3.9)

2
[A'„"(t) '"'+ A'„"*(t) '"'] .

D
(3.10)

The time averaged available noise power P& that the
resonator could extract &om the amplifier's input in the
presence of the drive's output impedance RD is then

and performing the time average. The superscript "in"
indicates that ~A& ~

can be thought of as the power prop-
agating from the drive current source "in" toward the
resonator.

Similarly, the current noise I~~ is written

III. THE SLOWLY VARYING ENVELOPE
AP PROXIMATION

It is now assumed that the resonator has a high quality
factor Q. This implies that the damping time is long com-
pared to the period of oscillation and justifies the slowly
varying envelope approximation. The quality factor and
the d.amping constant are related by

MOp

= +2@[A'"(t) ' ' ~ A*"*(t) '~'] . (s.i2)

The available noise power PL kom the fluctuating force
associated with the dashpot, i.e. , the maximum noise
power that; the resonator could extract from the loss is
given by

(s.ii)
The fluctuating force exerted by the dashpot on the

resonator is written

where the natural &equency of oscillation Op is

E2
Pav L

4p
(s.is)
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The normalization used in Eq. (3.12) leads to the time
averaged available power being given by

PZ" = IAL", I' . (3.14)

The slowly varying envelope approximation is carried
out by approximating the second derivative of Y with
respect to time as

~o+»o~, —;ni .,;n
/2Ki

it follows, from Eqs. (2.7) and (3.16), that

fB
VR = —i A .

2M

Writing V„t and V~N as

V t
——V te ' '+V*,e' '

and

V =V ' '+V*

(3.2S)

(3.26)

(3.27)

2 dA, „, dA*,„,'"' K, Ch' dt
'

and by approximating the first derivative of Y by

(3.is)
one obtains &om Eq. (2.8)

Vo i = G(&a+ &~iv) .

Decomposing Vy into the form

(3.28)

—inc As int
~dt v'2%i

(3.i6)

In addition, since a high Q resonator will suppress all
oscillations except those close to Ao, Y will be approxi-
mated as

ys I I

IA
—in' + As int]

(2Ki)'~' (3.17)

dA (1 . i . z . 2,„. 2+
I

——i(u
I
A+ipIAI'A=i A~+i A'„"

dt i 7T ) D 7D

Substituting Eqs. (2.4) and (2.3) into Eq. (2.2)
and substituting Eqs. (3.3), (3.7), (3.10), (3.12), and
Eqs. (3.1S)—(3.17) into the resulting equation one obtains
the following equation for A:

—zest + V* zest (3.29)

Voltinc

Equation (2.11) can now be written

I, V~
IDS ——„e + —„e + IlVD

2 Iv+I 2 Iv+I

(3.30)

(3.31)

Decomposing the drive noise current IND according to

2 [Ain —int + Ain* int] (3.32)

and using Eq. (3.7), Eq. (3.31) yields

the action of the phase shifter, Eq. (2.10) can be ex-
pressed as

(3.18)
2+i A— Io RD Vy

D + ND (3.33)

Here the constant gamma is defined by

3Kg
4M»2X'/' (3.i9)

The amplitude ring-down times &T, wL, and wD are given
by

Substituting consecutively Eqs. (3.30), (3.28), and (3.25)
into Eq. (3.33) one finally obtains

lo Rri (A+ i i/2Mv~pg/IB)

IA+i +2MV~~/IBI

(3.34)

7L =

(3.20)

(3.21)

This equation and Eq. (3.18) constitute the major results
of this section. Equation (3.18) is the equation of motion
describing the behavior of the resonator. Equation (3.34)
describes the action of the feedback loop.

2MBD
g2Q2 (3.22)

IV. LINEARIZATIQN ABQUT THE STEADY
STATE SQLUTION

1 I—= —+
T 7L 7D

Writing V~ as

(3.23)

From Eqs. (2.5) and (2.6) it follows that the ring-down
time ~D due to power loss into the drive and the ring-
down time 7L due to power dissipated internally in the
resonator are related to the total amplitude ring-down
time wT through

A = IA+ a(t) j "~~ +~~'ll

where

(4.i)

To deal with the complexities of Eqs. (3.18) and (3.34)
we linearize about the steady state solution correspond-
ing to the system devoid of noise. Such a procedure is
appropriate when the noise induced fIuctuations are small
compared to the amplitude of oscillation. We thus write
the amplitude A in the form

—iQt + Ve iAt
) (3.24) A~ Ac*la (4 2)
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A = (A + a + iAQ) e'~' (4 3)

We consider two cases: (1) when feedback from the am-
plifier is interrupted and the drive emits a sinusoidal cur-
rent at the f'requency 0 and (2) when the feedback loop
is closed.

For the open loop case the drive signal is taken to have
the form

is the steady state solution and a and P are, respectively,
the small fluctuating components of the amplitude and
the phase. To linear order in P, Eq. (4.1) can be written
as

dP 1 1 1
A—+ —Ay- (~ —S~A')a= — rD, + r,

dt
1+ rjl
TL

(4.i4)

(a+ i/2Mv„ /sB), ~ (A+ r)
[(A + i +2Mv~N/EB) ]

IA + rl
(4.15)

Equations (4.5), (4.13), and (4.14) constitute the open
loop results.

%le now consider the closed loop case. The lineariza-
tion of Eq. (3.34) can be accomplished by using Eq. (4.3)
to write

gin 0 D i/~ gin
DN2 2

(4.4) where

I = a+iA(j&+ ie '~'v 2MV~N/ÃB . (4 16)

Since the magnitude of I is regarded as small compared
to the mean field A one can write

(A + I') I' —I'*

/A+ r/ 2A
=1+ (4»)

+'~A'
~

A ='.'~~ ~ lf,1

(rT (4 5) Introducing the quantity VzN defined by

Substituting this equation and Eq. (4.3) into Eq. (3.18)
one obtains the equations for the steady state solution
and for the fluctuating components. In particular, for
the steady state solution one has

where

Io BD
2 7D

1
V1vi = [&&Ne

* '+&~Ne' ']
2

(4.6) and using Eq. (3.22), Eq. (4.17) can be written

(4.18)

1
rDi [+DNe + +DNe ]

2
(4.7)

Before displaying the equations for the fluctuations it is
useful to introduce the following notations:

(A+r) . i
(4.i9)

Substituting this equation into Eq. (4.15) and substitut-
ing the result into Eq. (3.34) yields the following expres-
sion for the linearized feedback:

[&'DNe ' ' —&'DNe* 'l
2

(4.8)

i(4a+4p)—8
2

++ND

RD( . i
I
1+ i4+—

2 A 2BD r
(4.2o)

[~in —imp + ~in* imp]
1

2
(4.9)

The phase jitter P~ of the drive caused by the amplifier
output noise is thus given by

Zr» = — [&*„"e-' —&'„"*e* ],
2

(4.io)

1 TD

A 2BD
(4.21)

[~in —imp + ~in' imp]
1

2
(4.11)

By substituting Eq. (4.3) and Eq. (4.20) into Eq. (3.18)
equations for the steady state and for the fluctuations
about the steady state are obtained. The equation for
the steady state, using Eq. (4.6), is

[Qxn —imp Qtnk imp]
2

(4.12)

—i~+ ipA
~

A =ie'~~ f .(1
r7T

(4.22)

da 1—+ —a+ ((u —pA )AP =-
dt 7.T

1 1
~D2 I A2

1
(4.is)

The equations for the fluctuations about the steady state
can now be written

Except for the absence of the phase $0 this equation is
the same as Eq. (4.5) derived for the open loop case.
The fact that $0 no longer appears is a reflection of the
time translation symmetry possessed. by the self-excited
oscillator. The drive of an externally driven resonator
breaks this symmetry.

The equations of motion for the fluctuating quantities,
using Eqs. (4.7) —(4.12) and using Eq. (4.22) to eliminate
e'~, become
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da 1—+ —a=
dt 7T

7D 2 — 1
(~ —pA )Vjvi — I'D2

2RD l/rD
1 1

QrD
(4.23)

0 = arccos(S/v Rs),
the roots can be written as

(5.9)

When Rs —S2 & 0, Eq. (5.2) has three real roots. Intro-
ducing the quantity

dP 1 'TD — 1
A —(~ —3pA )a =— &mi + I'Di

dh rT 2RD
1 1+ — IA1+ IL1

l/rD rL
(4.24)

and

50) pEi ———2VRcos
i

—
i

——,
(3) 3

(0+ 2~) p
Eg ———2 Rcos

~ 3 ) 3 '

(5.10)

(5.11)

V. STEADY STATE SOLUTION

Here we derive properties of the steady state behavior
of the system. Since Eqs. (4.5) and (4.22) describing
the steady state behavior for the open loop and closed
loop configurations are the same except for the diferent
phase variables appearing in the exponential function,
the solutions for both systems are the same, apart from
a relabeling of the phase. Taking the square of the norm
of both sides of Eq. (4.22) and introducing

f 0+ 4~1
Es —— 2V—Rcos

~ )
(5.12)

A —f Sill/~
7T

(5.13)

Once A has been determined through Eq. (5.1) and
Eqs. (5.3)—(5.12), one can determine the phase Pc using
Eq. (4.22). Separating Eq. (4.22) into real and imaginary
parts one obtains

one obtains the cubic equation in E
2(d ~ ((d 1 l fE'- E'+

~
—,+, , ~E- —,=O.

E~'

(5.1)

(5 2)

(ur —pA )A = f cosP—~ .

These two equations then yield

cot (5c = rT (~ —pA )

(5.14)

(5.15)

This equation in general will have three roots with only
the real roots carrying physical significance. The solu-
tions to cubic equations of the form of Eq. (5.2) are
known [9] and are repeated here for completeness and
convenience. It is useful to introduce the quantities Ogham rT (1 —JOE/0~)

Bca) 1 + rT ((d —'7E)
(5.16)

which is easily inverted to yield Pc. Another useful rela-
tion follows from taking the derivative of Eq. (5.15) with
respect to w, namely

1q= —+
~2

(5 3)

(5.4}

We now derive expressions for the phase and the am-
plitude at special points along the resonance curve. First
we consider the peak of the resonance. At this point,
with the drive held fixed,

(5 5)

(5.17)

The derivative of Eq. (5.2) with respect to w yields

From these quantities we construct 2' (cu —pE)E
1 + r 2 (~ —pE) ((u —3pE)

(5.18)

and

(5.6)
which, with Eq. (5.17), imphes that at the peak of the
resonance

2p —gpq+ 27rS=
-54 (5.7)

When S2 —Rs & 0, Eq. (5.2) has oiily one real solution
which is given by

& —pA =0 (5.19)

Substituting this equation into Eq. (4.22) one finds that
cos P~ = 0. From this and Eq. (4.22) it also follows that
the relation between the amplitude A and the drive f is

E= —sgn(S) (y S —R + ~S~)'~
A=rTf

and that the phase angle P~ is

(5.2o)

B+
(QS' —R'+ ~S~)»'

(5.8) Pc ———~/2 . (5.21)

Substituting Eqs. (5.17)—(5.19) into Eq. (5.16) one also
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obtains

(5.22)

Substituting Eqs. (5.28)—(5.30) into Eqs. (5.13) and
(5.14) one finds that at the critical point

Note that Eqs. (5.19) through (5.22) hold even in the
linear case when p = 0. This suggests that behavior at
resonance of a nonlinear resonator is similar to that of a
linear resonator. For the case of phase diffusion of the
oscillator due to amplifier output port noise, the behav-
ior of the system with a nonlinear resonator is in fact
identical to that for the corresponding linear resonator,
as will be shown in Sec. VIII. For an experimentalist this
provides a convenient way of calibrating the performance
of an oscillator with a nonlinear resonator against that
expected for the corresponding linear resonator operated
at resonance.

We now consider points on the resonance curve having
infinite slope, that is, points at which

(5.23)

Note that according to Eq. (5.16) at these points we also
have

=0, (5.24)

(5.25)

One operating point is of particular interest. This is
the critical point where in addition to Eq. (5.23) one has

(5.26)

that is, the phase as a function Df frequency has infinite
slope at the same &equency at which the resonance curve
does. These points of infinite slope occur, see Eq. (5.18),
when

(5.31)

For the critical point drive, Eq. (5.30), Eqs. (5.1) and
(5.20) yield, for the square of the amplitude at the peak
of the resonance curve, the expression

(5.32)

Comparing this with Eq. (5.29) one sees that for the crit-
ical drive the ratio of the amplitude A, at the critical
point to the amplitude A at the peak of the resonance
curve is given by

A

A
(5.33)

We have found this equation helpful in experimentally
locating the critical point of a resonator.

Figure 3 displays a set of resonance curves for various
values of the drive generated using Eqs. (5.3)—(5.12) and
the parameters p = 1 and vT ——1. The amplitude A is
plotted normalized with respect to the maximum ampli-
tude A attained at the critical drive. The curve labeled
1.0 is for the critical drive f, = 8~3/9, see Eq. (5.30).
The curve labeled 2.0 corresponds to f = 2f, and the
curve labeled 0.5 to f = 0.5f, . Frequency pulling of
the resonance curves due to the nonlinearity is evident
at all three drives. The critical point on the critical drive
curve is indicated by a small gap in the resonance curve.
At smaller drives the resonance curves are single valued;
at larger drives they are multivalued as a function of fre-
quency and exhibit two points of infinite slope.

Figure 4 displays a similar set of curves for the phase
as a function of frequency which were generated using

Taking the reciprocal of both sides of Eq. (5.18), differen-
tiating with respect to E, and using Eqs. (5.23), (5.25),
and (5.26) we have

1..5 ~ ~ I ~
I

I I I I
I

~ ~ ~ I I I I I I
I

~ ~ ~ ~
I

~ ~ ~ I

(5.27) 1.0

Substituting this into Eq. (5.25), using Fq. (5.1), one
obtains for the critical point detuning

0.5

)
7T

(5.2s)

2~3
3~~T

(5.29)

Equations (5.2), (5.28), and (5.29) then lead to the ex.—

pression for the critical point drive, namely

8~3
(5.30)

where here and throughout the rest of the paper, it
is assumed that p & 0. Combining this relation with
Eq. (5.27) yields for the critical point amplitude

0 0 I I I I I I I I I I I I I I I I I I ~ I I I I I I I I I I

—2 —1 0 1 8 3 4

FIG. 3. Sequence of resonance curves for which p = &T ——

1. The central curve corresponds to the critical drive. For
the curves labeled 0.5 and 2.0 the incident drive power is,
respectively, half or twice that of the critical drive. At the
critical drive the resonance curve exhibits a point of in6nite
slope, called the critical point. This is indicated by a gap
in the curve. For drives larger than the critical drive, the
resonance curves are multivalued functions of the detuning
frequency u.
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I I ~ ~ I ~ ~ ~ I I I g ~ ~ I ~ g ~0 The steady state solution is unstable if the real part of
either of the roots is negative. This occurs when

tg
—90

—(~ —pA )(~ —3pA ) ) —, .2 2 1

~T'

When

(6.7)

-135
(6.8)

$80 I i s ~ I s ~ ~, I, , I g I ~ ~~ ~ I I I I I ~ I I I I ~ I

—8 —1 0

FIG. 4. Sequence showing the phase-versus-detuning-
frequency curves corresponding to the resonance curves of
Fig. 3. At the critical drive the phase also exhibits a point
of infinite slope which occurs at the same value of cu as the
critical point for the resonance curve. For drives greater then
the critical drive the phase becomes a multivalued function of
cu. Note, however, that cu, when viewed as a function of the
phase, remains single valued.

da 1—+ —a=0
dt

(6.9)

and

one of the roots of the secular equation is zero and the
other is negative; so the system is neutrally stable. In-
stability occurs when the resonance curve is multivalued
and is manifested by bistability and hysteresis effects as
the frequency is swept back and forth through this mul-
tivalued region.

We now consider the closed loop case. The homoge-
neous versions of Eqs. (4.23) and (4.24) are

Eqs. (5.3)—(5.12) and Eq. (5.15) to extract the phase.
Note that the phase curve at the critical drive also ex-
hibits a point of infinite slope at the same value of the
detuning as the resonance curve itself. Again the critical
point is indicated by a small gap in the curve.

A —((u —3pA )a = 0 .2

dt
(6.10)

d2$ 1 dP+ ——=0.
dt2 wT dt

(6.11)

Eliminating a from these two equations one obtains

The secular equation is now

VI. STABILITY

Having described the steady state solutions, we now
determine the conditions under which they are stable.
First we consider the open loop case. The homogeneous
equations associated with Eq. (4.13) and Eq. (4.14) are

with the roots

Ag
——0

and

(6.12)

(6.13)

da 1—+ —a+ (~ —pA )AP = 0
dt 7.T

(6.1) A2 ——1 v.T . (6.14)

and

dP 1
A —+ —AP —((u —3pA )a = 0 .

dt
(6.2)

(6.4)

Combining these to eliminate a we have

d2$ 2 dP 1—+ (~ —pA )((u —3pA ) P = 0 .
dt wT dt 7.T

(6.3)

Writing P as

We thus see that in the closed loop case the steady state
solution is always stable. The damping time of the am-
plitude and the settling time of the phase is ~T. The zero
eigenvalue results from the neutral stability of the phase
which is a manifestation of the time translation symme-
try exhibited by the equations of motion of a self-excited
oscillator. That the system with feedback should exhibit
enhanced stability can be inferred directly from Fig. 4,
which shows that the detuning, when regarded as a func-
tion of P„ is single valued. Since it is the phase that is
the control parameter being fed back to the resonator the
oscillator's frequency should settle to the unique value
determined by the phase setting of the phase shifter.

leads to the secular equation

——A+ —
2 + (~ —pA )(ur —3pA ) = 0

2 1 2 — 2

~T ~T'

which has the roots

1
A~ = —+ iQ((u —pA')(~ —3pA2) .

7T

(6.5)

VII. DIFFUSION OF THE RESONATOR'S PHASE

The quantity ([P(t+v) —$(t)]2), where the brackets ( )
denote ensemble averaging, measures the extent to which
the resonator's phase diffuses in the time interval v. This
is the quantity evaluated in this section.

To begin, we introduce the Fourier transforms
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&(&) =

(7 1)

(7.2)

1 OO

(I~(t+-) —~«)]') = 2'
x (e '~ —1)(e '~ —1)
x (P(()P((')) . (7.5)

Viv~(() = (7.3)

The quantity (P(()P'((')) is straightforward to com-
pute: taking the Fourier transform of Eq. (4.23) one ob-
tains

r , (g) =
OO

dte'~'rishi(t) .
2 7t

(7 4)

(~ —pA~) —

(
2RD (—i(+ 1/»)

r~~(()
g~D( ~(+ 1—/») ~~i(

rD~(()
g ~(-'(+1/»)

1,~(()
i,(+ 1/»)

The Fourier transforms of the I angevin noise terms, I'~q,
I'~i, I'~~, I'L, &, and I'L,z are de6ned in analogy with
Eq. (7.4). With the Fourier transform of the phase de-
fined by Eq. (7.2) one can show

(7 6)

Taking the Fourier transforin of Eq. (4.24) and then sub-

stituting Eq. (7.6) into the resulting equation, one ob-

tains upon rearrangement

i ~Li 1 ((u —pA~) ((u —3pA~) ((u —3pA~)
+ ~(+ 1/~ iv'(~) + (g ~ »(~) +»(~)] (g ( ( / )

(rJ —3 A
(7 7)

In order to evaluate the quantity (P(()P'((')) it is neces-
sary to specify the statistical properties of the I angevin
noise sources V~i((), r~, ((), rD, g), r„,((), i»(()
rl, i((), and rI.q((). The noise sources will be taken to
have zero mean, that is,

(Viv N)) =(rD (&)) = (rD (&)) = (r~ (&))

(r, (4)) = (r„(4))= (r„(&))= o . (7 8)

We also choose each of these noise sources to be statisti-
cally independent, that is, for two distinct noise sources
such as r~i(() and rLiq(() one has

(r»u)r»(&)) = o .

The voltage noise V~i(() is taken to satisfy

2

(Vivi(()Vivi((')) = ' '~((+(') .

(7.9)

(7.1o)

This corresponds to white voltage noise fluctuations for
which the root-mean-square voltage fluctuation per root
Hertz is v„

The drive noise sources rLii(() and rLiq(() are taken
to have the following expectation values:

(r~ (&)r~ (&')) = (r~ (&)rD u')) =
2

~(&+ &') .

(7.11)

This corresponds to a white noise source whose available
power has a fat power spectrum. gD is the noise power
per unit bandwidth.

Similarly, the expectation values for the amplifier's in-

where g~ is the noise power per unit bandwidth for the
amplifier s input port noise that is available to the res-
onator in the presence of the drive load resistor RD.

The intrinsic loss noise sources are also taken to have
expectation values of the form

(rl u)rl ((')) = (r (()r ((')) = —~((+('),
(7.13)

where gl. is the noise power per unit bandwidth for the
noise available from the loss.

For white noise sources the total power diverges. One
is, nevertheless, justified in making the approximation
Eq. (4.17) since the noise is filtered by the response of
the resonator which manifests itself via the filter func-
tions given in Eqs. (7.6) and (7.7). The resonator, there-
fore, only responds to noise within a bandwidth of order
1/2vr» about the resonant frequency.

From the inverse transform of the Fourier transform
Eq. (7.2), using (7.7) and (7.8), it is readily shown that
the mean of the two-time phase difference is zero, that
is)

(~(t+~) —~(t)) = o . (7.14)

The quantity ([P(t + 7 ) —P(t)]~) is thus the variance in
the phase difference and provides a measure of the diffu-

put port noise sources I'~i and I'~~ are taken to be

(r~i(()r~i((')) = (r~~(()r~~((')) =
2

~((+ (')

(7.12)
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sion of the phase. From Eqs. (7.9)—(7.13) it follows that
(P(()(t)'((')) has the form

From this equation it is evident that

(&4)&'(&')) = ~(&)~X+ (')
where

(7.i5) ~(() =&(—&) . (7.17)

7Dv2, ( 1 ((v —pA2) ((u —3pA2) )
i

—+
~T (('+ 1/~T') )

+
(2 ((u —pA2) 2

(ur —3pA2) 2

((2 + 1/7. 2
)

2

+ 1 (qD+ q~ ql. l ( ((u —3pA')'l
+ —

I I
i+2A2(' ~ ~~ «) (, ('+1/r~

(7.i6)
I

Using Eqs. (7.15) and (7.17), Eq. (7.5) becomes

([P(t + r) —P(t)] ) = — d(sin ((w/2)I3((). (7.18)

Upon substituting Eq. (7.16) into this equation, the re-
sulting integrals can be evaluated analytically. One ob-
tains

((4(&+e) —4(&))') =, " ', (~(e)+eeee(~ —y&')(~ —»Xe)pe~[ —ee(X —e-~"~
))

+ e(~ e'Y'( ) (~ »+ ) He~i ee'(& e )))
1+, I

+ —
I le~l+ee(~ —»&')'(le~I —ee(& —e-~I-~li- )I)7D TL)

(7.i9)

Expressions for the amplitude Buctuations are now
obtained. Prom the inverse of the Fourier transform
Eq. (7.1) it is easily shown using Eqs. (7.6) and (7.8)
that the Huctuating amplitude a(t) has zero mean

(a(t)) = 0 . (7.20)

From Eq. (4.1) it is now a straightforward exercise to
show that the variance in the amplitude Buctuations is
given by

(&&)' —= (&') —(&)' = ( '(t)) .

The quantity g(a2(t)) is thus a measure of the amplitude
Buctuations. This quantity can be obtained from the two-
time correlation function (a(t+ r)a(t)). Using Eq. (7.1),
one obtains

1 OO

—OO —OO

& (a(&)a(&')) . (7.22)

From Eq. (7.6) and Eqs. (7.10)—(7.13) one obtains

(a(&)a(&')) =
8Z

'(~ —~A')'

1 &nD+ n~ nr, &) ~((+(')
2 ( ~~ «] @+1/rT2

Substituting this into Eq. (7.20) and performing the in-
tegrations yields

From this equation one sees that the Huctuations in a(t)
occur on the time scale 7T regardless of the resonator's
operating point.

([p(t + r) —(t (t)] ) = D~27+(Dxi + DD. + Dr, )

x 7-+ 4~~2p2A4

x(e — (1 —eee~ ))), (8.i)

where Dp72, D~j, DD, and DL
fusion constant for the phase
port noise, amplifier input port
the drive, and noise due to the
These constants are given by

2
v.ma

8~28 A
'QA

DN1 =
27D

gD
D

gLDL ——

are, respectively, the dif-
due to amplifier output
noise, noise coming from
resonator's intrinsic loss.

(8.2)

(8.3)

(8.4)

(8.5)

VIII. SPECIFIC CASES

Here we consider specific cases of Eq. (7.19). For con-
venience, we take ~ & 0. If one is operating at the peak
of the resonance curve, Eq. (5.19) applies, and Eq. (7.19)
becomes

7 'U

(a(t+ v)a(t)) = " '((u —pA )4RD

X —l~l/~~ (7 24)
4

From Eq. (8.1) and the fact that p does not appear
in Eq. (8.2) it follows that at resonance the phase dif-
fusion due to ampli6er output port noise is independent
of the strength of the nonlinearity. When the term con-
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taining D~2 dominates the phase diffusion this observa-
tion provides, for the experimentalist, a convenient way
of calibrating the noise behavior of an oscillator with a
nonlinear resonator against the expected behavior of the
system with a corresponding linear resonator operated at
resonance.

Using Eqs. (3.22), (3.24), (3.25), and (4.3) one can
show

A = (V)
2RD

(8 6)

where (Vg) is the mean square of the voltage delivered

to the input port of the amplifier. In writing this equa-
tion we have neglected the amplitude fluctuations of V~
since the linearization procedure assumes that they are
small compared to the mean field. Using Eqs. (8.6), (8.2)
can be rewritten in terms of experimentally measurable
quantities as

V2rms
4~2 (V2)

(s.7)

U»ng Eq. (8.6) and the relation between ii~ and the
mean-square current per unit bandwidth i2

gA
rms

D

D~i can also be written in the following forms:
~ 2 2 2

RDZrms R
s~i)A2 4~D(Vg )

(8.8)

(8.9)

It should be noted that the noise coming from the drive
need consist only of Nyquist noise associated. with the
output port impedance R~. At high temperatures, i.e. ,
k~TD &) hu, this noise is 3ohnson noise with

f)D = kg TQ ) (s.io)

where k~ is Boltzman's constant and TD is the temper-
ature of the heat bath associated with RD. Similarly,
the noise associated with the resonator's intrinsic loss is
characterized by

PAL,
—kQ TL, ) (8.11)

where TI, is the temperature of the heat bath associated
with the resonator's loss.

We now consider the case where the system is oper-
ated at a point where the slope of the resonance curve
is infinite. Substituting Eq. (5.25) into Eq. (7.19) one
obtains

(t&('+ ~) —&(')~') = D~2~~(' —'
+(DN1 + DD + DL)

X 'T + 7z (d —3+A

xfe —ee(1 —e '")])-(s.i2)

The term containing D~2 is due to the amplifier's output
noise. Note that this term becomes constant for large
values of w and so does not lead to long-term wandering of
the phase. That is, if all the other noise sources were zero
the mean-square uncertainty in the phase would reach a

+DL, ~ + ~~(~ —3pA')'

x]e —er(i —e ~ )]) . (8.14)

Note that decreasing the magnetic field also causes D~2
to become large through its dependence on wD. Conse-
quently, the procedure that allows one to diminish D~q
also leads to a degraded. short-term stability. Neverthe-
less, it is evident Rom Eq. (8.14) that the long-term sta-
bility of the oscillator is determined by the noise coming
&om the loss.

It is useful to specialize further and consider the case
where the oscillator is operated at the critical point.

constant value D~2v~ independent of measurement time
for w large compared to the loaded resonator's damping
time. When 7. is short compared to vz both Eq. (8.1)
and Eq. (8.12) reduce to

([y(t + &) (t'(t)j ) (DN2 + DNl + DD + DI )&

(s.i3)

One thus sees that the short-term stability, obtained by
operating the resonator at a point where the slope of the
resonance curve is infinite, is no better than the short-
term stability one would obtain for the same amplitude
A when operated. at the resonance curve maximum. It
is only the long-term stability that can be improved by
operating at a point for which the slope of the resonance
curve is infinite.

We now argue that, at a point for which the slope
of the resonance curve is infinite, one can, in princi-
ple, achieve a long-term noise performance that is de-
termined only by the noise power gL, coming from the
resonator loss. Note first that wD is proportional to RD
by Eq. (3.22). Therefore, Dz&, Eq. (8.4), can be made
small by making RD large. Since RD and vD appear as
ratios in Eqs. (8.2), (8.6), and (8.9), the diffusion con-
stants D~2 and D~i do not change as RD is increased
and A is held fixed. Furthermore, from Eq. (8.5) one sees
that Dl. does not depend on RD or wD. Consequently,
by making RD sufficiently large, and holding A fixed,
DD can be made negligible compared to Dl. and can be
neglected in Eq. (8.12). Next, we hold RD fixed and de-
crease the magnetic field B. This decreases the coupling
between the resonator and the amplifier and between the
resonator and the drive. It follows then from Eq. (3.22)
that as B is made smaller 7D increases. So, by making B
sufficiently small, D~i, Eq. (8.9), can also be made neg-
ligible compared to DI, . That is, by making the coupling
between the amplifier and the resonator sufficiently weak
the fluctuating force generated by the amplifier's input
port current noise can be made small compared to the
fluctuating forces generated by the resonator's internal
loss.

With the output impedance of the drive sufficiently
large and with a sufficiently small coupling through the
transducer Eq. (8.12) can be written

([4'(t + &) —4'(t))') = D~~&~(1 —' )
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Substituting Eq. (5.1), Eq. (5.28), and Eq. (5.29) into
Eq. (8.12) one obtains 10

~ ~
I

I ~
I

~ I I
I I

I
I ~

I
~ I ~ y I I ~

I
I I I

~ I

([4 (t + +) 4'(t)] ) —DN27T(1 —e ~ ~)

+(D~i+ D&+ D, )

x [4~ —3&~(1 (8.15)

As discussed above, by making BD sufIiciently large and
B suKciently small, D~q and DD can be made negligible
compared to DL, . If we also take w to be sufIiciently large
Eq. (8.15) reduces to

([~(t+&) —4(t)] ) = 4DL, ~ . (8.16)

This result can be compared with the phase stability
obtained &om Eq. (8.1),

([~(t+ ) —~(t)] ) = D (8.17)

This is the optimum phase stability that could be ob-
tained if the only noise in the system was that corre-
sponding to the intrinsic loss. Thus, by working at the
critical point with a noisy amplifier, a long-term stability
can be achieved for which the root-mean-square wander-
ing of the phase is only a factor of 2 worse than that
which could be achieved with a linear resonator and a
noiseless amplifier. From the relationship between phase
dift'usion and the variance in the frequency as reported
by a &equency counter

([&(t + ~) —&(t)1')
4' 2m-2

(8.18)

Dwg+ DD+ DI. —— x 10
~3
8

(8.19)

This curve would simply represent the noise Hoor due to
phase difFusion driven by the resonator's loss if D~q ——

D~ ——0. The dashed curve includes, in addition to the
noise characterized by Eq. (8.19), the amplifier output
port noise with a dift'usion constant given by

D~2 —— — x 10
~3
2

(8.20)

The solid curve corresponds to operating the oscillator at
the critical point with the strengths of the noise sources
still being determined by Eq. (8.19) aiid Eq. (8.20). Here

1 and u = ~3. For the linear cases, the dashed

it follows that Eq. (8.17) is equivalent to Eq. (1.2) given
in Sec. I. Similarly, Eq. (1.1) is equivalent to the long-
time limit of Eq. (8.1) for the case when D~i and DD
have been made negligible.

By using Eq. (8.18) to convert the expressions for phase
diffusion into those for &equency stability, the rms un-
certainty bf in the frequency has been plotted in Fig. 5
as a function of the &equency counter time interval 7 ob-
tained &om the general expression Eq. (7.19). For these
curves &T = 1 and ~A] = 2/~3. The dashed curve and
the dotted curve are both for a linear resonator operated
at resonance, i.e., p = 0 and u = 0. The dotted curve
is that for a hypothetical ampli6er with v„, = 0. In
addition we have taken

10 ~o
I s ~ I ~ s I ~ s I s ~ I I s I s s I s ~ I s ~ I ~ t I s a

10 10 10 10 10 10

FIG. 5. Frequency stability of the oscillator plotted as a
function of the frequency counter time interval. The dotted
and dashed curves are for a linear resonator operated at res-
onance. The dotted curve shows the fundamental noise Boor
obtained by setting the amplifier output port noise to zero.
The solid curve is for the corresponding nonlinear resonator
operated at its critical point. Note that the long-time fre-
quency stability of the nonlinear resonator is better than that
of the linear amplifier and comes within a factor of 2 of the
noise Boor. See the text for the parameter values used.

and dotted curves show b f scaling as w i~2 as discussed
above. For both short- and long-&equency counter times
the solid curve also scales as 7 / . There is an inter-
mediate region, however, where it attains a slope of T
The short-term stability is not improved by operating at
the critical point, as is evident &om the fact that the
solid curve approaches the dashed line for small 7. In
the intermediate region the long-term &equency stability
increases faster for the oscillator being operated at the
critical point. The degree of improvement, however, is
bounded by the dotted curve. Hence, at very long times
the solid curve becomes parallel to the dotted curve but
is a factor of 2 larger than the dotted curve. This is the
same factor of 2 that was discussed in connection with
Eqs. (8.16) and (8.17).

The &equency uncertainty bf as a function of the en-
ergy ~A~ stored in the resonator is plotted in Fig. 6 for
various fixed values of the &equency counter time. In the
plot ~A~2 has been normalized with respect to ~A ~, the
maximum value ~A~ attains at the critical drive. The
dotted curves are for w = 1, the dashed curves are for
7 = 10, and the solid curve is for w = 10 . For these
plots 7z- ——1. In addition, D~& ——DD ——DL, ——0 and
D~2 ——~3/2 x 10, that is, all noise sources except
the amplifier output port noise source have been set to
zero. The straight lines scaling as ]A~ are those for
the linear resonator at resonance, that is, p = 0 and
u = 0. The curves exhibiting minima are for a nonlinear
resonator, again p = 1 and cu = v 3. The parameters
were chosen so that when ~A~ = 2/~3 the nonlinear res-
onator is operated at the critical point. The minima in
these curves occur at the critical point. Improvement in
&equency stability is realized at those operating points
for which these curves fall below their respective linear
resonator curves. Since the width of the trough gets nar-



THEORY OF AMPLIFIER-NOISE EVASION IN AN. . . 4223

10 2
hanced using a nonlinear resonator. This condition re-
quires that

10
&rms~rms + 6ItB+L (8.25)

O
10

10 IX. MEASURING THE PHASE

10

0.1

I i I I I I I

1
IAI'/IA I'

10

rower as w increases, one sees that the precision with
which IXI must be maintained at the critical value be-
comes more demanding if the greatest noise reduction is
to be achieved.

Another meaningful comparison between the nonlinear
and linear systems can be made by comparing the critical
point stability, Eq. (8.17), with the best phase stability
that could be obtained for the linear oscillator with a real
amplifier. Since DNz is proportional to 1/B, and DNi
is proportional to B there is an optimum magnetic field.
The field that minimizes phase difFusion in Eq. (8.1) is
given by

2M'Urms

+T&rms

Upon substituting this into Eq. (8.1) one obtains

(8.21)

FIG. 6. Frequency stability of the oscillator plotted
against the energy stored in the resonator for several values of
the frequency counter time interval v . The straight lines show
results for a linear resonator. The curves exhibiting minima
are for the corresponding nonlinear resonator. See the text
for the parameter values used.

Typically, the resonator's phase is not monitored di-
rectly, but instead, is determined using the amplified
transducer output, which is generally contaminated with
broadband amplifier noise. One method for dealing with
this contamination is to insert an appropriate filter be-
tween the amplifier's output and the frequency counter.

The voltage V~ delivered to the filter can be written

O'0 = 4'+ 4'A + 4'FN (9.2)

where P is the resonator's phase, PA is a Huctuating phase
due to the amplifier's output noise, and PFN is a Huctu-
ating phase due to the added noise. The expression for
PA is given in Eq. (4.21). The expression for PNF is given
by

1 'TD
O'FN —~~ B NF

The noise V~~ is taken to be statistically independent
of all other noise sources and, like Eq. (7.10), is taken to
satisfy

where V„t is the amplifier's output signal and V~~ is
noise that might be added in the process of delivering
this signal to the measuring apparatus. This apparatus
is taken here to consist of a noiseless filter followed by a
noiseless frequency counter. That is, it is assumed that
V~ is so large that the noise added by the filter and by
the frequency counter can be neglected.

The Huctuating part Po of the phase of the voltage
delivered to the frequency measuring apparatus is

(9.4)

'gL,
7 (8.22)

This can be further optimized by making v~ very large.
In this case the total damping is determined only by res-
onator loss and one can set wl, = 7z . Equation. (8.22)
can now be written

For simplicity, the transformation performed by the
filter on the phase Pc) is taken to be

PF(t) =

([~(t+ ) ~(t)] ) = (8.23)

Comparing this with Eq. (8.16) leads one to define an
improvement factor

where v~ is the filter time constant. This low-pass filter
of the phase is causal and has unit response at zero fre-
quency. Substituting the Fourier transform of Pc)(t) into
this equation leads to

Ur ms&rms +
8kBTg 4

(8.24) 1 e'~z(e '~ —1)P (()PF(t) = d(
vF v 2zr ~ —z(+ 1/wF

This factor is the ratio of the root-mean-square phase dif-
fusion for an optimized linear system to the root-mean-
square long-term phase difFusion for the optimized non-
linear system. When E ) 1 long-term stability is en-

(9.6)

From this, one obtains the following expression for the
difFusion of the filtered phase:
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([y~(t+ ~) —(t~(t)] ) = d( d('e '"+" .
'

. , ((t'o(()&o(&')) . (9.7)

In order to keep track of the origin of various terms
in the expressions for the phase diffusion, Eq. (9.2) is
temporarily written as and

(4 (~)4(~')) = &(0~(~+ ~') (9.12)

4o(t) = 4 + ~4~ + PAN . (9.8) (~)~ ((')) = ~(~)~(~+ ~') (9.13)

(&o(&)&o(&')) = (&(&)&(&'))

+ ~[(&(&)&~(&')) + (&~(&)&(&'))]

+ ~'(&~(&)&~(&'))

+ (4ZN(()PION((')) (9 9)

The constant K is merely a label that later will be set to
unity. We thus have

where

&(() =

and

2
vms

8BDA2

2
DVFN'(')=8m AG

(9.14)

(9.15)

The expression for (P(()P((')) has already been obtained
in Eqs. (7.15) and (7.16). From Eq. (4.21) and Eq. (7.7),
using Eq. (7.10), one obtains

Since 8((), C((), 17((), and 8(() are even functions of (,
Eq. (9.7) can be written in the form

(& (&)&(&')) + ((t (&)4((')) = ~(()~((+ ('),

where

~r)v„, (~ —pA )(~ —3pA )
4R~A ((( + 1/~ )

One also obtains

(9.10)

(9.11) (9.16)

Upon substituting Eqs. (7.16), (9.11),and (9.14) into this
equation the integrals can be performed to yield

((4~(~+~) —4w(~)l') = s,2~" '.I™M('
2~T'(ur —pA') ((u —3pA') + 7T (~ —pA')'(~ —3pA')'

X 7
~s(i —' '")—~T'(' —' '") )

7F 7T

2A ( rD 7L)

+7z, (~ —3pA') ' ~s(' —~ '")—~W' —' '")
)2 27T

F T

+ 2 vms (1 r/vs
) + F—N (1 7 /rs )—

87FRD32 87FRDA2G2
(9.17)

Since the last two terms of this equation are inversely proportional to 7F, these terms will dominate when 7F is
small and 7 is not too large. Thus, to minimize the frequency counter time 7 necessary to see the long-term stability
enhancement of the oscillator one needs to make 7F large, i.e. , the filter must be narrow band.

When 7 )) 7T )) 7F one obtains

([&+( +~) &+( )] ) =D»[1+~T(~ —&A )(~ —3&A )1 &+ (D»+Dr) + Dl.)[1+&T'(~ —37A')']&
2 27T 7T+ D~2 —+DF—, (9.18)
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where the diffusion constant D~ is de6ned by

2wDvI' ~
8~T2BDA2G2

.

In the same limit Eq. (7.19) becomes

([&( + ) —&()]') = ~2[ + z( —~ ')
x (w —3pA )] z
+ (Der i + Da + DI.)
x [1+~T((u —3pA ) ]~ .

(9.19)

(9.20)

Comparing Eq. (9.18) with Eq. (9.19) one sees that for
w )) wT )) 7~ the behavior of the phase diffusion reported
by the &equency counter is the same as that of the res-
onator itself, apart from the constant terms D~27T/7y
and Dp TT/7y'. The effect of the broadband noise is thus
to add a constant to the phase diffusion reported by the
frequency counter that is proportional to the filter band-
width. Hence, for short times 7, the variance in the phase
is independent of &equency counter time w but at suK-
ciently long times it grows linearly with 7.. From the rela-
tion between phase diffusion and frequency uncertainty,
Fq. (8.18), it thus follows that the bf reported by the &e-

quency counter will decrease as ~ at short times and
then cross over to a falloff proportional to w

This behavior is clearly shown in the plots of bf as a

T=A7~ (9.21)

with o. & 1. From the Nyquist criterion, optimal filtering
is achieved when o. 1. Now, when v )) vT, one obtains
&om Eq. (9.18)

function of w in Fig. 7. The curves are generated from
Eq. (9.17). The parameters are the same as those for
the corresponding curves of Fig. 5. In addition, D~ ——0
and v~ ——0.01. The dotted curve is again the linear
case without amplifier output port noise and sets the
fundamental noise Boor. This curve scales as w / . The
dashed curve is for the linear oscillator with amplifier
noise. At short times this curve scales as 7. due to the
broadband amplifier output port noise; at long times the
curve scales as ~ / due to the intrinsic phase diffusion
of the oscillator. This long time behavior matches that
of Fig. 5. The solid curve shows results for the resonator
operated at the critical point. Although for short times
this curve now scales as w, it eventually develops a
7 ~2 time dependence and comes within a factor of 2 of
the intrinsic noise Boor set by the dotted curve.

As the time interval v for &equency counting is in-
creased, more pre61tering can be tolerated. Hence, it is
useful to consider the case where v~ is taken to be pro-
portional to v, that is

DW2 ~2([&~('+ r) —&~(t)l') = [~ —1+ e 1[1+~T'(~ —~&')(~ —3~&')]'~+ AD%2(1 —e )—
7

(Dxx + DD + DI.)+ [~ —1+ e ][1+7.~(~ —3p&')']7.

7-2 7-2+ nDN2(1 —e )[1 —2~7, (~ —pA )(~ —3pA )]—+ nD~(1 —e ) —.
7 7

(9.22)

It is thus seen that with optimal filtering the variance in
the phase difference decreases as w for small v. When
w becomes sufBciently large the variance in the phase dif-
ference again grows as 7.. Thus the frequency uncertainty

10

10-4—

10
I ~

O

10 '-

10 10

10 '-

10

10
10

~ I ~ I I s s I s I I ~ I I a a I a ~ I s s I ~ ~

10 10 10 10 10
~/~r

10—
—fo-

~ I I ~ ~ I I 0 I ~ ~ I I ~ I ~ ~ I ~ I I ~ I I I ~ I I ~

10 10 10 10 10 10
~/~T

FIG. 7. Frequency stability of the oscillator. .plotted as a
function of the frequency counter time interval. This figure
is similar to Fig. 5 except here the counter receives the am-
plifier's output after passing through a filter with fixed band-
width. At short times the solid and the dashed curves scale
as v due to the broadband noise emitted from the output
of the amplifier. See the text for the parameter values used.

FIG. 8. Frequency stability of the oscillator plotted as a
function of the frequency counter time interval. This figure
is similar to Figs. 5 and 7 except here the counter receives
the amplifier's output after passing through an optimized fil-
ter. That is, the filter bandwidth is taken to be equal to the
reciprocal of the frequency counter time interval 7. Now at
short times the dashed and solid curves scale as v and
approach the intrinsic phase stability of the oscillator more
rapidly than in Fig. 7. Parameters have been chosen so that
this figure can be directly compared with Fig. 5 and Fig. 7.
See the text for the parameter values used.
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bf scales as w / for small w and as w / for large 7.
With optimal filtering one can reach much more quickly
the di8'usive regime determined by the oscillator noise
sources.

This behavior is displayed in the plots of bf as a func-
tion of v in Fig. 8. These curves are plots of Eq. (9.17)
with D~ ——0 and. &~ ——w. This corresponds closely to
the optimized filter. Again the parameters for each of
the curves are the same as in Figs. 5 and 7. Note the
smaller values for 7z bf at large w in Fig. 8, compared to
Fig. 7, which reHect the more stringent filtering.

X. A SPECIFIC RESONATOR:
THE V'IBB.ATINC BEAM

The precise meaning of each of the quantities appear-
ing in Eqs. (2.1)—(2.7) is not always obvious for a partic-
ular resonator, especially if the resonator is a distributed
object. In this section the correspondence is made be-
tween these general quantities and the specific physical
quantities characterizing a vibrating beam.

The beam of uniform cross section is assumed to lie

along the x axis. Vibration of the beam in the direction
of the y axis is governed by the wave equation

where

Dy (x) = Ny [ cosh(gy) cos(kgx)
—cos(g, ) cosh(k, x)] . (io.s)

(io.9)

and the eigenfrequency uz is given by

/ZI& '
k, .

mJ
(10.10)

The eigenvalue g~ is the first nonzero root of the equation

tang = —tanhg

and has the approximate value

(io.is)

gg
——2.365 0204 . (io.i2)

The quantities cq and Pq are integration constants.
Including tension and damping, the wave equation for

the resonator driven by a I orentz force is

%'e will postpone until later the choice of normalization
constant Nq. The constant kq is given by

Bt2 Ox4
(io.i) m +o.—+EI —T = fr, +BIR.

where m denotes the mass per unit length along the beam
and

6'y
Ey ——EI (io.2)

is the elastic restoring force per unit length in the y di-
rection. Here E is the elastic modulus of the material.
The moment of inertia I is defined by

y dydz )

WH3
12

(10.4)

The beam length will be denoted by L and the x axis
origin will be located at the center of the beam. With
the ends of the beam rigidly clamped, the boundary con-
ditions are

where the integration is carried out over the cross-
sectional area A of the beam with the center of mass
located at y = 0. In particular, for a rectangular beam
of width W (dimension along the z axis) and height H
(dimension along the y axis) one has

(10.13)

L/2
s+i&~yl

&~*)
(10.14)

For small displacements the square root can be expanded
and, to a good. approximation, one has

L/2 ~ 2

AI = —
~

dx.
2 L, /2 l9x )

The strain e along the beam is given by

(io.i5)

(10.1.6)

Here n is the coefFicient friction per unit length, T is the
tension along the beam, fr, the fluctuating force per unit
length associated with the damping, B is the magnetic
induction in the z direction, and I~ is the current Gowing
along the beam. We will refer to the current as the res-
onator current. The boundary conditions Eq. (10.5) and
(10.6) are again imposed, and the tension is taken to be
that which arises due to the length change of the beam as
the beam is deHected from its equilibrium position. The
change in length LL of the beam is given by

y=oatx=+I/2 (10.5)
The stress u along the beam is related to the strain
through

Oy =oatx=+I/2.
Bx

(io.6) 0~ = Ec~ (io.17)

yq (x, t) = cquq(x) cos(~qt + Pq), (io.7)

For simplicity we consider only the lowest vibration mode
of the beam which has the form

DL
T =Ao. =AE I (io.is)

Since the stress is the force per unit area, the tension
along the beam is given by
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Substituting Eq. (10.15) into this equation and substi-
tuting the result into Eq. (10.13) one obtains

m, , +o.—+EI~ 4
9y Og y
Ot2 Ot

WZ '/'
Oy ', 'ydz'

2L Lyz (Bz ) Ox

= fL, + IBIR . (10.19)

We also note that the voltage developed along the beam
due to its motion through the magnetic field is

L/2
VR ——8 —dx

L/2 Bt
(1o.2o)

We now assume that the damping, drive, and tension
are small so that the spatial shape of the lowest mode
of vibrations is still given by Eq. (10.8). To account for
changes in motion due to time varying driving forces we
generalize Eq. (10.7) to

y(z, t) = Y'(t)u, (x),
where

(10.21)

Y'(t) = ci(t) cos[(sit + P, (t)] . (1O.22)

Here ci(t) and Pi(t) are regarded as slowly varying func-
tions of time. Equation (10.20) can now be written as

dY
VR ——EB

dt

where

L/2
ui(z)dz .

—L/2

(1O.23)

(10.24)

Note that Eq. (10.23) is identical to Eq. (2.7). Multi-
plying both sides of Eq. (10.19) by ui(x) and integrating
with respect to x &om I/2 to I/2, —one obtains

d2Y dYM d, +P
d

+K Y+K Y'=EL+FBI
dt2 dt

(10.25)

Writing the resonator current IR as

IR = IDs+IA (10.31)

substituting this equation into Eq. (10.25), and using
Eqs. (2.3) and (2.4) one obtains Eq. (2.2). To check
if the energy contained in the resonator and the above
defined quantities are consistent with Eq. (3.6), consider
the kinetic energy of the resonator

(1O.32)

By substituting Eq. (10.21) into this equation and mak-
ing use of Eq. (10.26) one obtains

M f&Y& (1O.33)

L/2
ui(z)dz .

—L/2
(1O.34)

Alternatively, if one chooses to take the effective mass M
to be equal to the total mass of the beam mI then the
normalization constant is determined by the equation

L/2
L = u2i(z)dz .

—L/2
(1O.35)

The notation introduced here is, therefore, consistent
with that used in earlier sections. Equation (10.24) and
Eqs. (10.26)—(10.30) thus provide the relationship be-
tween the effective parameters M, pT, K] K3 and
and the physical parameters m, o. , E, I, A, and L char-
acterizing the beam resonator.

There is considerable freedom in choosing the nor-
malization constant Ki appearing in Eq. (10.8). If one
chooses to take, for example, the effective resonator
length 8 to be equal to the physical length I, then
Eq. (10.24) sets the normalization constant through the
equation

where

L/2
M = m ui(z)dz,

—L/2

L/2
u', (x)dz,

—L/2

L/2
A i ——EIk, u, (x)dz,

—L/2

(10.26)

(10.27)

(10.28)

This ambiguity in normalization, however, does not affect
the physical quantities of interest, as we demonstrate by
several examples.

Here we calculate the maximum displacement of the
beam at the resonance peak for a given drive current.
From Eqs. (3.1) and (3.20) one obtains the following ex-
pression for the amplitude ring-down time in terms of
the oscillator's quality factor Q and resonant frequency
hay = Op.

(10.36)

Substituting Eq. (3.22) into Eq. (4.6) one obtains

AE ~ f Oui(z) )
2L L(2 ( Bz (10.29)

EIpB

2i/2M
(1O.37)

and

FL, =Efr, . (10.30)

Substituting these last two equations into the relation
between the drive f and the amplitude A at resonance,
Eq. (5.20), and making use of Eq. (3.2) one obtains
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EQBIp
+2Ki

(10.38)
Using Eq. (10.41) this equation becomes

Since the amplitude A was chosen to be the square root
of the total energy, Eq. (3.5), and since the total energy
is equal to the maximum value of the kinetic energy it is
easy to show &om Eq. (10.33) and Eq. (10.22) that

mazVz &iL+@max
ui(0)

(1O.49)

The quantity //ui (0) is independent of the normalization
constant Ki and can be evaluated using Eqs. (10.24),
(10.44), and (10.45). One obtains

&2) (1O.39) = 0.52316L,
ui (0)

(10.50)

EQBIp
1 (10.40)

Since the maximum excursion of the beam occurs at its
center x = 0, one has from Eqs. (10.21) and (10.22)

(1O.41)

Combining Eqs. (10.40) and (10.41) and using
Eqs. (10.9), (10.24), and (10.28) one obtains

QBIpL4
g~ax = KZ (10.42)

Eliminating A from Eqs. (10.38) and (10.39) leads to the
following expression for the constant c~ at resonance:

leading to the result

Vg = 3 287fi.LBy (10.51)

2MBD
g2~2 (10.52)

can now be written in terms of the physical parameters.
Making use of Eqs. (10.26) and (10.50) together with
Eqs. (10.44) and (10.46) one obtains

The oscillation &equency fi in the above equation is re-
lated to the angular &equency through ~i ——27r fi.

The expression for the damping time rLi, Eq. (3.22),

where the constant Kq is given by
mLBD

D ——2.897 (10.53)

ui(0) f ~~(, ui(x)dT = 2.626 x 10
2 g, f ii ui(x)dx

(10.43)

Note that rq is independent of the undetermined normal-
ization constant Nq. The numerical value for K, q follows
&om Eqs. (10.8), (10.9), (10.11), and Eq. (10.12), from
which one obtains » EQ)

(10.54)

Finally, we calculate the critical drive current begin-
ning with the expression for the critical drive force,
Eq. (5.30), which, when combined with Eq. (10.36), can
be written

u, (0) = N, [cosh(gi) —cos(gi)] = 6.0824%i, (1O.44) This force is related to the drive current by Eq. (10.37),
and so we have for the critical current

Lj2
ui(x)dh = 2NgL

cosh(gi) sin(gi) 2s~' (M& ~ (
Ip —— (10.55)

and

= 3.1821+,L,

ui(x)dx = [cosli ('l7i) + cos (7(i)]
L/2 2

(1O.45)
To cast this expression into the desired form, an expres-

sion for p, defined by Eq. (3.19), in terms of the physical
quantities characterizing the beam resonator is now ob-
tained. The nonlinear spring constant K3 appearing in
Eq. (3.19) can be written

= 14.668K~ L .

Using Eq. (10.43), Eq. (10.42) can be written

(10.46)
K3 ——1.5264 x 10 N,4 4AE

1 L4 (10.56)

y = 2.636 x 10 s QBIpL4
(10.47)

This relation follows from Eq. (10.29) using the result

which gives the relation between Ip, the zero-to-peak
value of the drive current, and the peak displacement
y of the beam at resonance.

We now evaluate the zero-to-peak voltage V& that is
developed across the conductor when the peak displace-
ment of the resonator is y . From Eq. (10.22) and
Eq. (10.23) one obtains

V~ ——~gcgSB' .

—cos'(gi)] + 2 cosh'(gi)
x sin(q, ) cos(gi))

~i2= 174.72 (10.57)

Using Eq. (10.56) and Eqs. (10.26), (10.28), (10.45), and
(10.46), Eq (3.19) the. n becomes
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& = 4.751
~

i,pEIs )
Equation (10.55) can thus be written

(10.58)
however, be reduced by weakening the coupling of the
resonator with the amplifier and with the drive. When
these couplings are made negligible, the long-term stabil-
ity of the nonlinear oscillator at its critical point is

3/2

Io ——0.6851(p EAI ) i «r (10.59)

This is the expression for the zero-to-peak drive current
Io at the critical point in terms of the physical parameters
characterizing the resonator.

1 DL,

7r

i.e. , the Quctuations in the &equency now are due only
to noise associated with the resonator's intrinsic losses.

The corresponding result for the oscillator based on a
linear resonator is

XI. SUMMARY 1
bf = —Q(D~2+ DI, )/7.2' (11.2)

It is generally accepted that the optimum &equency
stability for a self-excited oscillator is always achieved. by
employing a linear resonator and by operating at reso-
nance, i.e. , with the phase at 90 . This paper demon-
strates, however, that this is not the case if the feedback
amplifier's output noise is significant. There is then an
advantage in using a resonator with a cubic nonlinearity
and operating at a special point defined by a unique drive
and a phase setting of 120 . At this critical point the
phase-versus-&equency curve is locally vertical, implying
that here the &equency is insensitive to small variations
in the phase of the drive. Since amplifier output noise
leads to jitter in the phase of the drive, one might, there-
fore, have anticipated our finding that the consequences
of this noise can be evaded by operating at the critical
point.

Noise &om the amplifier's input port and broadband
noise on the excitation signal drive the resonator directly.
Consequently, the oscillator's performance with respect
to these noise sources is not improved. by operating at
the critical point. The eKect of these noise sources can,

which now includes the term D~2 describing phase dif-
fusion due to amplifier output noise. When D~2 is small
compared to DI„Eqs. (11.1) and (11.2) diff'er by a factor
of 2, meaning that the nonlinear system is more respon-
sive to loss noise. Consequently, the benefits of using the
nonlinear system are realized only if D~2 is at least a
factor of 3 larger than DL, .

Equations (11.1) and (11.2) are two special cases of the
general expression, Eq. (9.17), for the frequency fluctu-
ations, which is the main result of this paper. This ex-
pression gives the frequency fluctations of a self-excited
oscillator operating at any point along a linear or nonlin-
ear resonance curve.

Although a simple nonlinear mechanical resonator was
treated in detail as a specific example, the general prin-
ciples are also applicable to many other types of oscilla-
tors. Among them would be electrical oscillators, where
the required nonlinearity might be provided by a var-
actor diode capacitor, and optical oscillators, where the
nonlinearity might be provided by a Kerr medium whose
index of re&action varies as the square of the intensity.

[1] V. B.Braginsky, Usp. Fiz. Nauk. 154—15B, 93 (1988) [Sov.
Phys. Usp. 31, 836 (1988)].

[2] D. S. Greywall, B. Yurke, P. A. Bush, A. N. Pargellis,
and R. L. Willett, Phys. Rev. Lett. 72, 2992 (1994) and
(unpublished).

[3] B. Yurke and A. N. Pargellis (unpublished).
[4] V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, Sci-

ence 209, 547 (1980),
[5] C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sand-

berg, and M. Zimmermann, Rev. Mod. Phys. 52, 341

(1980).
[6] C. M. Caves, in Squeezed and Nonclassical Light, edited

by P. Tombesi and E. R. Pike (Plenum, New Y'ork, 1989),
pp. 29—38.

[7] D. Rugar and P. Griitter, Phys. Rev. Lett. 6'7, 699 (1991).
[8] M. F. Bocko and W. W. Johnson, Phys. Rev. A 30, 2135

(1984).
[9] W. H. Press, B. P. Flannery, S. A. Teukolsky, and

W. T. Vetterling, Numerica/ Recipes in C (Cambridge
University Press, Cambridge, 1988), p. 157.


