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We study the propagation of a near-resonant strong laser light with a broad background con-
tinuum spectrum in a dense gaseous two-level medium. Due to the nonlinear saturation caused by
the driving of the coherent component of the field, spectral regions close to the Rabi sidebands with
significant gain exist close to the resonance. The subsequent evolution of the spectrum of the prop-
agating field displays interesting features, and in the stationary limit a broadening of the spectral
line always eventually happens in the end which contradicts the coherent narrowing phenomenon
for pulsed propagation. This may shed some new light on the mechanisms of cone emission.
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I. INTR, OI3UCTION

In many studies of light-matter interaction involving
propagation, semiclassical Maxwell-Bloch equations are
used quite successfully [1—6], even though, as a mean field
theory, they do not describe fully quantum Huctuations
[7—13]. When quantum noise is involved in the prob-
lem, it is usually difFicult to determine the validity for
the semiclassical approximation. In most cases, an initi-
ation process involving the generation of new frequency
components of light close to the Rabi sidebands exists
[7—13]. The generation process depends critically on the
properties of quantum noise.

Here we report a semiclassical study of the propagation
of a near-resonant strong laser light with a broad back-
ground continuum spectrum in a dense gaseous two-level
medium [11—13]. The aim of this study was originally to
try to understand the validity of a linearization approx-
imation used when studying the propagation of a clas-
sical saturating coherent monochromatic field together
with two weak symmetrically displaced sidebands of fre-
quencies close to the Rabi sidebands. This linearization
approximation is equivalent to assuming that the side-
bands are well represented by coherent fields [14—17]. A
broad background is used in this paper to simulate gener-
ation of the sidebands by amplified spontaneous emission
(ASE), whereas the usual model examines the propaga-
tion with weak coherent sidebands. The usual model is
frequently used in studying four wave mixing in a two-
level medium, squeezing, etc. [19—21], and lately also has
been used for the study of cone emission by many groups
[13,15—18]. We find that due to the nonlinear saturation
caused by the driving of the coherent component of the
Geld, spectral regions with significant gain exist close to
the resonance. The consequent evolution of the spectrum
of the propagating field displays interesting features and
in the stationary limit, a broadening of the spectral line

always eventually happens, which is in contradiction to
the coherent narrowing phenomena for pulsed propaga-
tion [1—4). It may shed some new light on the mechanisms
of cone emission.

The paper is organized as follows. In Sec. II we formu-
late and brieOy review the approximations leading to the
Langevin operator equations for the system. In Sec. III
we point out an additional decorrelation'that is involved
in obtaining the semiclassical Maxwell-Bloch equation.
In Sec. IV we discuss the results of our comparative nu-
merical studies of the linearization approximation. We
conclude in Sec. V.

II. FOR,MULATION

Our model system consists of a one-way propagating
laser Geld that is tuned near resonance with a dense
gaseous medium of two-level atoms. The Langevin op-
erator equations that describe the propagation take the
form
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Here 0+ (0 ) is the Rabi frequency of the positive (neg-
ative) frequency part of the propagating field. A;I, is the
center wave vector of the field. A'(r j is the number den-
sity of the active two-level atoms. p2q is the spontaneous
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emission rate, while p2i denote the collisional dephasing
rate. b„=uL, —u g is the laser detuning. cr„are col-
lective atomic operators. E~ denote the Langevin noise
terms. We treat all the atoms as fixed, thus neglecting
the Doppler distribution.

A detailed derivation will not be given here as it can be
found in many studies of similar problems [7—13]. How-
ever, a brief review of the commonly used approximations
in obtaining the above equations are given below to help
establish the problem.

Rotating xoave approximation (RWA) Th.e resonant
character of the interaction (in the dipole form) allows
us to make the RWA, which consists of transforming the
system to the interaction picture with respect to elec-
tronic excitation (u,g) or due to coherent driving of the
atoms by a laser (ul, ) and neglecting the rapidly oscil-
lating (counterrotating) terms in the transformed Hamil-
tonian. This approximation relies on the huge difference
between characteristic time scales of optical oscillations
( 10i4—10i5 Hz) and other typical scales of the systexn
(kHz —GHz), such as those related to collisional dephas-
ings (p2x), natural linewidth (p2x), or Rabi &equencies
due to the external driving field (0), etc.

Collective variable description. The Hamiltonian for
the model can be easily written for (jth) atoms with
the atomic distribution function b(r —r~il). However,
in a complicated system involving so many atoms, the
physics lies at the thermodynamic limit, which is macro-
scopic in nature. Effectively for the propagation prob-
lem, we would like to replace the paraxial field modes
and the atomic coordinates by spatially localized parax-
ial fields (see the slowly varying amplitude approxima-
tion discussed below) and by macroscopic atomic densi-
ties and polarizations. We coarse grain the space into
volume elements with dimensions [bz, b' y, 8z] and the di-
mensionless atomic Gelds are defined according to

jp [r;bx,by, bz j

In the continuum limit, they obey

(2)

[o+(r), o (r )] = . 2o, (r)b(x —r ).,

[a.,(r), o~(r )] = + o~(r)b(r r). —

One-may propagation approximation. The one-way
propagation approximation assumes that coherent coun-
terpropagating Gelds will not be established in a self-
consistent analysis. The atomic polarization as defined
above in Eq. (2), involving a sixnple summation over the
atoms inside a unit volume, is based on an independent-
atom approach. When the medium density is high (more
than one active atom per cubic wavelength), the differ-
ence between the applied and the local field can no longer
be ignored. In classical electrodynamics, we get the so-
called Lorentz-Lorenz relation relating the macroscopic
field to the internal microscopic Geld that is actually ex-
perienced by the individual atom. We restrict the density
to regimes where this correction is unimportant. The rea-

son for a one-way propagational formulation is to avoid
the complications due to feedback. However, if the self-
Geld corrections are included, they represent a special
kind of feedback [22]. The one-way propagational for-
mulation is a result of the phase-matching requirements
in the slowly varying envelope approximation. If spatial
modulations or variations on the scale of a wavelength
are present, refiected waves will be generated [23,24].

Slovenly varying envelope approximation (SVEA). The
slowly varying envelope approximation assumes that the
variation of the field amplitude along the propagation
direction is very slow over a wavelength; therefore the
second-order derivatives along the propagation direc-
tion can be neglected in comparison with the Grst-order
terms. Under the coarse graining approximation intro-
duced above, the dimension of the spatial cell (hV) ~

(bzby6z) x basically determines the resolution with which
the system can be studied and also the dimensions of the
Kronecker 8 functions involved in Eq. (3). This dimen-
sion has a lower limit. It has to be larger than the radius
of an atom if we are going to study macroscopic quan-
tities, i.e., ao, the Bohr radius. It also has an upper
limit that can be obtained from the following considera-
tion. The &equency widths in the Fourier space have to
be large enough that frequency components within the
Rabi sidebands can be correctly described. Therefore,
along the propagation direction,

(4)

This results in

which is consistent with the uncertainty principle and is
also the criterion for the validity of the SVEA.

Comoving frame description. Depending on the prepa-
ration of the medium and also its geometry, the time
variable t is not necessarily the most convenient natu-
ral choice for an independent variable. Our medium is
assumed to have the shape of a pencil with the pump
propagating along the axis. Under the approximation
that the dispersion of the pump can be neglected [or oth-
erwise included (see below)], we note that depending on
the location of the atom along the axis, the natural choice
of time is the retarded local time v = t —z/c rather than
t. It is with respect to the local time w that the dynamics
of the atoms located at different positions along the axis
will be the same. This is a crucial point. For each individ-
ual atom the above choice is as good as any other choice.
However, after we introduce the collective variable de-
scription Eq. (2), we have to deal with atomic operator
fieM variables. In order to specify these fieM variable
envelopes, we have to use a time that is the same for
all the atoms. The linear dispersion of the nonresonant
atom (background gas) will be neglected. By choosing
r = t —z/c [9,13,15] rather than 7 = t —z/v(u) we are
able to handle more than one spectral component and
the nonlinear dispersion of the medium is accounted for
via the polarization occurring on the right-hand side of
the field equation.
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III. DECORRELATION APPROXIMATION
AND THE MAXWELL-BLOCH EQUATION

Physical observables can be obtained from quantum
mechanical averages (expectation values) of the operators
in Eq. (1). A direct quantum average (()) of Eq. (1)
helps to make the transition to the semiclassical Maxwell-
Bloch equation. This requires the introduction of yet
another approximation that is usually overlooked. We
term it a decorrelation approximation, which replaces the
expectation values of the product of both Geld and atomic
operators by the product of their respective expectation
values according to

((~+(r r)~~(r r))) : ((~+( )))(( ( ))). (6)

o„(r,r) = ((o„(r,r))) + bo. „(r",r). -

The substitution given by Eq. (6) into Eq. (1) neglects
the three terms

This decorrelation approximation is not emphasized since
it is equivalent to replacing the operators by t" numbers
in the product and subsequently ignoring the quantum
noise. Making the following decomposition into c number
parts (()) and quantum deviations bO+ and bo„,we have

to ASE), which can be extremely broad, and the spec-
tral density at the frequency of the so-called new &e-
quency light components (close to the Rabi sidebands)
can be a great deal larger than the spectral density of
vacuum fluctuation (see estimates below). Therefore, at
least in the Sr cone emission studies [25], what usually
occurs experimentally is essentially an amplifier (from
ASE) rather than the more interesting generator (from
quantum noise). For simplicity, we make the subsitution
by neglecting the c number quantum expectation value
symbol (()) according to

((~+(

((~~(r r)))

in the semiclassical Maxwell-Bloch equations obtained
above. In the quasi-one-dimensional limit, they take the
form

t9 .3K—B(z, r) = i 2p2iJV(r)a—'+(z, r),
Oz
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All the above variables are now classical c numbers and

b~+(r r)((~~(r r)))

((~+(r &)))b~~(r r)
80 (r, r)bo„(r,r)

that are responsible for the quantum noise in the
I angevin operator equation Eq. (1). In this propagation
study, where gain exists over a wide frequency region, the
neglected quantum Ructuation terms as given in Eq. (8)
are extremely important in the initiation stage, where the
first term bB (r, r)((cr„(r,r))) contributes directly to the
gain of new frequency components, while the other two
terms are also additional source terms for the field. To
accommodate these new frequency component fields that
are generated, usually as an a priori guess, one assumes
that at the input face z = 0, in addition to the classical
input field ((0 (r, r))) —p some initial probe seeds exist
at these new frequencies even though quantum mechan-
ically ((hQ+(r, 7'))) p ——0. A consistent quantum me-
chanical treatment would require a master equation ap-
proach. The consequent analysis can be done in terms of
Fokker-Planck equations and stochastic difI'erential equa-
tions [11,12,17].

Despite all the approximations detailed above, semi-
classical Maxwell-Bloch equations remain a useful tool
for propagation problems: first, because the essential
deterministic part of the interactions are well approxi-
mated, and quantum noise shows up only as perturbing
terms scaled with the inverse number of atoms per dis-
cretized spatial cell. The initial noise can sometimes be
approximated by semiclassical seed values for the other-
wise fluctuating variables. Second, in many of the experi-
ments, the laser spectra have significant wings (often due

o (r, 7.) = [0+(r, r)]*.

As explained above, a decorrelation approximation has
been made that ignores the quantum ftuctuations. Clas-
sical noise will be simulated by the introduction of a clas-
sical stochastic Beld at the input face. Therefore Eqs.
(10) describe the semiclassical propagation dynamics of
classical Huctuating c numbers (stochastic variables).

One famous family of solutions of the time-dependent
coupled Maxwell-Bloch equation of the form Eq. (10)
is related to the so-called optical area theorems [1]. In
many of the experiments, pulsed lasers were used and
typical spectral widths are much larger than both colli-
sional and radiative widths. A time-dependent formula-
tion is required to evaluate the spectral components of
the light.

Our ultimate interest is in studying the stationary gen-
eration process for new frequencies of light, which are
quantum in nature. In this study, we concentrate on
the efIects of the linearization approximation, which as-
sumes that the generated sidebands are coherent. We use
the semiclassical Maxwell-Bloch equations to give us in-
sight into the validity of the linearization approximation
by performing numerical simulations with the full set of
equations as given in Eq. (10) and by performing numer-
ical simulations with probe fields that have widths larger
than p2~. We compare the results of the full solutions
with those obtained under the linearization approxima-
tion. In the t —+ oo limit, the set of equations for the
coherent amplitudes reduce to the steady state propaga-
tion of the coherent field part as given by Eq. (13) below.
In steady state, the solution for the intensity of the field
can be obtained analytically [26].
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IV. EFFECT OF LINEARIZATION
APPROXIMATION

Now we discuss the critical linearization approximation
that is often used in studying Eq. (10). We will discuss
the propagation of wideband ASK noise that is inherent
in the output from realistic pulsed laser. Using the same
decomposition as given in Eq. (7) (except now classical
averages are involved)

(12)

we arrive at the following sets of equations: for the co-
herent part

sical study, we assume that the initial input probe field
(the required seed) can be represented by a chaotic field
model to simulate the inherent ASE in the pump field in
the region of interest around the new frequency compo-
nent. Such a chaotic field approximates the output of a
multimode laser. It is assumed that [27]

bO(z = O, t) = e ' "[0 (t)e' ' '~~
]

with

~1~(t) = ~1» Ki~(t) + &r(t)]

where („(t)are real Wiener processes satisfying

(~ (t)) = o

(13)

and for the quantities giving the deviations from the co-
herent part

0—bO(z, ~)
Oz

0
her+(z, ~)07

8
ba, (z, ~)

07

.37'
i p2iAI (r")bo+(r, ~),
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+ p2, + ~bp bo.+
—i(Q)bcr, —ibO(o, ) —i bubo„

, . 1—p2ibcr, + i —[(A)bo —(0*)bo.+]2
. 1+i —[bQ(cr ) —bB'(o+)]
2

. 1+i —[bubo —bA'ho+],
2

(14)

where () denotes the classical stochastic average over
Huctuations responsible for the broadband width of the
propagating field. In the time-dependent study, the solu-
tion of the above equations has certain advantages over
the direct simulation of the Maxwell-Bloch equations
Eq. (10), especially when the input fields have a small
Quctuating component. With the above decomposition,
the deterministic large coherent amplitude can be solved
to a much higher accuracy. I inearization corresponds to
neglecting the underlined terms, which are quadratic in
the variations. The physics of the linearization is based
on the belief that any weak probe will not generate new
sidebands of significant magnitudes.

In a linearized study, one often assumes a monochro-
matic tiine variation for the (b0+(z, w)) in order to solve
for the polarizations at the sidebands in terms of the
fields and consequently obtain closed coupled equations
for field components only. In general the (b 0+ (z, w) ) fluc-
tuates on a time scale at least of order 1/p2i, so this
monochromatic variation can only be considered valid in
some "average over a bandwidth" sense. In this semiclas-

=iA
(& —(da) + ps

with a full width at half maximum given by pb The .('s
can be obtained &om integrating the Ito SDE [28]

d( = pg(dt + ~—pgdW. (19)

In the simulations we present, the initial phase y(0)
was assumed to be a uniform random variable 6 [0, 2~).
Such a procedure enforces the fact that the probe field Ob
and the coherent pump field are derived &om completely
uncorrelated sources.

The parameters used correspond to the Sr system with
p2i ——(2m) 32.5 MHz and a resonant broadening coeffi-
cient 14M MHz, where the density JV is in units of
10 cm . The pump laser of power 80 kW correspond-
ing to the peak power of our laser pulse of a width 1 ns
gives a Rabi frequency of 64 GHz. In order to simulate
the spectral width between Rabi sidebands, an extremely
small time step is required in accordance with the Heisen-
berg uncertainty principle. In this model study, we de-
cided to use a Rabi kequency 0 = 4 GHz at the input
face z = 0, keeping b„=2 GHz, thus approximately
keeping the ratio between these quantities the same as in
the self-trapped filaments of the experimental situation.
The colored sideband probe field is centered at the exact
lower Rabi sideband position of the atom due to the in-
put plane pump field alone. The density Af is taken to be
2.5 x 10 cm unless otherwise specified, much smaller
than in the actual experiments, as Doppler averaging is
not included (the Doppler width is 3 GHz). After
first propagating the system into the stationary regime,
the simulation for the spectrum involves taking succes-
sive points (2048) in the tiine series. The waiting time
between sampling windows is 5 times the lifetime of the
excited state. Total propagation distance is 1 cm.

The stationary spectrum is defined as

The probe field spectrum at the input face of the cell is
therefore

P~(z = O, ~) = f (Bq( O, t)Q t( O, t+t'))e 'dt'*
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2
TQ

It~ —et) = (tt(~)B*(e)) = e e*B"(t)dt

)2Tp

= ~(A}~ sine (~Tp) + 2Re
~

(O)sine(~Tp)
2TO

TQ

Tp

e* ' (80*(t) )dt ~ ~
) 2Tp Tp

2

e '-'80(t)dt (2o)

where Re(x) represents the real part of x and the spectral
function due to limited time window is

an effective solid angle can be calculated according to

dO = srR jZ = 7r x 10 (25)

sine x
S1Ii X

(21)

where 2To is the sampling time and the spectral reso-
lution 1/2Tp is of the order of one spontaneous decay
rate. In the limit Tp —+ oo, or in the limit of discretized
Fourier transformation, the above spectral function goes
to b(~ —uL, ). We can see that due to new frequency gen-
eration in the subsequent propagation (semiclassical), the
variations bO(t) could have a nonzero average and would
give a "coherent" component (hO(t)) at that frequency
even with a zero input.

In this semiclassical study, we have to give an ini-
tial probe amplitude as well. The spontaneous emission
reservoir is considered to be at zero temperature, there-
fore the normal ordered intensity is zero. However„ the
study of quantum initiation in super8uorescence has in-
dicated that in the linear regime, the antinormal ordered
intensity for the paraxial modes can be considered as a
proper probe ffeld source [7,8,10]. It is interesting to
make estimates here about the strength of the paraxial
vacuum ffuctuations (variance). The paraxial vacuum
field expressed in terms of the standard mode expansion
is [7-1O]

0+,(r, t) = ~i ) gee+'"" "aq,
Ag paraxial

(22)

with the creation (annihilation) operator a& (a& ) for the
mode A. The Rabi frequency for one mode is

2vr Ru),

v
The antinormal ordered paraxial vacuum intensity is

I...(r, t) = (A...(r, t)0+.,(r, t))

Ag paraxial
(24)

which would be divergent; if integration over A were not
restricted to paraxial modes only.

In a quasi-one-dimensional model for the propagation,
only those modes with kp pointing in the propagation
direction can be considered to contribute to the initiation
seed. The solid angle dO associated with these modes
depends on the Fresnel number of the system. For an
active volume V = mA Z, with B = 1 mm and Z = 1 cm
for the Sr transition dipole moment d (p2i 32.5 MHz),
we have gp 35 kHz && p21. With the same parameters,

If we consider only modes of the vacuum within this solid
angle of vr x 10 and assume a bandwidth of the order
of 100 GHz (chosen to represent the bandwidth of the
observed cone emission), the intensity given by Eq. (24)
corresponds to a Rabi &equency 2.5 MHz, which is
also much less than the spontaneous emission rate p21.
The equivalent total power within this huge bandwidth is
only of order of 30 pWcm . In practice, the important
bandwidth of the vacuum field may be only a few p21,
therefore, the effective Rabi frequency for the vacuum
field can be of the order of 10 p21 or less. In a realistic
pulsed laser, if we require that a coherent output field cor-
responds to a Rabi frequency of 2 GHz (corresponding
to a power of 80 W cm for the Sr 5 S—6 P transi-
tion), an efFective Rabi frequency of 2.5 MHz from ASE
within a 100 GHz bandwidth would be equivalent to a re-
quirement of the total ASE power to be less than 10 of
the total laser power (and if we had taken a bandwidth
of p21 this power would be 10 of the total laser
power). This stringent requirement is therefore difficult
to meet. We conclude that in most experiments with
pulsed lasers, the initial ASE input at the new frequen-
cies is going to be more important than the initiation due
to vacuum Huctuations. To study the initiation of new
frequency components from the vacuum, cw laser driven
systems would be more appropriate. With well stabilized
lasers, ASE can be apparently suppressed in the far wing
to the shot noise (vacuum ffuctuation) levels discussed
above [29). We note, however, that the calculations with
ASE input are only appropriate for a semiclassical study.

In this model study, we have used 0,+o ——0.4 MHz,
which is much smaller than the ASE present in the pulse.
Therefore, the linear regime can be studied carefully.

We confirmed that the parametric gain due to four-
wave mixing is the mechanism responsible for the growth
of both sidebands [13—16]. However, due to the attenua-
tion of the pump field, the gain region gradually moves
in toward the coherent laser frequency as the Rabi fre-
quency decreases. During the early stages of the prop-
agation, the absorption of the lower frequency sideband
is significant, which results in the splitting of each side-
band into a doublet [15,16]. We have chosen the above
parameters so that at the end of the propagation, the
total power spectrum is still dominated by the coherent
pump. In all simulations, we find no sign of spectral nar-
rowing, as implied by conventional wisdom based on a
gain argument. When the initial probe has a bandwidth
much larger than the spontaneous emission rate, one of
the absorption induced doublet components will gradu-
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ally fade away due to absorption in further propagation.
is may look like a narrowing; however, on further prop-

agation, it eventually gets broader again. In the exact
treatment without linearization, we found the mechanism
for spectral broadening is initially through a sequence of
generation of higher-order multiple sidebands. Though
these higher-order sidebands are weak, their perturba-
tion on the atoms is not. They drive the atoms in such a
way that the emission can be changed &om dominantly
t e first sideband emission to a broad spectral emission

igher-order sidebands merge into a broad background.
Due to the same reason, the pump field also attains a

road feature with the width much larger than the spon-
taneous emission rate. Upon further propagation, all the
structure disappears and all the power in the coherent

then left with a broadband output field. This picture is
ence s u ies with moreconsistent with resonance Buorescenc t d' 'th

than one coherent component in the pump field [30,31].
The simulations indicate that the failure of the lineariza-
tion is due to higher-order sideband ~, ls ~or, equivalently,
the saturation of the first-order sideband). This is also
consistent with analytical model studies of sideband sat-
uration with monochromatic sidebands [32]. We have
also conducted an independent set of calculations with
the same parameters, with a linearization achieved by
neglecting quadratic underlined terms in Eq. (14). We
found that, as expected, the two sidebands were sim-
ply amplified by the parametric gain profile calculated
to all orders in the pump field (and does not depend on
the sideband field) [14—16]. This is in violation of to-
tal energy conservation. The two sideband simply kept
growing with propagation at a steady rate d te an even u-
a y ecame unphysical. However even in th'is case, we

i no n any evidence for the spectral narrowin ting o
idth below the spontaneous emission rate within the

propagation distance. Figure 1 is a surface plot of the
dynamic evolution of the spectral density for the chaotic

with pg
——3p2i. In order to show the detailsprobe field with

of the evolution, a logarithmic scale is used. Figure 2 cor-
responds to the result of the linearized calculation with

in the same range as that of Fig. 1; the Batter top near
t e end of propagation is a numerical cutoK efI'ect as we

ept the plotting range to be the same as in Fig. l. As
expected, after an initial region of b t'a sorp ive propaga-
tion, the propagated spectral density merely reBects the
parametric gain profile.

For claritarity, successive cross sections from Fig. 1 are
p otted in Fig. 3. Close to the input face, the spectrum
is very close to the linearized calculations and th ' 't ln eini ia
sp i ing o the sidebands is due to absorption at the line
centers corresponding to transitions in the dressed atom.
No spectral broadening is evidenced here. We can already
see the secondary sidebands startin t hg o appear in the
last plot. The next two plots of Figs. 4 and 5 show in

~ ~detail multiple sideband generation accompanied by the

In these simulations, the spectral resolution is
0.9p2~. Therefore, the sideband widths can

0
t3

o&

FIG. 1.. Propagational evolution of the spectral density for
a chaotic probe field input with a bandwidth pg = & (p2i

only be determined to within a resolution of the
order of p2i. In practice, due to the limited
sampling of only 100 averages, the spectral pro-

es a so show small scale fluctuations consistent
wit the expectations from the central limit theo-
rem. In almost all stages of the propagation, the line
s ape is ar more complicated than a simple Gauss-

(/)
~ ~

0
C3

B —5
3

.o&D- ~~&

I" GG. 2. Same as Pig. 1, except for the linearized case
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FIG. 5. Four cross sections from F 1ig. in t e nonlinear
region at successive propagation distance z, as labeled in the

gure. Overall spectral broadenin d ding an isappearance of the
distinct sideband structures are shown.
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FIG. 6. Solid line denotes the full nonlinear calculations
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ian or Lorentzian one. We decided to take the width of
the sideband. to be the standard half-width at half max-
imum irrespective of what kind of line shape it might
possess. In the case when a distinct doublet is present,
the width of the more intense component is used. If the
doublet structure is overlapping significantly, the width
of the whole structure is taken. We conclude that an
average absolute accuracy of the order of p~i is achieved
for the width of a relatively narrow sideband, while an
accuracy better than 10% is achieved for wide sidebands.
In the following two plots, the first lower sideband. width
is plotted. against propagation distance. In the first plot,
Fig. 6, the clear trend of spectral broadening is obvi-
ous (note that pg = 0 corresponds to a coherent input
whose phase is uncorrelated with the pump). The initial
oscillations are due to the doublet formation within the
sideband. In the second plot, Fig. 7, an overall spec-
tral narrowing is shown in the early stage of propaga-
tion. Physically, this is due to absorption. The Bnal
width approaches a value much larger than the sponta-
neous emission rate pqi. Upon further propagation, all
the sidebands merge into one broad. spectral feature cen-
tered at the laser &equency, the width of which is of the
order of the Rabi frequency corresponding to the total
power density in the field. We have also performed these
simulations for a phase diffusion model [27,33] probe field
with the same parameters as given above. Results do not
show significant differences from those presented here for
a chaotic probe field. Detailed comparisons will be given
elsewhere.

We studied the effects of a linearization approx-
imations often used in the propagational studies
[14—16,19,20]. We found that in the statioiiary limit,
wideband background noise due to either ASH or stochas-
tic input can be amplified to appreciable levels through
gain from the nonlinear coherent driving. Upon propa-
gation into the medium, in the high optical density limit,
the width of the background input does not experience
any coherent narrowing as one might have guessed. . If
anything, the width becomes broader and the nonlinear-
ity enhanced conversion &om the monochromatic coher-
ent component to other new frequency component re-
sults in a spectrally less pure field because ultimately
this redistribution is caused through dissipative mecha-
nisms associated with spontaneous emission as well as
other dephasing mechanisms.

Within this semiclassical study, the conditions for the
propagating Beld to be stationary can be understood by
examining the coarse graining and. the slowly varying
envelope approximations and is further ensured opera-
tionally by monitoring the temporal evolution of the field
during the spatial propagation. Equations (13) and (14)
constitute a set of nonlinear equations for the propagat-
ing fields. At any spatial location, coarse grained atoms
are driven by the forward propagating field (which is ex-
ternal to those atoms, but is already modified due to
propagation up to this particular location by atoms up
stream). The backward propagating (refiected) field is
neglected under the slowly varying envelope approxima-
tion. Therefore the propagation nonlinearity acts only
in one direction (along the propagation direction) with-
out feedback. We expect that the neglect of backward
propagating components will be valid at significantly low
density of atomic vapor and with no significant spatial
variations (which would give rise to refiected waves). Mi-
croscopically, the stationarity is a very complicated ques-
tion, as the propagating field (which is the coarse grained
field) results from the spatial averages from fields radi-
ated by all the atoms. In practice, we find that for the
parameters we are using, stationarity is achieved after the
transients die away (on a time scale given by the inverse
of the dissipative rate pqi). After a certain number of
sampling averages, the computed spectrum and the vari-
ance converge close to a final value and do not change
significantly with a further increase of the ensemble size.
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