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Photon number density operator iE ~ A
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A photon number density operator proportional to the dot product of the electric field and the
vector potential is introduced as an alternative to the Mandel operator. In the Lorentz gauge it is
the time component of the four-vector obtained by contracting the electromagnetic field tensor with
the vector potential. Its other components can be interpreted as a current-density vector, and these
number and current-density operators satisfy a continuity equation. The photon density operators
introduced here are all products of operators that satisfy Maxwell's equations and whose Lorentz
and gauge transformation properties are well known.

PACS number(s): 42.50.Ar, 12.20.—m, 03.65.Bz

I. INTRODUCTION

There are many conceptual problems in quantum op-
tics that require a description in terms of the motion of
photons in physical space. If the electromagnetic radia-
tion is polychromatic, then it is important to distinguish
between photon density and its associated energy density.
The counting rate of an ideal photon detector is usu-
ally taken to be proportional to the expectation value of
the scalar product of the negative and positive &equency
parts of the electric field and does not, strictly speaking,
count photons. If photon numbers are required, say for
a comparison with theoretical photon number statistics,
then the fact that the number of counts is not exactly
proportional to number density should be taken into ac-
count. Increasingly experiments are performed in which
the distinction between number and energy density is
significant. Short pulses must be described as a super-
position of photon momenta. Nonlinear media result in
frequency doubling and other sum and difFerence &equen-
cies and also require a theoretical description appropriate
to polychromatic light. Thus the practical need for a de-
scription of photon number dynamics has increased.

The photon density operator is usually constructed by
first defining a photon detection operator, a(x, t), with
Fourier coeKcients independent of k [1]. Thus all wave
vectors are included with equal probability and the re-
sulting operator acts like a Dirac b function in w space.
In this way it can describe a photon that is localized in a
small region. The number density operator for detection
of a photon at position x and time t is at(x, t) . a(x, t)
and the probability of finding a photon in the volume V
is 1& d xa (x, t) .a(x, t). If this formalism is extended to
include a photon current-density operator, then a con-
tinuity equation can be derived [2]. This description of
photon dynamics can also be written in a Schrodinger-
like form [3].

The expectation value of the photon density operator,
(n at(x, t) a(x, t) n), counts photons in the quantum
mechanical state

~
n). However, calculations using these

operators are not entirely convenient. The source term in
Maxwell's equations difFers from the usual current den-

sity operator by a factor vk. It is thus necessary to
convolute current density with ~k to obtain a differen-
tial equation in x space for the detection operator in the
presence of matter. The photon number and current den-
sity can be represented as elements of a 4 x 4 antisym-
metric matrix, but this entity is not a tensor. The action
of Lorentz and gauge transformations on these photon
operators is difBcult to establish. A further difBculty lies
in the fact that the components of the current-density
operator defined in this way are part of a 4 x 4 matrix
rather than a 4 x 1 vector. Charge and current densities
of electrons and other charged particles form components
of four-vectors. We will show that number and number-
current density of photons should also form components
of a four-vector. This allows the usual electromagnetic
stress tensor to be constructed &om the outer product of
the photon density four-vector and an energy-momentum
operator.

Particle density in 2; space can also be calculated from
the wave function, that is, &om scalar products between
the particle. 's state vector and the eigenvectors of its posi-
tion operator. However, exactly localized position eigen-
vectors of elementary systems with nonzero spin exist
only if the particles have nonzero mass [4]. Wightman
[5] introduced the projection operators of Mackey [6] that
form a system of imprimitivity, but the zero mass photon
was still excluded. Jauch and Piron [7] generalized these
concepts to particles with zero mass by defining weak lo-
calizability and projection operators that are compatible
in space domains which do not overlap. Zero mass non-
zero spin particles that exist in a superposition of states
with difFerent helicities can be weakly localized to arbi-
trarily small volumes [8]. Pike and Sarkar [9] present a
readable examination of this work and apply it to local-
ized wave packets.

In the present paper an alternative photon density op-
~ (+)erator, n = ieoE( ).A /5+h. c., is proposed Its de-.

sirable properties, which will be described in detail in
Sec. II, are brieHy as follows. (1) In k space it is triv-
ial to see that 1/v k in A and ~k in E cancel, leaving
a k-independent product that can be scaled to give the
number of photons with wave vector k. Thus, in calcu-
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lations, it behaves very much like the Mandel operator.
(2) Our photon density is written in terms of operators
whose equations of motion and properties under Lorentz
and gauge transformations are well known. (3) The ex-
pressions for the conserved linear and angular momen-
tum resulting from symmetries of the Lagrangian are of
the form of an expectation value where n plays the role
of a probability density. (4) In the Lorentz gauge, nc
is the zeroth component of a four-vector, V = (nc, v),
that is proportional to the inner product of the second-
rank electromagnetic Geld tensor with the vector poten-
tial four-vector. Its other three components are those
of the three-vector photon number-current-density oper-
ator, v. The continuity equation in matter free space
reHects the fact that the four-divergence of V is a scalar.

The plan of the paper is as follows. In Sec. II the prop-
erties of V described above will be investigated. Then, in
Sec. III, its relationship to the Mandel-Cook detection,
number, and current operators will be discussed.

quantization the Geld variables can be replaced by oper-
ators, since their equations of motion are of the classical
form in the Heisenberg picture.

Each symmetry of the Lagrangian generates a conser-
vation law. If 8 has no explicit coordinate dependence
then 8„7""= 0 where [10]

The zeroth column of this second-rank tensor, 7 ",con-
tains the energy density and the three components of
linear momentum density. In addition, the Lagrangian
may be invariant under phase transformations. This lat-
ter symmetry leads to

where the charge-current four-vector is

II. PHOTON OPERATORS

In this section the conserved quantities that result
from symmetries of a general Lagrangian will first be
described. Since the photon number densities discussed
here are meant for applications in atomic and. condensed
matter physics, the number, energy and momentum den-
sities will be written down for a nonrelativistic electron.
The Dirac equation could be used in its place. By anal-
ogy, expressions for these physical variables will then
be obtained for photons. The resulting photon current-
density four-vector will be separated into positive and
negative frequency parts, normally ordered, and then
converted to a Hermitian operator, V . It will be shown
that these photon number and current-density operators
satisfy a continuity equation in matter free space. The
Lorentz and gauge transformation properties of V will
then be examined. For consistency with the quantum
field theory literature, covariant notation and natural
units in which h = c = eo ——1 will be used. The pho-
ton density operators will also be written in SI (Systeme
International) units at the end.

Consider a Lagrangian density that depends on the
field variables and their derivates with respect to the
space and time coordinates. The contravariant space-
time four-vector is 2:~ = (t, w) and its covariant counter-
part is x„=g„„x where the metric tensor is

1 0 0 0
0 —1 0 0
0 0 —1 0
0 0 0 —1

The invariance of 8 under P„~P„—ieA„,Q, defines the
matrix A„,. It is diagonal if the symmetry operations are
simple phase changes of the fields [10] and these diagonal
elements are of opposite sign for a field and its complex
conjugate.

Conservation laws follow from integration over the spa-
tial coordinates of equations of the form (3), that is,
BV /cd + V v = 0. If f d zV . v reduces to a zero
surface integral this leaves

dt

Thus the net charge f d zV, the total energy f d x7
and the total momentum components, f d z7 ', are con-
served.

A single nonrelativistic electron can be described by
the Lagrangian density

8 = ig*g —Vg' VQ/2m —Ug*g.

The equation of motion is the Schrodinger equation and
'P is the energy-momentum density [ll]. Because of
the g" 8 term, the components of linear momentum are
much easier to deal with than energy, and only linear
momentum will be discussed here. From (2), the compo-
nents of the momentum density three-vector are

The electron number and current densities obtained by
substitution in (4),

The gradient four-vector is 0„= (0/Bt, V') so that dif-
ferentiation with respect to contravariant x" results in a
covariant tensor. The summation notation will be used,
but only for four-vectors. The set of field variables do
not necessarily make up a four-vector and will be de-
noted (P,). The Lagrangian density then depends on
the field and its derivatives as l:($,0~$,). After second

satisfy the continuity equation, (3). [This is not strictly
true in all Lorentz frames, since the Schrodinger equation
and hence the Lagrangian, (6), are invalid for a relativis-
tic electron. ] The average linear momentum is
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as

P= dx * —iV

The second quantized field operator can be expanded

(10)

mentum with i V—replaced by —ir x V [13]. Thus iE A
plays the role of a probability density, analogous to vP*g
in (9).

If a photon number current were a direct consequence
of a phase change symmetry of the Lagrangian density
then (4) would yield, for A„= b„„

V" = i (E A, —B x A+ EP) . (16)
for any complete set of eigenfunctions of the Hamilto-
nian, (y }.The coefficients b are electron destruction
operators, and their adjoints, b~, are creation operators.
The complex conjugate of the Schrodinger field will be-
come the adjoint of (10), gt. For an electron in the state
~P) the average linear momentum becomes

In the Lorentz gauge this is just the four-vector formed by
contraction of the electromagnetic Geld tensor with the
vector potential, T" A . A four-vector is required for the
continuity equation to be satisfied in all Lorentz frames.
The second-rank Geld tensor is T" = 0"A —8 A" or

d'~ t —iV
0 —Ei -E2 —E3
E, 0 -B, B2
E2 B3 0 —Bg
E3 —B2 Bi 0

(17)

The electron number operator is

N= de (12)

and will trivially count one electron. These expressions
will be compared with the corresponding ones for pho-
tons.

For an electromagnetic field, {P„}are components of
the scalar and vector potentials, P and A. The standard
I agrangian is

However, there is no phase change symmetry for real
fields and the corresponding Hermitian field operators.
The above four-current density can only make sense if
the Gelds are separated into their positive and negative
frequency parts.

The Hermitian vector potential operator can be ex-
panded in plane waves as

l:= (E —B )—+l:I,
2

where the interaction Lagrangian density is ZI ——j - A—
pP, E = VP BA/Bt—, and —B = V x A. The momentum
conjugate to a component of the vector potential is II„=
M/BA, = E, . The ene—rgy and momentum density are
again contained in the zeroth row of 7 as

OA„
V., =) 11„ (14)

and is equivalent to the integral of E x B for a ft. ee
Geld. In the presence of matter it equals E~xB since

f dsx+„ i E„VA„=Jdsx[E x B —A(V E)] and the
latter term equals —J d xE~~ xB [12]. Thus it is purely
transverse. A similar result is obtained for angular mo-

Its zeroth component is the energy density 2 (E +B ) +
V . (PE) —j . A while the other three components form
the momentum three-vector density, P„ i E„VA, . The
linear momentum is the integral of this operator over x
space,

A{+)( ) ) A
" sh, ~ (0)

—iv);t (19)

The corresponding Hermitian operator is A = A~+~ +
A~ ~ where the amplitudes of the vector potential, E and
B, are A; = (1/2Vk;)i~2, E, = B; = (k, /2V)i~2, and
(a;} are destruction operators. The Mandel detection
operator [1] has been referred to here as a~+l(x) and its
Fourier amplitudes are o.; = (1/2V)i~ so that the sum
looks like a b function in real or x space.

The Hermitian photon density operator which gener-
alizes (16),

The sum is over all wave vectors, k;, and all polarizations
A; for each k;. In the Coulomb gauge, A is transverse.
The operator A(w, t) creates a photon at position x and
time t. The above pseudophoton density, (16), will be
converted to a counting operator by introducing posi-
tive and negative ft. equency field operators and normally
ordering all its terms. In this form it can count only ex-
isting photons, and will not create new ones. Thus iE A

- (+)becomes iE~ ~.A, signifying the negative and positive
frequency operators, respectively. For a general operator
A its positive frequency part is

V- = ~(E&-& A"' —A~-&.E"', —B~-&xA"'—A' 'xB'+'+ E~-&y~+& —y~-&E~+l)
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can be written more compactly as VIJ„Fermi Vy, ~

(g ~v) ~~ (25)

F(-) A'+', -~(-)~A'+'+E(-) (+) +H, ,

(20)

where H.c. denotes the Hermitian conjugate or ad-
joint operator. A continuity equation can be found for
the Hermitian operator four-vector, V, by substitu-
tion in (3). Using Maxwell's equations and substituting
V' x B~ l —jl l for BE~ l/Ot arising from the time deriva-
tive cancels a term arising from the divergence. With
V - E( ) = p( ) and similar substitutions involving the
positive frequencies one gets for the four-divergence of
(20)

F(—) A" +&~. B(—) &A" + + E(—) (+) +H c
Bt

This differs Rom (16) by its last term i—(i9„A")A" and
this term is zero in the Lorentz gauge. Thus the current
density (16) can be put in the form (25) in the Lorentz
gauge by adding zero and (16) is consistent with (25).
The photon density VP +'" ' in (25) takes the symmetric
form i(P~ lPi+l —A~ &.A~+l)+H. c. ifiV' (P~ lA~+l)+
H.c. is added to it. This is the form that is obtained
from the Lagrangian density used in [ll]. Since the extra
term is a divergence, the integrals over all space of the
two forms are equal and the same total number operator
is obtained.

In the absence of matter the photon number density
operator in (20) is transverse, that is, iE . A =iE~ A~.
The current density becomes

~(—) A" + 8(—) A" (+ + F(—) (+)

= &~-l~~+l +H.. (21)

3
Z(-) —Vi(+) +H. .

7=1

The photon number operator

d3~E( —).A (23)

is time independent. It is identical to the usual number
operator, P, ata, , and to Mandel's total number opera-
tor [1] .

The above expressions involving electrons and those
involving photons are analogous. The photon expansion,
(18), can be compared to (10 ). In (18) the orthonor-
mal states are the free particle states e'k'/~V and the
particle destruction operators b„are called a;. The sum
over wave vectors represents a special case of the sum
over a complete set of functions. The operators iK and
A in (22) and (23) take the place of gt and vP in (9) and
(12). Thus there is a direct correspondence between the
expressions involving photons and those involving elec-
trons.

For working in the Lorentz gauge the Fermi Lagrangian

(24)

that gives a nonzero momentum conjugate to each com-
ponent of Ai' shoukl be used in place of (13). The photon
current density then becomes

The positive (negative) frequency current densities are
approximately sources for the positive (negative) fre-
quency fields if matter is not dense and the frequency
shifts are small [14]. In the absence of matter ( 21)
becomes 0 V = 0 and is of the form of a continuity
equation for the photon number and current-density op-
erators. For photons in state ~n) the average momentum
is

(26)

0"Ai l(x) ~P, ) = 0, (27)

where P, denotes physical state. For a photon with wave
vector k the transverse photon creation operators can be
chosen as a1 and a2. If ao creates scalar photons and

az creates longitudinal photons, the new set of photon
creation operators np: (ap a3)/Q2 n] —a] n2 a2t t t

and ns ——(ap + as)/~2 can be defined. For free photons,
only the first three of these operators can create pho-
ton states that satisfy the subsidiary condition, and thus
only these can be used in the creation of photon states.
The first of these, the new zeroth operator, creates states
with zero norm that are equivalent to the null vector.
The nonphysical photons do not contribute to physical
matrix elements and states containing free photons with
arbitrary four-polarization are equivalent to states with
only transverse photons.

In the Coulomb gauge, only the Erst or transverse term is
nonzero. In the Lorentz gauge, the last two terms cancel
for a free photon of known wave vector. Thus the rather
peculiar EP terms are necessary to cancel —B x A~~, leav-
ing only transverse terms in matter free space. These op-
erators have only transverse components and thus only
real physical photons contribute.

The properties of V under Lorentz and gauge trans-
formations will be examined next. We have no general
proof that the longitudinal terms drop out if k' g k in
the product of two expansions of the form (18), so it
is necessary to consider longitudinal and scalar photons.
For a four-polarization e" the transversality condition,
e"k~ = 0, is not Lorentz invariant. Under a Lorentz
transformation e" = (0, e) becomes e'" = (e'P, e'+ e'Pk')
where e is the transverse polarization vector [15]. Thus
the polarization four-vector eI" is no longer transverse
and includes nonphysical scalar and longitudinal pho-
tons. This problem is always encountered in covariant
quantization schemes and it can be dealt with in the
usual way here. For a kee field the Lorentz condition is
replaced by the Gupta-Bleuler subsidiary condition [15]
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In the Lorentz gauge, the photon current density V
given by (20) and the divergence 0 transform as four-
vectors. Equation (21) is covariant and it is of the form of
a continuity equation. If the Coulomb gauge is used then
V is not a four-vector. To transform it to a new frame
of reference a gauge transformation to the Lorentz gauge
can be performed, followed by a Lorentz transformation
and then a gauge transformation to take it back to the
Coulomb gauge.

III. DISCU SSION

Our photon current-density four-vector operator V
(nc, v) in SI units is

+H.c. (28)

In calculations performed in a single reference frame and
in a single gauge ( 28) will give similar results to the
Mandel operators. The main difference is that, when ex-
panded in k space, the nondiagonal terms in (28) include

a factor A: k' + k' k 2 not present in Ref. 1 . If
used to count the number of photons localized in a vol-
ume V smaller than the normalization volume, the com-
mutation properties of nv &

——V /c will be essentially
the same as those of the Mandel photon number oper-
ator since the nonzero contributions to the sum over k
and k' requires ]k —k'~ ( 2/V ~ [1]. It is the absence
of these ~k factors that makes Cook's [2] operators non-
local so that they do not form a four-vector exactly.

In the present description of photon dynamics, we do
not define an operator in real space of the b-function
form representing the probability amplitude for finding
a photon at x. Instead, state vectors in the position

representation describe the electric or magnetic field or
the vector potential due to a photon at x. Products such

~ (+)
as iE( ) A describe photon number density and there
is no photon probability amplitude operator which would
be the counterpart of a(+) in Ref. [1].

The photon current-density operator defined in (28)
and (20) is a four-vector in contrast to the generalized
Mandel operators introduced by Cook. This represents
a fundamental difference between these two descriptions
of photon dynamics. To obtain the usual Maxwell stress
tensor which includes the four-momentum density it is
necessary to form the outer product between the pho-
ton current density and the momentum operators. This
is usual in the description of the dynamics of particles
and is evident in (9) and (15). For example, for a
photon of known momentum, k;, and polarization, A, ,
V~ = ata, (1,k;)/2V and k; = (k;, k, ). Here k, is a unit
vector and natural units have been used. The second-
rank tensor 7" = V"A: is the Maxwell stress tensor for
a free photon. Its zeroth row, Q ~ = (A:„k,)a,. a;/2V, is
the photon energy-momentum density.

In summary, we have proposed a photon current-
density four-vector, (28), that is an alternative to the
extended [2] Mandel [1] detection operator formalism. It
is defined in terms of the electric and magnetic field and
vector potential operators whose transformation proper-
ties under Lorentz and gauge transformations are well
known and which satisfy Maxwell's equations. This pro-
posed photon current-density four-vector satisfies a con-
tinuity equation, 8 V = 0, for free photons. Its zeroth
component is a photon probability density operator mul-
tiplied by c, while its other three components form the
photon current-density three-vector. Except possibly for
cross terms in their k-space expansions, both the photon
number-density operator and the photon current-density
vector operator include only transverse terms and thus
describe only real physical photons in free space.
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