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Period-doubling cascades and chaos in a semiconductor laser with optical injection
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We characterize the nonlinear dynamics of a semiconductor laser subject to optical injection. The
key characteristics of measured optical spectra are reproduced in calculations based on a single-mode
model that includes spontaneous-emission noise. The laser exhibits chaos over a bounded range of
injection levels. As the chaotic regime is approached from both lower and higher injection levels, a
period-doubling route to chaos is followed, although the route is obscured by spontaneous-emission
noise. A new, bounded regime of period-doubling occurs for injection levels well above the region of
chaotic dynamics. Optical injection strongly modifies the carrier-field resonance coupling frequency.

PACS number(s): 42.55.Px, 05.45.+b
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Here, a = ([A[//Ap/ —1) and a; = /A;[//Ap[, where [A[ is

Nonlinear dynamics in semiconductor lasers is the sub-
ject of considerable current research [1]. It was predicted
[2], and recently confirmed [3], that external optical injec-
tion in a semiconductor laser can lead to chaos through
a period-doubling route. Because of the very short time
scales (subnanosecond) on which the dynamics occurs,
measurements of the output spectrum must be combined
with model calculations in order to extract information
about the properties of the nonlinear dynainics [2—5].

In this paper, experimental measurements and calcu-
lations based on a single-mode model are combined to
give a consistent picture of nonlinear dynamics in a laser
diode. We show that a laser diode under optical injection
at its &ee-running &equency exhibits a region of chaotic
dynamics that is bounded as a function of the injection
level, and that the laser follows a period doubling route
to chaos as the injection level is varied &om both above
and below [6]. Spontaneous emission into the oscillat-
ing mode acts as an additional, Huctuating optical in-
put which broadens and obscures features of the period-
doubling cascades. At high injection levels we observe a
distinct period doubling which does not proceed to fur-
ther bifurcations and chaos. The existence of a second,
distinct period-doubling region has not, to the best of our
knowledge, been previously reported in a semiconductor
laser subject to optical injection.

A single-mode model of a semiconductor laser under
external optical injection can be cast in a form which
emphasizes key dynamic parameters [3]:

the magnitude of the slave laser oscillating field, ~Ap~ is
the free-running, steady-state field magnitude, and ~A;~
is the magnitude of the injection field. P is the phase
difference between A and A, . n = (N/Np —1), where N
is the carrier density and No is the steady-state carrier
density of the &ee-running laser. G is the diKerental gain
about the &ee-running, steady-state operating point,

' "n —p„(2a+ a')
p, J (4)

p„p, p„, and p, are the photon decay rate, stimulated
emission rate, gain saturation rate, and spontaneous car-
rier decay rate, respectively [7]. J = (J/ed p, Np)/p N—p
is the pumping parameter, where J/ed is the carrier den-
sity injection rate, J is the injection current density, e is
the electronic charge, and d is the active layer thickness.
b is the linewidth enhancement factor, 0 is the &equency
onset of the master laser &om the free-running frequency
of the slave laser, and g is the injection rate. E' and
E" are Iangevin source terms for spontaneous-emission
noise injected into the laser mode [8,9]. All input pa-
rameters required to numerically solve the set of coupled
diff'erential equations for a, P, and n can be determined
experimentally [7].

In this work, we are speci6cally interested in the situ-
ation where the master laser is tuned to the &equency of
the &ee-running slave laser, 0 = 0. A linear stability
analysis provides information about the resonant cou-
pling between the carriers and the oscillating 6eld. In
Fig. 1, the non-zero eigen&equency of the coupled equa-
tions is shown as a function of the injection parameter

(rl~A ~)/(p (Ap)). The linear stability analysis pre-
dicts a bounded region of unstable dynamics and a mono-
tonically increasing resonance &equency as the injection
level is increased.

To understand the deterministic dynamics, the full
nonlinear coupled equations are 6rst solved with the noise

1050-2947/95/51(5)/4181(5)/$06. 00 4181 1995 The American Physical Society



4182 SIMPSON, LIU, GAVRIELIDES, KOVANIS, AND ALSING 51

6—
O

tD

U
tD

U

4l

lO
4 ——

O
N
tD
IX

l l I I I I

0.00 0.02 0.04 0.06 0.08 0.1 0 0.12
I

0.14

FIG. 1. Variation of the resonance frequency as a function
of the injection level (. Solid line, calculation from the linear

stability analysis. Triangles, fully nonlinear calculation. Bul-
lets, experimental data. The model calculations used experi-
mentally determined parameters for the slave laser operating
at the same bias current as the data.
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FIG. 2. Numerically calculated bifurcation diagram of the
extrema of the normalized optical field amplitude a(t) ver-
sus the normalized injection jewel (. Injection is at the
free-running frequency of the slave laser. Experimentally de-
termined parameters of the semiconductor laser are used in
the calculation. The value of the linewidth enhancement fac-
tor is 6=4.

source terms set to zero. Figure 2 depicts the numeri-
cally obtained bifurcation diagram of the values of the
extrema of the amplitude, a(t), versus the injection pa-
rameter, (. As the injection level is increased, the steady
state is destabilized and the relaxation frequency is un-
damped (Hopf bifurcation), in agreement with the linear
stability analysis. Further increasing the injection leads
to a period-doubling bifurcation route to chaos and then
a similar, but reversed, route out of chaos. To confirm
the chaotic nature, the I yapounov exponents and the
corresponding Kaplan-Yorke dimension of the attractor
have been calculated [10]. For ( = 0.03, the three Lya-
pounov exponents are 0.0145', 0.0, and —0.0298', and
the Kaplan-Yorke dimension is 2.48. The positive I ya-
pounov exponent is a clear measure that the system is
chaotic in this parameter range. At even higher injec-

tion levels, the bifurcation diagram shows a second pe-
riod doubling. Finally, at the highest injection levels,
the laser diode reverts to stable operation (reverse Hopf
bifurcation), consistent with the linear stability analysis.

The experiments used commercially available, SDL-
5301-01, single-transverse and nearly single-longitudinal
mode, GaAs/AlGaAs quantum well lasers. Approxi-
mately 90% of the output power is in the principal mode
and none of the weak side modes contains more than
0.5%%uo. Both the master and slave lasers were tempera-
ture and current stabilized. The optical frequencies of
the two lasers could be matched to within + 100 MHz.
The master laser output was injected into the slave laser
with careful alignment to ensure good coupling into the
laser mode. Isolators were used to ensure that no light
was injected back into the master laser. The output opti-
cal spectrum of the slave laser was monitored by a New-
port SR-240C scanning Fabry-Perot with a free spectral
range of 2 THz and a 6.nesse of greater than 50000. The
dynamic parameters of the slave laser have been previ-
ously published [7]. Figures 1 and 2, and the data de-
scribed below, correspond to the slave laser operating at
an output level of 9 mW, where J = 0.6. A value of
6 = 4 was used in the calculations. At all but the highest
injection levels investigated, the input noise due to spon-
taneous emission in the slave laser dominates the broad-
band noise spectrum of the master laser. The strength of
the spontaneous emission was determined by comparing
the relaxation resonance sidebands to the central peak of
the free-running laser and using our model to relate the
noise-source term to the steady-state intensity [9]. Like-
wise, to determine the injection level, we measured the
spectrum in the weak injection limit and used our model
to compare the generated sideband signal with the cen-
tral peak [7].

Figure 3 shows six optical spectra of the principal
mode of the slave laser taken with the injection at the
free-running frequency. The &equency coordinate uses
the &ee-running &equency or, equivalently, the injection
frequency as the origin. The spectra illustrate opera-
tion in key regions of the bifurcation diagram (Fig. 2).
In Fig. 3(a), ( = 0.014, the spectrum consists of rel-
atively narrow peaks separated by a &equency spacing
of f„= 2.9 GHz. These are typical features of highly
unstable injection locking [ll] and the spectrum is repre-
sentative of the limit-cycle region above the first Hopf
bifurcation. In Fig. 3(b), ( = 0.017, broad period-
doubling features appear in the spectrum between the
narrow oscillation peaks and in Fig. 3(c), ( = 0.021, the
spectrum becomes dominated by a broad pedestal and
many secondary peaks develop. These spectra illustrate
the period-doubling route to chaos [3). Within the region
of chaotic dynamics, a &action of the oscillating power,
up to 35%, is shifted from the principal oscillating mode
into several of the weak side modes. Over a narrow injec-
tion range, the broadened spectrum collapses again into
narrow features with increased seperation, as shown in
Fig. 3(d) where ( = 0.06, and the principal mode regains
its full power. This is consistent with the limit cycle in
the bifucation diagram at injection levels just above the
chaotic region. Also note the shift in the &equency coor-
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PIG. 3. Measured power op-
tical spectra of the quantum
well laser under optical in-
jection at six levels of injec-
tion power: (a) unstable in-
jection locking, limit cycle, at
g = 0.014, (b) period doubling
at ( = 0.017, (c) chaotic dy-
namics at ( = 0.021, (d) limit
cycle at ( = 0.06, (e) period
doubling at ( = 0.085, and (f)
transition back to limit cycle at

0.13. Shading under the
curves is a visual aid only. Note
the shift of the frequency axis in

(d), (e), and (f).
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dinate and the strong asymmetry of the spectrum relative
to the free-running/injection frequency. This asymmetry
is present, to a lesser extent, in the low injection spectra
and is due to the positive value of 6 [7]. At still higher
injection levels, Fig. 3(e) where ( = 0.085, a clear period
doubling is observed with a further increase of the reso-
nance &equency and relative strengthening of the nega-
tive frequency components. The period-doubling peaks
then steadily decrease in magnitude as the injection is
raised to ( = 0.13, the largest value of injection that
we were able to measure [Fig. 3(f)]. Just above this level
the slave laser hopped to a new longitudinal mode. Up to
the mode hop, we observe the major dynamical features
represented in Fig. 2. The model also reproduces the ob-
served increase in the resonance &equencies, as shown in
Fig. 1.

When both coherent injection and spontaneous emis-
sion are present, there is, eH'ectively, a Buctuating in-
jected field. This leads to a blurring of the period-
doubling cascades into and out of chaos. In the for-
ward cascade, only the 6rst period doubling is not ob-
scured, and the new &equency components are severely
broadened. The reverse cascade is completely obscured.
This eKect can be numerically recovered by including
spontaneous-emission noise sources in the amplitude and
phase equations. Figure 4 compares calculated spectra
with and without the noise source terms at three injec-
tion levels. Without noise, a region of period doubling
[Fig. 4(a)] and period quadrupling [Fig. 4(b)] are clearly
distinguishable in the forward cascade. With noise,
however, the calculations show only broadened period—
doubling features [Figs. 4(d) and (e)] which are similar to
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FIG. 4. Computed optical spectra showing the effects of the spontaneous-emission noise at three levels of injection. (a) and

(d) ( = 0.0145, (b) and (e) g = 0.0152, (c) and (f) g = 0.064. (d)—(f) include the spontaneous-emission noise source term
while the others do not. The strongest spectral feature in (a), (b), and (d), and the two strongest in (c) and (f) are clipped to
emphasize the detailed features. Note the shift of the frequency axis in (c) and (f).

the experimental data shown in Fig. 3(b). In the period-
doubling bubble at higher injection levels, however, the
noise does not severely broaden the new spectral peaks,
as shown in Figs. 4(c) and (f). Likewise, the measured
spectrum in Fig. 3(e) has sharp period doubling features.

Our observations of chaotic dynamics bounded by
period-doubling cascades and a second, distinct region
of period-doubled dynamics are similar to dynamics nu-
merically generated using cubic maps and the biharmon-
ically driven DuKng oscillator, and can occur in many
dynamical systems with at least two control parameters
[12]. In the semiconductor laser subject to external op-
tical injection at its &ee-running &equency, the effective
control parameters are the injection parameter ( and the
linewidth enhancement factor b. A region of chaotic dy-
namics bounded by period-doubling cascades has been
observed in a C02 laser with modulated losses [13]. Al-
ternating periodic and chaotic dynamics have been ob-
served in driven, nonlinear R —I-diode circuits when the
drive &equency is near-resonant to the circuit resonance
or one of its subharmonics [14]. The equations which de-
scribe the biharmonically driven DufBng oscillator, the
nonlinear electronic circuits, and the loss-modulated COq
laser have the common feature of an externally imposed
modulation &equency. No external modulation &equen-
cies are introduced in the dynamical equations (1)—(3)
when the injection source oscillates at the same &equency
as the free-running slave laser. There is, however, an ef-
fective detuning which is associated with the linewidth

enhancement factor b. It represents an offset between
the peak of the gain and the laser oscillation &equency
[8,15]. By appropriately detuning the injection frequency,
or by varying the value of 6, one can observe completely
different dynamics, including stable injection locking at
all injection levels [2,3,11].

In conclusion, the excellent qualitative and good quan-
titative agreement between our experimental data and
the calculations is strong evidence that Eqs. (1)—(3) cap-
ture the essential physics of a nearly single-made laser
subject to external optical injection, at least up to the
point of the observed longitudinal mode hop. The model
includes the dependence of the gain on both the carrier
density and circulating Geld intensity. Within the region
of chaotic dynamics, power is partitioned &om the princi-
pal oscillating mode to the weak side modes and this can-
not be recovered in the single-mode model. However, the
partitioning does not appear to be a driving factor in the
dynamics, given the good agreement between observed
and calculated spectra. By suppressing the noise in the
calculations, we are able to see that the model predicts
dynamics similar to those predicted or observed in other
physical systems. These dynamics are induced without
introducing an external modulation &equency when the
optical injection is at the &ee-running &equency of the
semiconductor laser. This point emphasizes the critical
role of the linewidth enhancement factor 6 in determining
the nonlinear dynamics.
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