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Homodyne correlation measurements with weak local oscillators
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Based on proposals to measure squeezing by homodyne cross correlation [Ou, Hong, and Mandel,
Phys. Rev. A 36, 192 (1987)] and by homodyne intensity correlation measurements with a weak
local oscillator [Vogel, Phys. Rev. Lett. 67, 2450 (1991)], the method of homodyne correlation
measurements is considered in detail for the case of weak local oscillators. Aside from the feasibility
of measuring squeezing in low efficiency detection, it appears possible to record the correlation of the
noise of two noncommuting observables, namely, the intensity and the electric field strength of the
signal field. The separation of the difFerent contributions to the measured correlations is considered
and spectral correlation measurements are analyzed. Local oscillator noise, which is not balanced
out in such a scheme, is found to be attenuated effectively by decreasing the local oscillator field.
In particular, in the homodyne cross correlation scheme, it is of interest to use a beam splitter that
signi6cantly di8'ers from a 50%:50&0 partition.

PACS number(s): 42.50.Ar

I. INTR.ODUCTION

Homodyne detection is a well established technique
used in quantum optics for the study of phase-sensitive
phenomena such as squeezing [1—6]. Usually, the signal
field (SI) to be studied is superimposed with a strong, co-
herent local oscillator, for the theory cf. e.g. [7—11]. In a
simple (unbalanced) homodyne detection scheme the su-
perimposed light is recorded by a single detector and the
statistics of the photoelectric counts or the photocurrent
are analyzed for different phase shifts between the local
oscillator and signal field. For a strong local oscillator the
mean number of photocounts is dominated by the local
oscillator field and the leading contribution to the corre-
sponding variance is the shot noise level. The dominant
deviation from the shot noise level is proportional to the
normally ordered variance of the electric field strength of
the signal Geld. Therefore, a reduction of the noise below
the shot noise indicates squeezing of the signal field.

The relative noise reduction in such a measurement
scheme is proportional to the overall detection efFiciency,
including the eKciency of the detector and the collection
eKciency of the light field under study. In this manner
a relative effect due to the field Huctuations of the signal
field can be observed which is of the order of magnitude

AEsiy(t —z jc)

Here, n(t, b t) denotes the number of photoelectric events
recorded by the detector during the time interval [t, t +
At], the bar denotes (classical) stochastic averaging, g
is the detection efficiency, and T the (amplitude) trans-
mission of the beam splitter combining the signal and
local oscillator Gelds. The "::"notation denotes nor-
mal ordering for operators, which are distinguished &om

c numbers by a caret. Here and in the following it is
assumed that the measurement interval Lt is suKciently
short compared with the characteristic times of the radi-
ation under study. The operator

s&O( ) = si4( ) + sip( )
(+) (-)

= Es(+, )(t) exp[i((sot + P)]

+ Es, (t) exp[ —i(~st + P)] (2)

describes the (slowly varying) electric field strength of
the signal field, the phase

may be controlled by the phase Pi,o of the local oscillator,
and PR, respectively, being the phase shifts due to

transmission and reHection at the beam splitter and uo is
the frequency of the local oscillator. Equation (1) reveals
that the magnitude of the observable squeezing effect is
limited by the detection eKciency.

For deriving the result of Eq. (1) it is assumed that
the local oscillator is in a coherent state. In practice,
small but unavoidable Huctuations of the local oscillator
may introduce significant errors since the local oscillator
is strong. To overcome this problem balanced homodyne
detection has been proposed [12—15]. The local oscillator
and the signal Geld are combined by a beam splitter and
the two superimposed fields in the output channels are
simultaneously measured. Analyzing the statistics of the
difference of events recorded in the two channels, classical
noise effects of the local oscillator are balanced out by
subtracting their (equal) efFects in the two channels. The
statistics of balanced homodyne detection has also been
studied for arbitrarily weak local oscillators, both for the
case of ideal detectors [16] and for realistic detectors of
nonunity efIiciencies [17).

As long as the detection eKciencies are unity and the
local oscillator is strong the full statistics of the sig-
nal Geld strength, namely the probability distribution
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p(Esi y) = «p(E»~ E)p-. (E), (4)

where

p.(E)=(2:) "pl-( E21
2o.„) (5)

the variance 02 being (1—q)/g times the vacuum variance
of the signal Geld strength Esp @. Thus the determination
of the true Geld strength distribution from the measured
data requires a deconvolution that is only practicable for
rather large efIiciencies.

Recently, the experimental determination of field
strength distributions, the construction of the signer
functions and the corresponding density matrices has
been carried out using optical homodyne tomography
[19]. This method is of great interest since it yields
the full quantum statistical information on the radiation
Geld. Its application, however, is also limited by the de-
convolution problem mentioned above. Some other ap-
proaches for determining the quantum state of light have
been proposed which are also based on some kinds of
homodyne detection schemes [20—23].

For many applications of homodyne detection methods
the limitation due to nonunity efIiciencies may be of less
importance, especially when the light Geld under study
is strong, highly collimated, and its spectrum is in a re-
gion where high-sensitivity detectors are available. On
the other hand, it is of interest to get some insight in
(phase-sensitive) Field fluctuations for light fields that do
not fulfil such conditions. Especially in quantum optics
the noise properties of weak Belds are a subject of re-
search. A typical example is the resonance fluorescence
from a single atom where already the low collection eK-
ciency of the Huorescence makes it almost impossible to
determine the fluctuations of the electric Geld strength
from a measurement of the sub-Poissonian statistics [8]
or &om a smoothed Geld strength distribution in a bal-
anced scheme. Moreover, in certain spectral ranges a
highly efIicient detection can hardly be achieved since
appropriate detectors are not available. In such cases al-
ternative schemes for homodyne detection are of interest
which are not limited by the efficiency factors.

The proposal to detect squeezed light by cross cor-
relations [24] is a technique of that type. There is one
noteworthy difference between this method and balanced
homodyning. Here the efIiciencies appear only as multi-
plicative factors that do not alter the shapes of the corre-
lation functions as functions of time. On the other hand,
the efIiciencies can strongly alter the shapes of the field
strength distributions recorded in balanced homodyning,
cf. Eqs. (4) and (5). In the homodyne cross correla-
tion scheme, a beam splitter is used for superimposing

p(Esi~) of the field strength Esiy, can be measured in
a balanced scheme. This quantity, known for the phase
values P within a ~ interval, contains the full information
on the quantum state of the signal field [18]. For non-
unity efIiciencies a smoothed Geld strength distribution
p(Esi 4,) is recorded which can be represented as the con-
volution of the true field strength distribution p(Esi y)
with a Gaussian noise distribution p„(E) [17],

the signal Beld with the local oscillator. Furthermore,
it acts as the input beam splitter of a correlation device
consisting of two detectors and an appropriate correlator.
The cross correlation scheme was studied in the limit of a
strong local oscillator. Squeezed light shows up as a pos-
itive cross correlation of the (different) fields in the two
output channels. An obstacle of this approach is that
the classical noise of the local oscillator is not balanced
out, which makes it less attractive to detect squeezing
[24]. More recently, I have proposed to use a homodyne
intensity correlation scheme with a weak local oscillator
for detecting squeezing in resonance Huorescence from a
single trapped ion [25]. In this case the local oscillator
is superimposed with the signal (fluorescence) field and
the intensity correlations of the superimposed light are
measured. The maximum effect due to squeezing can
be observed when the local oscillator is as weak as the
Huorescence of the atom. Due to the weakness of the
local oscillator, additional effects are observed such as
the sub-Poissonian statistics of the signal and anomalous
moments containing unequal numbers of annihilation and
creation operators of the signal field. These anomalous
moments turn out to represent the normally ordered cor-
relation effect between intensity and field strength Huc-
tuations of the signal field [26] and their study is of in-
terest for its own. The largest effects due to squeezing
in resonance fluorescence are expected in such a detec-
tion scheme for a weakly driven atom and the different
contributions to the homodyne intensity correlation can
simply be separated via their dependences on the local
oscillator phase [25].

In the present paper we consider both the homodyne
cross correlation scheme and the homodyne intensity cor-
relation scheme for an arbitrarily weak local oscillator
with the aim of detecting the available information on
the quantum statistics of the signal field. The separation
of the sub-Poisson effect, the squeezing effect, and the
correlation of intensity and field strength noise are stud-
ied for general states of the signal Geld. Moreover, the
influence of classical local oscillator noise is considered
and shown to be suppressed for weak local oscillators.
Eventually, spectral homodyne correlation methods are
analyzed.

The paper is organized as follows. Section II introduces
the two homodyne correlation measurement schemes and
gives some general relations for the observed correlation
functions. The various quantum statistical effects ac-
cessible with a weak local oscillator are considered in
Sec. III including the problem of their separation from
each other. Section IV is devoted to the effects of local
oscillator noise and in Sec. V spectral measurements are
studied. A summary and some conclusions are given in
Sec. VI.

II. HOMODYNE CORRELATION SCHEMES

Let us consider in the following two different schemes
for homo dyne correlation measurements which are
suited for the simultaneous detection of squeezing, sub-
Poissonian statistics and the normally ordered correla-
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where

G ' (tl —x/c, t2 —y/c)

xEs~ (ti—x/c)"(+)

I"IG. 1. Homodyne intensity correlation scheme. The sig-
nal field (SI) is superimposed by the Brst beam splitter (BSl)
with the local oscillator (LO), the resulting superimposed
light (SL) is recorded by means of an intensity correlation
device consisting of a second beam splitter (BS2) dividing the
superimposed light into two channels 1 and 2 and the inten-
sity correlations are measured with two photodetectors (PDl
and PD2) and a correlator (C).

tion between the field strength and intensity fl.uctua-
tions. Moreover, these schemes are of interest for the low-

efIiciency detection of phase-sensitive quantum statistics
of light.

In the first scheme, in the following called homodyne
intensity correlation scheme, the signal field is superim-
posed by a first beam splitter with the local oscillator.
The superimposed light is then recorded by means of a
typical intensity correlation device, consisting of a sec-
ond beam splitter, two photodetectors, and a correlator,
cf. Fig. 1. This scheme has been proposed in [25] for
the simultaneous detection of squeezing and anomalous
moments in resonance fIuorescence. In the case of the
second scheme, hereafter called homodyne cross correla-
tion scheme, the intensity correlations between two differ-
ent fields are recorded. The superpositions of the signal
and the local oscillator are directly obtained at the input
beam splitter of the correlation device, see Fig. 2. In this
manner the two photodetectors are irradiated by differ-
ently phase shifted superpositions of signal field and local
oscillator. An observational scheme of this type has been
studied for a strong local oscillator in the context of the
detection of squeezed light [24].

In the following we will consider the measured correla-
tions in both schemes in more detail, with special empha-
sis on the situation for arbitrarily weak local oscillators.

A. Homodyne intensity correlation scheme

For analyzing the detection scheme given in Fig. 1, let
us start with the events recorded by the correlation de-
vice. Based on the quantum theory of photodetection
[27,28] together with the action of a beam splitter on
quantized light fields we arrive at the second-order cor-
relation of the recorded events in the form [26]

is the normally ordered intensity correlation function of
the superimposed light (SL) and the indices at the num-
bers of events and the efIiciencies label the individual
detectors. It is seen from Eq. (6) that the effect of small
detection efriciencies on the measured correlations only
consists in the factor gig2, that is the eKciencies do not
infI. uence the measured correlation functions absent from
decreasing it by a factor. This is a well known fact that
allowed, for example, the detection of the intensity cor-
relation function of the light from an atomic beam with
extremely small overall eKciencies [29]. In the context of
the present paper this fact is of importance since it allows
homodyning in the case of low efIiciencies. In contrast to
this situation, in a balanced homodyne detection scheme
a small efIiciency smoothes out the field strength distri-
butions to be measured [cf. Eq. (4)], which in practice
also prevents the determination of the quantum state of
the field based on various methods [19—23].

It is worth noting that the outgoing fields appearing
in Eq. (7) behave like effectively free fields so that the
positive and negative frequency operators, respectively,
commute among each other [26]. Consequently, the in-
tensity correlation function in Eq. (7) fulfils the symme-
try relation

G"'(t, t+~) = G")(t+~, t) (8)

and we may confine ourselves in the following to the con-
sideration of GI )(t, t+ 7.) for v. ) 0. Note that Eq. (8)
implies that under stationary conditions the correlation
function

GI")(v-) = lim GI")(t, t+ r)t—+on
(9)

fulfils the relation

G(2 2) (~) G( 2)
( (10)

x Isgti —x c

x Is+ C2 g c )

so that the measured correlations are symmetric with
respect to the delay time.

For comparison it is of interest to consider the corre-
sponding decorrelated result,

Al (tl, Atl) &2(t2, At2) = 9192 AtlAt2172 I'I&2I'
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which represents the product of mean numbers of events
recorded by the two detectors independently of each
other. In this equation we have introduced the intensity
operator

(12)
xE ts(tt) + E stt(t)E stt(f + T))

"(+) "(—) "(+)

for the superimposed light.
We may express the measured intensity correlation

function of the superimposed light in terms of the lo-
cal oscillator and signal fields. Due to the action of the
beam splitter BSq these fields are combined as

Esl (t) = TIEs, (t) + RIEI Q (t) s

+ Esl y(t) Esl y(t)
-(-) -(+)

+ Ests(t + s)Ests(t + s))
-(-) -(+)

G,''(t, t+ ) = 2ITIIRI'E' R E„&(&)

(21)

where the (complex) amplitude transmission and reffec-
tion coefficients of the (symmetric) beam splitters fulfil
the relations

+ ESIQ(t+ 7)"(+)
(22)

T, =T= T e'@&, B, =B= B e'~",
(23)

T +B =1, (15)

where Ez,o is the real amplitude of the local oscillator.
Combining Eqs. (7), (13)—(17) and introducing slowly
varying Beld operators according to (2) we may express
the intensity correlation functions in terms of the vari-

ous orders G, ' (i = 0, . . . , 4) with respect to the local(2,2)

oscillator field,

where

G('')(t, t+~) = ) G,'."(t,t+~),
i=0

(18)

+o"(t, t+s) = l~l'( Es tt( )tEs t'( t+ s)

xESIQ(t + T)ESI4,(t)
"(+) "(+)

4'r —&R =- +-2'~

for i = 1, 2. We assume that the local oscillator is in a
coherent state, that is

( ' ' ELQ (t)) = (' ' ) ELQ exp[ —i (ldpt + pLQ)] s

- (+)

(E&(Q)(t) ) = (. ) EI,Q exp [i(~et+ QI,Q)] s

With respect to the signal field, the functions Go
(2 2)

to G4
' are determined by various types of correlation

functions of fourth to zeroth order. Note that some of
these correlation functions are not accessible in direct
photocorrelation measurements.

B. Homodyne cross correlation scheme

LO

SI
PDI

BS

Let us consider now the detection scheme according to
Fig. 2. Compared with the first scheme, the detectors do
not record the intensity correlation of a given (superim-
posed) light field. Instead, the second-order correlation
of the events is proportional to a mixed field correlation
function,

Al(41 Atl)A2(t2 At2) = glg2 Skit-tt2

xg( ')(tl —x/c, t2 —y/c),
(24)

G, ' (t, t+s) = S(T) (RiEtoas (Es, t(t)

xE (t+stTt) (tE+stTt))
"(-) "(+)

+ Esl y(t) Esi y(t + ~)Esi y(t)
)

"(-) "(-) "(+)

(20)

PDs

FIC. 2. Homodyne cross correlation scheme. The signal
field (SI) is superimposed by a beam splitter (BS) with the
local oscillator (LO), the intensity cross correlations of the re-
sulting superimposed fields in the channels I and 2 are mea-
sured with two photodetectors (PDi and PD2) and a correla-
tor (C).
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g( ' (t) —x/c, t2 —y/c)

E. ). (t~ —2:/c)E. 2 (t2 —&/c)E. 2 ( 2 &/c)

x E.'+, '(t,—~/c), (25)

ITI ++ I&l

"(+) "(+)
Esp 4

M Esp y» (32)

and, in view of Eqs. (26) and (27) together with (2), (3),
and (16),

where E, ~ and E, ~ are the two (different) superim-"(+) (+)

posed fields respectively in the output channels 1 and 2
of the cross correlation scheme. Analogously to Eq. (13)
they are given by

In the stationary case [applying the definition in Eq. (9)—(2,2)for the functions g(2 2) and g '
] we get in view of Eq.

(2s)

E."i'(t) = TEsi '(t) + &ELo'(t) (26)

E,+) (t) = TE ) (t) + AE +, (t). (27)

We may again consider the product of independent
events recorded by the two detectors,

In the following we will again consider the correlation
function g( ' ) (t, t + ~) for 7' ) 0. In order to derive the
corresponding result for w & 0 we may apply the relation

rll (sr, tstl) »2 (ts, trts) rllrls tstlDts (2 1 ('ll e/e))

x I, 2&2 —y e, 34

where

g" (t, t+r) = g ' (t+~, t),

g
'

(t t+ ) = (E.',.'(t)E.', '(t+~)
XE,+, (t+7-)E,+, (t)).

(2s)

(29)

with the two intensity operators defined in analogy to
Eq. (12).

Combining Eqs. (2), (14)—(17), and (25)—(27) the
correlation function measured in the cross correlation
scheme (7 ) 0) can also be expressed in terms of its
orders g, ' (t, t + 7) with respect to the local oscillator
field. We arrive at

Thus it is seen that the result for g( ' ) (t, t + 7) in the
case 7 & 0 is easily obtained from the result for w ) 0 by
the replacements

g&"(t, t+ ~) = ) g,.' '(t, t+ ~),
i=o

(35)

t -+ t —[~[, t + ~ -+ t (30) where

ge*"(t '+ e) = IRI'ITI* (Esr S(')Esr S('+ e)Esr S('+ e)Esr»(t))

0'*'"(t t+ e) = 2ITIIRIE«» (IRI' (Esr S(t)Ear S(t+ e)Ear S('+ e)) —ITI' (Esr»(t)Esr S(t+ e)Ear S(t)))

tr't"l jt t+ r) = —~T~'~R~'Eto 2 Re ((Es S(t + r)E +, S(t)) + (E,S(t)E +, e(t+ e)))
+ITI Ero (Esrtl(t)Esre(t)) + IlRI Ei'o (Esrt(t+ e)Esrt(t+ e))

gs
' (tt+ r) = 2(T( (lR(lEt, o Re ((Esse(t))) —2(T((R( Eto Re ((Etre(t + r))),

g,''(t, t+~) = /T/'/Bf'E, ' .

(36)

(37)

(39)

(40)

Two differences are observed when we compare the re-
sults for the correlation function g( ) observed in the
homodyne cross correlation scheme with the correspond-
ing expressions for G( ' ) recorded in the homodyne in-
tensity correlation scheme. The first, less important one
is that some refiection and transmission factors are ex-
changed in various contributions to the correlation func-
tions. Of more importance is the second difference con-
sisting in the changes of the signs of some contributions,
which appear due to the different phase shifts in the two

l

output channels of the cross correlation scheme. This
difference will inQuence the details of the determination
of the various correlation effects.

III. OBSERVED EFFECTS AND THEIR
SEPARATION

In this section we consider the effects observable in
the homodyne correlation schemes introduced above. Ac-
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AG( ' (t) = G( ' (t t) — lim G ' (t, t+ w) (41)

for the homodyne intensity correlation scheme and cor-
respondingly

Ag (t) = g ' (t, t) —lim g( ' (t, t+ r)
7 Woo

for the homodyne cross correlation scheme. Physically
these quantities characterize the (equal time) pair corre-
lations of the events recorded in the two output channels
of the correlation devices. Note that the relations

cording to Sec. II the basic quantities observed in both
the measurement schemes are the second-order correla-
tions of events ni (ti, Eti)n2(t2, At2) and the correspond-
ing product ni(ti, Ati) n2(t2, At2) of events recorded by
the two detectors independently of each other. Both
kinds of quantities have been related to field correlation
functions, the proportionality factor containing the de-
tection efIiciencies in the same manner for both cases.
Thus we may restrict the following consideration to the
corresponding field correlation functions.

Since any physical correlation function decorrelates for
sufFiciently large time delays it is advantageous to com-
pare the short-time value of the correlation function with
its long-time value. In this sense we may introduce for the
two detection schemes the following measures for photon
pair correlations:

latter should be distinguished from the definitions in Eqs.
(41) and (42) applying to correlation functions rather
than operators.

A. Sub-Poissonian statistics

Let us first consider the eKects in zeroth order in the
local oscillator field. In the homodyne intensity correla-
tion scheme we derive from Eq. (41) together with (19)

(49)

In the same way we get from Eqs. (42) and (36) for the
homodyne cross correlation scheme

&go"'(t) = ITI'I&l'((: P»(t)]':)

-(Isi(t))(1»( ))).
Under stationary conditions these expressions may be
further simplified (in the steady-state case time argu-
ments are throughout omitted in the following)

AGot ' i = ~T~: (Elt&):),

lim Gi ' i(tt+o) = (I o, (t))t(ito(oo)) Egt ' i = /T/ /II/': (EIt&) (52)

and

lim ()"'(t,t+o) = (I&(t)) (I.&(o,o)) (44)

AG(")(t) = ) AG,"(t) (45)

and

are fulfilled, so that these expressions are related to the
uncorrelated events according to Eqs. (11) and (34).

Based on Eqs. (18) and (35), respectively, we write

It is seen that in both kinds of homodyne correlation
schemes the contribution to the measured correlations
which is independent of the local oscillator field is pro-
portional to the normally ordered variance of the inten-
sity of the signal field. Therefore, negative contributions
of this term indicate a sub-Poissonian statistics of the
signal field.

It is worth noting that in the case of the homodyne in-
tensity correlation scheme the sub-Poissonian statistics of
the signal field directly contributes to the sub-Poissonian
statistics of the superimposed light. In this case, from
Eqs. (7) and (41) under stationary conditions we arrive
at

~G( & )(t) ~g( & )(t) 0 (47)

The physical eKects represented by the other terms are
briefly discussed below.

For convenience we will introduce in the following the
operator of the signal field intensity:

I»(t) = @SIy(t)& y(t)
-(-) -(+) (48)

the standard notation:: for normally ordering of field
operators, and the notation b,A(t) = A(t) —(A(t)), the

where the subscript i again denotes the order with respect
to the local oscillator field strength. From Eqs. (23) and
(40) we easily deduce

2
gg( )

On the other hand, in the cross correlation scheme there
does not exist a single superimposed light. Therefore,
nonclassical efI'ects of the signal field cannot be inter-
preted as contributions to some overall nonclassical efI'ect
in this scheme.

B. Correlation of intensity and field strength noise

Making use of Eqs. (20), (41) and (37), (42), respec-
tively, we get for the first-order terms in the local oscil-
lator field the results
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(&) = ITI I&IELo[2(:Esr4(~)lsr(&):)
—(E» e(~)) (1»(~))
—(E»4 (t)) (Isr(~))] (54)

C. Squeezing

The second-order term with respect to the local oscil-
lator field strength is readily derived from Eqs. (21) and
(41) for the homodyne intensity correlation scheme in the
form

(55)

&gr~' (r) = I&IIII&ll (II&II* —ITI') @ra (:&srs(r)lsr(r):)

—
ITIIII&ll &ro (Esrs(r)) (Isr(oo))

+IITII I&I&so (Esrs(oo)) (Isr(r)) .

&& '"(~) = ITI'I&l'EL'a [(: [E»+(t)]':)
-(E. (t))(E. ( ))
+(Isr(t)) —(Isr(~))]

and from Eqs. (38) and (42) we get

(58)

rsGr ' = sl~TI~ ~RI~Ero (:AEsrsElsr:), (56)

For stationary light fields these expressions simplify ac-
cording to

(~) = ITI I&l Er'.o((: [E»4(&)]:)
(E (t)))E ( )))

+ I&l'Er'. a [(1»(t)) —(1»(~))] (59)

&()"*'= IT'II&I (I&l' —IT I*) &oo (: ~&sr e &+sr:) .

(57)

for the homodyne cross correlation scheme. Under
steady-state conditions we eventually arrive at

The contributions given in Eqs. (56) and (57) represent
the (normally ordered) correlation of field strength and
intensity fluctuations of the signal Beld. This quantum
statistical moment contains two noncommuting observ-
ables. Such kinds of correlations are usually not observed
in direct detection, therefore, these contributions have
been denoted as anomalous moments [25]. In the homo-
dyne intensity correlation scheme, from Eqs. (45), (56),
and (53) it is obvious that negative values of the nor-
mally ordered correlation of intensity and field strength
of the signal field also increase the tendency of the su-
perimposed light to become sub-Poissonian. As already
noted above, in the homodyne cross correlation scheme a
similar interpretation of the same correlation term fails.

Another difI'erence between the first-order terms in the
two measurement schemes should be emphasized. The
correlations of intensity and field strength fluctuation
can be measured in the homodyne intensity correlation
scheme with 50%:50% beam splitters whereas unequal
partitions are required to observe this term in the homo-
dyne cross correlation scheme. Therefore, it appears to
be useful to perform the cross correlation experiment by
involving a beam splitter that significantly difFers from a
50'%:50%%up partition. A beam splitter close to a 14%:86%%uo

partition (with respect to the intensities) would be the
optimum for observing the efFect given in Eq. (57).

The question may arise for what kinds of radiation
field states is the normally ordered correlation of fluctu-
ations in the electric Beld strength and the intensity of
relevance. For some fundamental fields in quantum op-
tics, such as coherent states, photon number states, or
thermal Belds, such correlations do not exist. An exam-
ple for the existence of correlations of this type is the
resonance fluorescence from a single atom as has been
demonstrated in [25]. Moreover, it is straightforward to
prove that a squeezed coherent state [30) shows such cor-
relations. A deeper understanding of these correlations,
however, requires further research.

&gI"' = —IT I'II&II'&ra (: (&&srS):) (61)

D. Transient electric field

In view of Eq. (47) the only remaining efFect is that
in the third order of the local oscillator Beld. Prom Eqs.
(22), (41), (39), and (42) we derive for the schemes under
study

+Gs*"(r) = ITII+I'Ei'o (@srrr(r)) —(Psrs(oo))

(62)

+go" (r) = ITII+I @ra (&srs(r)) —(@srs(so))

(63)

The observed effects consist in the deviation of the mean

It is seen from this result that both the measurement
schemes are suited to record the normally ordered vari-
ance of the electric Beld strength and, therefore, squeez-
ing can be detected. However, whereas in the homodyne
intensity correlation measurement the squeezing effect of
the signal gives a negative contribution to the photon pair
correlation, in the cross correlation scheme the inverse is
true: squeezing gives rise to a positive contribution to
the correlations, cf. also [24]. In other words, in the lat-
ter scheme negative correlations can be obtained when
the noise of the field strength of the signal field signifi-
cantly exceeds the corresponding vacuum noise level. We
already mentioned that the negative correlations in this
scheme are no signature of a nonclassical effect so that
this result is not surprising.
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~G(2 2) ~g(2 2) () (64)

electric field strength from its stationary value. Conse-
quently, under steady-state conditions there is no effect
in the third order with respect to the local oscillator field
strength, that is

ily determine the squeezing effect of the signal field by
making use of Eq. (66) together with (57). In this case
the correlations between the fluctuations of the intensity
and the field strength of the signal are simply suppressed
by using a 50%:50% beam splitter, see Eq. (57). Repeat-
ing the measurements with a beam splitter significantly
di8'erent from a 50%:50%partition one could obtain both
the contributions of Eq. (66).

E. Separation of efFects

~G(2 2) ~G(2 2)

E'LO =0
= aG""+aa""'i 2 (65)

and

~g(2, 2) ~g(2, 2)

+LO —0

~g(2*2) + ~g(2 2)
1 2 (66)

One way of separating the remaining terms could be the
variation of the local oscillator field strength. More-

over, the terms b, Gi ' and Agi ', respectively, are(2,2) (2 2)

2mperiodic with respect to the local oscillator field as
can be seen from Eqs. (56) and (57) together with (2).

(2,2) (2,2)Since the squeezing term (AG2 ' or Agz '
) does not

contain a 2m periodic contribution it can be separated
from the correlations of' intensity and field strength noise
after constructing the expressions given in Eq. (65) or
(66).

In the homodyne cross correlation scheme one may eas-

The simultaneous detection of various effects with a
given experimental setup may be of interest as long as a
unique way exists to distinguish the different effects from
each other. For the resonance fluorescence of a weakly
driven two-level atom this problem has been discussed
already for the homodyne intensity correlation scheme.
This special light source allows a separation of the rel-
evant terms under stationary conditions. The intensity
fluctuations, the squeezing effect, and the intensity-field
strength correlation may simply be distinguished by their
different periodicities with respect to the local oscillator
phase [25]. In the general case, where an arbitrary signal
field is observed this is no longer true. In particular, the
squeezing effect in general consists of the combination
of a vr periodic part with respect to the local oscillator
phase and a part which is phase insensitive. Therefore,
in general the concept for separating the different effects
from each other needs some modification.

Let us consider the stationary situation in more de-
tail since it yields well defined effects of the signal field.
Suppose that the quantities AG( ' ) and Ag( ' ), respec-
tively, consisting of the contributions according to Eqs.
(51), (56), (60) and (52), (57), (61), have been measured.
The intensity fluctuation terms are simply determined in
the two schemes by blocking the local oscillator inputs.
Therefore, the difference of the full correlation function
and that obtained with the local oscillator being blocked
leaves us with a combination of the squeezing term and
the correlation between intensity and field strength fluc-
tuations,

IV. ATTENUATION OF LOCAL OSCILLATOR
NOISE

Analyzing the homodyne cross correlation scheme for a
strong local oscillator [24], the authors have pointed out
that the fact that the local oscillator noise is not balanced
out makes the method less attractive for the detection of
squeezed light. However, it will be shown in this section
that this disadvantage can almost be eliminated in the
case of a weak local oscillator. For this purpose let us
consider stationary Gaussian amplitude fluctuations of
the local oscillator [31],where

Ez,ci (t) = Ep + b E(t), (67)

bE(t) = 0 (68)

bE(0)bE(r) = (bE)' exp( —pl~i), (69)

p and (bE)2, respectively, are the correlation time and
the variance of the amplitude fluctuations, the bar de-
notes stochastic averaging over the classical laser fluctu-
ations. We will not consider phase fluctuations of the
local oscillator for the following reason. In homodyne
experiments of the type we are interested in usually the
phase diffusions of the local oscillator and the signal field.
are correlated so that only a small difference diffusion
of the corresponding phases could be relevant. We may,
therefore, assume that the effective linewidth of this small
effect is much smaller than the characteristic linewidth
of the signal field.

Calculating the effects of the laser noise we may again
consider the various powers in the local oscillator ampli-
tude Ep (which corresponds to Ei,ci in the above consid-
erations where the local oscillator noise has been disre-
garded). Let us consider, for example, a typical contribu-
tion of the local oscillator noise effects to the measured
correlations which may be regarded as the direct com-
petition to the squeezing effect. We only deal with the
homodyne cross correlation scheme since the situation in
the homodyne intensity correlation scheme is essentially
the same. Calculating the fourth-order terms in Ez,~ in
the presence of amplitude fluctuations according to Eqs.

(67)—(69) by considering averaged quantities g4 ', we(2 2)

get in place of Eq. (47)

Ag ' = (T['(R( (4E* (4E)*+2 (bR)*

= 41&l'I&l'Ep (bE)' (7o)
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where we made use of the suitable assumption that the
relative amplitude noise of the local oscillator is small,

(~E)' =e((1.
0

Now we compare the efFect due to local oscillator noise
given in Eq. (70) with the squeezing effect of the signal
field in the measurement scheme under study. For this
reason we replace in Eq. (61) Ei,o by Eo and arrive at a
signal-to-noise ratio

I(: (&&. ~)':)I
~g(2 2) 4 (b'E)2

(72)

This result might suggest that the signal-to-noise ratio is
insensitive to the amplitude of the local oscillator. How-
ever, the classical fluctuations of the local oscillator can
be attenuated in the same manner as its amplitude, for
example by the use of an appropriate beam splitter. That
is, the ratio ~ defined in Eq. (71) may be regarded as
a constant when the amplitude of the local oscillator is
changed. Thus it is more instructive to rewrite the signal-
to-noise ratio in the form

~g(2, 2)

~g (2,2)
4

I&: (&@»@)':)I
4 eE02

(73)

It is easily seen that the usually preferred strong local os-
cillator may become crucial in the homodyne correlation
scheme since the classical noise of the local oscillator, al-
though it is assumed to be rather small, may prevent the
detection of the quantum noise of the signal field we are
interested in. On the other hand, when the local oscil-
lator is sufficiently weak the situation may be changed.
Let us assume that the strength of the local oscillator
is comparable to the quantum noise of the signal field
as has been proposed for the detection of squeezing in
resonance Huorescence [25], that is

V. SPECTRAL MEASUREMENTS

n(t, ~t)it =ge
At (76)

g being the corresponding gain factor. Thus we get for
the mean photocurrent and the second-order correlation
function of the currents iq and iq measured in the corre-
lation schemes under study

i (t) = n(t, At),At (77)

2

ii(ti)i2(t2) = ni(ti, Ati)n2(t2, At2).gi g2 P.

Lti Lt2 (78)

According to this result together with Eqs. (6), (7) and
(24), (25) for the two correlation schemes the statistical
properties of the macroscopic photocurrent are directly
related to the quantum correlations of the signal light
field as considered above.

The classical photocurrent can be spectrally analyzed,
which may simply be described by Fourier methods,

So far we have considered two homodyne correlation
measurement schemes with the aim to determine eKects
such as sub-Poissonian statistics, squeezing, and the nor-
mally ordered correlation of the fluctuations of intensity
and electric field strength of a given signal field. In prac-
tice, however, efFects such as squeezing may appear only
in a given spectral range and a total squeezing e8'ect
as considered above may be absent. In such cases a
more careful, spectral analysis of the measured data is
required, as given for the cross correlation scheme in the
strong local oscillator limit in [24]. In this section we are
especially interested in spectral properties that can addi-
tionally be observed by applying a weak local oscillator.

Let us assume that the events recorded by the detec-
tors of the correlation device are amplified and we may
describe this amplification simply as a deterministic mul-
tiplication process so that we may write for the stochastic
current [32,26]

&o = I&: (&Esiy)':)I. (74)
i((u) = — dte' 'i(t).2'

Consequently, the order of magnitude of the signal-to-
noise ratio is essentially determined by the inverse of the
relative amplitude noise of the local oscillator,

Confining our consideration to stationary fields we read-
ily derive for the spectral correlations of the current

il(~1)&2(~2) |)(~1+ ~2) C(~2)

+~(2,2)
oc —yp 1.

~g(»2)
4

(75)
where the (second-order) current spectrum C(w) is given
by

We may conclude that the inHuence of the (classical)
amplitude fluctuations of the local oscillator in a ho-
modyne correlation measurement scheme is almost sup-
pressed provided the local oscillator is suKciently weak.
It should be noted. that the situation is similar for the
other contributions of the classical amplitude noise to
the measured correlation functions, so that we renounce
their detailed consideration here.

C(~) = — d~ e' i, (0)i2(~).
27r

Correspondingly, for the stationary current noise spec-
trum we get

AC(cu) = — d7 e* Aii(0)bi2(~),
27r

where
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Ai(t) = i(t) —i . (83) The quantity

AC((u) = gig2qig2e'ITI'IRI'S "(u)),

where S( ' )(u) is the intensity fluctuation spectrum of
the superimposed light according to

S( ' ((d)) = — &«' (: &Isr, (0)&Isz, (w):). (85)
27t

In the same manner we arrive in the case of the homodyne
cross correlation scheme by applying Eqs. (24) and (25)
at

AC(u)) = gig2giq2e 8( ' )(cu), (86)

It is straightforward to relate the fluctuation spectrum
of the current to the corresponding spectrum of the light
we are interested in. Combining Eqs. (6), (11), (77),
(78), (82), and (83) we derive for the homodyne intensity
correlation scheme

Ssrr(re) = —f «e' (:&Esre(0)&Esre(e):) (00)

is the well known squeezing spectrum [33] which can
be recorded in both measurement schemes. Integrating
over the full frequency range yields the total (stationary)
squeezing effect,

f
2

dre SsrS(re) = (: (d'EsrS) (91)

Let consider now the Brst-order contribution in the lo-
cal oscillator field. In the homodyne intensity correlation
scheme we derive from Eq. (85) by using the correlation
function (20), its factored version, and the symmetry re-
lation (8)

Sj~")(~) = ITI'IRI&LQ SI/z(~) + SE/I(~) . (92)

The spectra SI/E(~) and S@/1(~) correspondingly are
defined by

where the intensity cross correlation spectrum 8( )(w)
is given by

Sr&e(re) = — des* (:0E r s( S)E0I r( s)e:)2'

8( ' )((u) = — d7 e' (: bIs i(0)AIs 2(~):). (87)2' Segr(re) = — dr e* (:EEsrS(e)Elsr(0):) . (94)

S2"'"(~) = ITI'IRI'&~QSsg(~), (88)

Whereas the spectrum S(2'2)((d) recorded in the homo-
dyne intensity correlation scheme is readily proved to be
real, this is in general not the case for 8(2'2)(ur) derived
in the cross correlation scheme. This difference is di-
rectly related to the different symmetry properties of the
observed correlation functions with respect to the delay
time as given in Eqs. (10) and (33).

It is worth noting that there is another way to de-
termine the spectra given in Eqs. (85) and (87). The
measured correlation functions can directly be Fourier
transformed instead of analyzing the spectral properties
of the photocurrents. Especially in the homodyne cross
correlation scheme this requires one to record the corre-
lation functions for positive and negative delay times.

We may now decompose the spectra with respect to the
orders in the local oscillator amplitude as already done
for the corresponding total effects. Let us pay atten-
tion to the phase-sensitive spectra, namely the squeezing
spectrum and the spectrum of the correlation between
intensity and Beld strength fluctuations. For the inten-
sity correlation scheme these spectra are derived from Eq.
(85) together with the correlation functions in (20) and
(21), substracting the corresponding factored versions.
Analogously, in the cross correlation scheme Eqs. (87),
(37), and (38) are used.

In the second order with respect to the local oscillator
field we find for the intensity correlation scheme

They fulfil the relation

S@/1((sd) = Sr/@((s))

so that Eq. (92) can be written as

(95)

dreEe (Sr~ ( )1 = (: drrrErsererSIsr:), (98)

whereas the overall effect of the imaginary part is zero,

S, ' (~) = 2ITI IRIEr,Q«SI/~((u) . (96)

Applying Eq. (87) together with the correlation func-
tion (37) and the relations (30)—(32) for extending this
function to negative w values, we get for the homodyne
cross correlation scheme

Si" (~) = ITIIRI&«4(IRI' —ITI')«[Sl/~(~)]
+i lm[S, /~(~)]). (97)

This result reveals that both the real and the imaginary
parts of the spectra defined in Eqs. (93) and (94) can be
determined, where the real part requires the application
of a beam splitter different from a 50%%u0. 50%%uo partition.
When the spectrum is derived from the correlation func-

tion Qi
' (v) it may be useful to construct the symmet-2 f 2

ric and the antisymmetric part of this function, respec-
tively, which directly yield the real and imaginary part
of Sl/@(w) by means of Fourier transforms. Integrating
the real part over the full spectral range yields the corre-
sponding overall effect of the correlation of field strength
and intensity fluctuations according to

which can be related to corresponding result for the cross
correlation scheme via it(d Im tSI/~((s))I = 0. (99)

S(2 2)
( )

S(2 2) (~) (89) These results show that both homodyne correlation
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schemes render it possible to detect phase-sensitive spec-
tral properties such as spectral squeezing and the spectral
correlation of intensity and field strength noise.

VI. SUMMARY AND CONCLUSIONS

In the present paper two kinds of homodyne corre-
lation schemes have been studied, a homodyne inten-
sity correlation scheme and a homodyne cross correla-
tion scheme. These schemes are of particular interest
in cases where low overall efFiciencies prevent the detec-
tion of phase-sensitive effects of quantized light fields by
means of standard balanced or unbalanced homodyning.
This advantage of the correlation techniques is due to
the fact that small efIiciencies act on the measured cor-
relation functions only as reduction by a factor, without
altering their time-dependent shapes. Contrary to this
situation, in balanced homodyne detection small overall
e%ciencies smooth out the measured field strength dis-
tributions and prevent the detection of the light effects
in which we are interested.

In standard homodyne detection schemes usually a
strong local oscillator is used. In this case one may derive
from the measured correlation functions in the two homo-
dyne correlation schemes the normally ordered variance
of the field strength operator of the signal field, negative
values of this quantities indicating squeezing. However,
the relative squeezing effect observed with a strong local
oscillator is very small. Its order of magnitude is given by
the ratio of the normally ordered Geld strength variance
of the signal to the intensity of the (strong) local oscilla-
tor. Moreover, local oscillator noise is not balanced out in
the homodyne correlation schemes. Consequently, small
classical excess noise of the local oscillator is effectively
amplified when the local oscillator is strong, which makes
the method less attractive for the detection of squeezed
light.

To overcome these disadvantages of the measurement
principle, we have studied the case of the local oscilla-
tor field being arbitrarily weak. In particular, it is ad-
vantageous to use a local oscillator being of the same

strength as the signal effects under study. This leads
to substantial modifications of the homodyne correlation
methods. First, the observable (relative) squeezing ef-
fect becomes much larger. Second, new phase-sensitive
effects become accessible. When the local oscillator is
weak, three different statistical effects can be simulta-
neously observed: the normally ordered intensity vari-
ance, the normally ordered field strength variance, and
the normally ordered correlation of the intensity and field
strength fIuctuations. Third, decreasing the strength of
the local oscillator effectively leads to a deamplification
of the disturbing effects of its classical noise. This re-
solves the problem that the local oscillator noise is not
balanced out in the homodyne correlation schemes.

The observation of three different efFects in one mea-
surement scheme is useful as long as a unique way of their
separation exists. It has been shown that this separation
is possible in general by making use of the difFerent de-
pendences of the effects on the amplitude and the phase
of the local oscillator. In the particular case of the homo-
dyne cross correlation scheme it turns out that the de-
tection of the correlation of intensity and field strength
Buctuations requires an input beam splitter of the cor-
relation device that significantly difFers from a 50%:50%%uo

partition.
Besides the direct measurement of the mentioned

effects, the corresponding spectral properties can be
recorded by the homodyne correlation schemes. Thus
three kinds of spectra are accessible, the spectrum of in-
tensity Huctuations, the squeezing spectrum and last but
not least the correlation spectrum of field strength and in-
tensity fIuctuations. Especially spectra of the latter type,
which give the spectral correlation of two noncommuting
observables, to our knowledge have not been studied so
far and their further investigation should be of some in-
terest.
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