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Analogy between photorefractive oscillators and class- A lasers
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Photorefractive oscillators are shown to have the same transverse properties as class-A lasers, in spite
of the different mechanisms of light amplification in both systems and the different microscopic physics.
A laser Ginzburg-Landau equation for the order parameter of photorefractive oscillators (PRO) is de-

rived and correspondences between parameters of PRO's and class-A lasers are given. The close similar-

ity between these two systems is evidenced by numerical calculations. Experimentally, a PRO is found
to emit stationary patterns such as pure mode patterns and vortex lattices, and to display a periodic
motion of vortices, all of which are characteristic of lasers.

PACS number(s): 42.60.Jf, 42.65.—k, 61.72.Lk

I. INTRODUCTION

In this paper we attempt to find a connection between
transverse pattern formation mechanisms in photorefrac-
tive oscillators (PRO's) and other nonlinear-optical sys-
tems. The analysis in this paper shows that PRO's corre-
spond most closely to class-A lasers. This results from
analytical treatment of the PRO equations and from com-
parison with the laser equations, from numerical analysis,
and from experiments with a Bi,2Si02o (BSO) oscillator.

We find that there are many similarities between
PRO's and class-3 lasers regarding the transverse prop-
erties of the optical fields in spite of different physical
mechanisms of light amplification: the photorefractive
crystal responds to the light intensity via the electro-optic
efFect [1,2] while the laser medium interacts with the opti-
cal field. The response time of the laser medium is very
small compared to that of the photorefractive material
(with response time between milliseconds and hours).
Consequently, the spectral-gain linewidth of the pho-
torefractive material is of the order of 1 Hz and is very
small compared to that of the lasers. Furthermore, the
spectral-gain linewidth of PRO's is very small compared
to the cavity linewidth, which is of the order of
megahertz. As shown in [3,4] this leads to an extreme
frequency pulling. The emission frequency of PRO's is
always close to the pump frequency (the frequency shift is
of the order of 1 Hz).

Pure "resonator modes" are emitted in PRO's when
spatially controlled losses (e.g. , cavity misalignment,
translation of an aperture off the axis of the cavity) are
used [1,5]. Multimode emission patterns are often non-
stationary, even with apertures restricting the number of

active modes. The time dependence of the emission is
often attributed to drift of the optical-cavity length
[1,6—9]. These can tune the cavity modes in or out of
resonance with the gain line. Nevertheless, it is possible
to restrict the emission of the PRO to stationary lower-
order transverse modes [5]. It was also demonstrated re-
cently [10] that a photorefractive oscillator can be tuned,
like a laser with a narrow gain line, to individual
transverse-mode families. Interaction of the active modes
can result in stationary patterns or mode competition or
simultaneous mode emission corresponding to dynamics
[10].

Several models have been formulated to describe the
emission of PRO's [2—4, 11,12]. In [11], e.g. , a set of
equations similar to those of a homogeneously broadened
single-mode laser was derived and numerical simulations
showed emission patterns similar to those of lasers [13].
The above models describe diffusion-type photorefractive
media (whose gain is due to difFusion of electrons). In
this paper, in contrast, we consider the drift mode.

In spite of the differences between PRO's and lasers,
the theoretical results in [11]suggest an analogy between
these two systems. In this paper, these similarities are
substantiated by deriving an amplitude equation for
PRO's which is isomorphic to that of class-A lasers; and
by giving experimental evidence of the PRO's laserlike
emission. In Sec. III, a laser Ginzburg-Landau equation
(LGLE) is derived for PRO's and the correspondences
between PRO and laser parameters and variables are
given. The numerical results given in Sec. IV support the
analogy of PRO's and class-A lasers. In Sec. V, experi-
mental observations of the laserlike properties of a BSO
oscillator are reported. In Sec. VI, the compatibility of
the model with the observed behavior of the PRO with
large Fresnel number is discussed.
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II. MODEL FOR PHOTOREFRACTIVE OSCILLATORS

In the models for photorefractive oscillators
[2—4,6, 11,12], the formation of the refractive-index grat-
ing is assumed (following the initial work [14)) to result
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from the interference of the pump radiation and the radi-
ation of the field oscillating in the resonator. This physi-
cal process [15] is the following. Light ionizes the atoms
and the electrons drift or/and diffuse in the presence of
the interference pattern. The motion of electrons results
in a spatial separation of charges, and consequently in the
modulation of the refractive index of the material by the
linear electro-optic efFect. The gain depends on the grat-
ing fringe spacing, the phase shift between the interfer-
ence pattern and the refractive-index graining, and the
amplitude of the refractive-index modulation. Diffusion-
type crystals (e.g., BaTi03) have large-amplitude index
modulation compared to drift-type crystals (e.g. ,
Bi,2Si020). In the former type of crystals, the maximum
transfer of energy from the pump beam to the generated
signal occurs when the index grating is shifted A/4 with
respect to the interference pattern (A is the grating
period) [6,16]. This corresponds to a phase shift of
N=vr/2. For drift-type crystals, a dc electric field is re-
quired for a higher amplitude of the refractive-index
modulation. However, the phase shift in the drift mode
is small and the grating moves, increasing the phase shift
corresponding to optimum gain [17—20].

With optical feedback, the pump beam scattered by the
imperfections of the crystal along the optical axis can ini-
tiate the oscillation process. The emission frequency is
pulled by the resonator to realize the optimum combina-
tion of gain and loss.

Our starting point for the description of a PRO is the
expression for the spatial profile of the refractive-index
grating in the stationary case. With the total optical field
and the total index of refraction given by

E(r, t ) =Ez(r, t )exp(ik„r i cozt)—
+E„(r,t )exp(ik„r i co„t)+c.c—

Here n, is the saturated value, and y is the decay rate of
the refractive-index grating (y is usually of order of a
magnitude of 1 s '; n, depends on the dc voltage ap-
plied). @0 is related to the local response of the crystal
under illumination [4,17]. For diffusion-type pho-
torefractive material 40=m. /2. Here drift-type material
is considered; thus 40 is small. 40=0 is therefore as-
sumed.

The equation for the generated optical field is derived
in the paraxial approximation for a resonator with curved
mirrors [3,11,12]. The field is fed by the pump field
which is scattered from the index grating. The equation
for the generated field in the mean-field approximation is

BE„
Bt

2—(1+iP)E„+ib.coi —r E„+iEn

(3)

BE„=~[—(1+iP)E„+idVE„+iEn*] . (4)

Here ~ is the photon decay rate (usually of order of mag-
nitude 10 s ' and thus y «~). p is the resonator fre-
quency detuning from the gain line center, hood is the fre-
quency separation between transverse-mode families of
the empty resonator,

V =(1/r )(8 /Bp )+(1/r)(d/dr)+8 /Br

is the Laplace operator in the plane normal to the optical
axis of the PRO, and (r, P) are the polar coordinates in
this plane. The spatial coordinates are normalized to the
radius of the fundamental Gaussian (TEM00) mode of the
resonator, and the frequencies p and b,coi in (3) are nor-
malized to the width of the TEMoo mode resonance.

To determine 0 and @ a plane-mirror-cavity case is
considered for simplicity. Then Eq. (3) takes the form

n(r, t)=n(r, t)ex (pqi. r —iQt)+c. c. ,

respectively, this can be written as [4]

E~(r )E„*(r)n(r)=n, exp(i@) .
Jo

n,
n, (r, fl)e xp[i@(r,Q)]= . exp(iC&0) .

1 —i 0/y (2)

Here E (r ) and E„(r) are the envelopes of the pump and
signal field and n(r, t) is the enveloIie of the refractive-
index grating. A=co —co„and q=k —k„. r=(x,y) is
the coordinate in the transverse plane: there is no depen-
dence on the longitudinal coordinate due to the mean-
field approximation. Io is the intensity of the total opti-
cal field in the photorefractive material: JQ=~E (r)~

2
0 p

+~E„(r)~. It is assumed that the signal is small com-
pared to the pump, ~E„(r)

~
&& ~E (r )~, and the pump is

undepleted. n, is the amplitude of the refractive-index
grating and N is the phase shift between the refractive-
index grating and the interference pattern. The values n

&

and @ depend among other things on the frequency 0:
the expression for n, and 4& is [3,4, 14,17]

Here d =AL/(4~T) is the difFraction coefficient. The
spatial coordinates are in this case not normalized to the
radius of a beam waist but to the wavelength A, of the ra-
diation. L is the round-trip length of the resonator, and
T is the total round-trip loss of the PRO. We search for a
stationary solution of (1), (2), and (4) in the form of a tilt-
ed wave [21]E,(r) =Eaexp(ik r ), which leads to

—in,

~E ~2 (1 iQ/y)[1 i—(P+dk )]— (5)

Since the right-hand side of (5) is real
(P+dk )II/y=1. The intensity of the generated field
~E0~ is maximal when Q=y, as seen from (5). This
means that the phase shift 4 is @=arctan (II/y) =m/4
for drift-type photorefractive material (different from
diffusion-type materials). The detuning is p= 1 —dk,
and the intensity of the generated field at this optimum
frequency shift is

~ E,„~/
~

E (
= ( n, /2 —1 ).

The condition of maximum gain leads to "frequency-
shift" phenomena in drift-type PRO's. Indeed the zero-
mode

~ k0 ~

=0 is maximally amplified for nonzero detun-
ing P= 1. In lasers and diffusion-type PRO's there is no
such frequency shift, and there the transverse wave num-
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ber of the generated wave is proportional to negative de-
tuning: )k~i= P—/d.

Due to the slow response of the photorefractive materi-
al, the refractive-index grating builds and decays with a
time delay with respect to the optical interference pat-
tern. The low time variation of the refractive-index
profile has been previously analyzed [2,11,12]. We derive
the time-dependent equation for the refractive-index
profile directly from (1) and (2), which actually are the ex-
pressions for the Fourier components n(Q). Multiplying
both sides of (1) by (1 i Q/y—) and using the inverse
Fourier transform to convert to the time domain, one ob-
tains

an = —y n —i—n —n,
Bt y

' Io
(6)

Using the same normalization of the optical field one ob-
tains from (3)

V=a —(1+iP)E+i Aco
4

—r E+in (8)

The system of equations (7) and (8) is the basis for the
analysis of the field dynamics of the PRO.

III. ANALOGY WITH CLASS- A LASERS

The similarity with class-A lasers is shown in the fol-
lowing by adiabatic elimination of the fast-relaxing opti-
cal field from (7) and (8). The envelope of the refractive-
index grating is expressed for this purpose in terms of the
optical field in Eq. (8) (assuming BE/Bt =0):

[In all equations the particular reference frequency
co„f=Qis used. Consequently, (1) and (2) are rewritten
with co„f=0,then the inverse Fourier transformation is
carried out, and finally co„f=Qis again reintroduced to
obtain (6).]

Taking into account that Q/y=tan(4)=1, and nor-
malizing the amplitude of the generated field to the pump
field, E(r, t ) =E„(r,t)/E~(r ), Eq. (6) transforms to

Bn . E*
' 1+ iEi'

n ln n

where d is the diffraction coefficient, as defined in Sec. II.
Equation (11) was derived by adiabatic elimination of

the fast-relaxing variable of the optical field, but it is writ-
ten in terms of this enslaved variable (instead of the re-
fractive index) to show the similarity with the class- A
laser amplitude equation. This is possible since the
enslaved optical field is an explicit function of refractive
index, and vice versa.

The stationary solution of (11) is E (r, t ) =Eoexp(ik r ),
where Eo=n, /2 —1 and d ~k~ =1—P. This means that
certain spatial modes with spatial wave numbers

~

k
~

pro-
portional to the resonator detuning are favored, taking
into account the linear frequency shift. (This is similar to
a laser [21] except for the frequency shift. ) In the case of
a resonator with spherical mirrors (10) certain transverse
modes are favored correspondingly. Analysis of (11)
shows an amplification profile of Lorentzian shape in the
optical frequency domain as well as in the spatial wave-
number domain. (As shown in [22,23) the gain profile in
the frequency domain corresponds precisely to that of the
spatial wave numbers for lasers. )

The half-width of the oscillation frequency range of the
PRO calculated from (11) is Ap =n, —2=2~Eo~ . (Ap is
the maximal detuning at which a particular mode is still
above threshold. ) The half-width b,p of the PRO is equal
to the half-width of the oscillation range of lasers. The
b p of the PRO is determined by the spectral width of the
empty-resonator mode to which all frequencies are nor-
malized (e.g. , the TEMOO mode), and by n„which corre-
sponds to the pump.

Further, the differential operator in (11) is expanded in
a Taylor series:

lns in,

1+iP id V —(1+i)+i(P dV —1)—
=(1+i)(n, /2)[1 —( I +i )(p dV —1)/2—

+i(P dV' I—)'/4+—

n =i 1 iP+ibcu—p2 (9) (12)

This expansion is well justified if the condition
E=p —dV~ —1 &(1 is fulfilled. The analysis of (10) and
(11) shows that this is the case for generation near the
threshold, when ~E~ &&1 (or ~E„~(& ~Ez). For larger
pump and larger intensities of generated radiation of the
condition of smallness of E holds only approximately (i.e.,
e & 1). The Taylor expansion (12) means that the
Lorentzian shape of the gain line is replaced by a para-
bolic one. This leads, in general, to an additional filtering
of the transverse wave numbers far from the gain-line
maximum.

The expansion (12) truncated at the second-order term
and inserted into (11) leads to the following equation:

in,
E( 1 +i)+-

I+iP ib, oui(V /—4 r) 1+IEI—
(10)

Here ~= ty is a normalized time.
Equation (10) is similar to the class-A laser equation in

[21,22]. In the case of a resonator with plane mirrors,
(10) reduces to

Substituting (9) into (7) and letting the differential
operator [1+iP ihcoi(V /4 r)]—' act on bo—th sides
of (7) yields
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BE
a7-

n, n, 2—1 (1+i)E i— (P d—V —1)E
2 2

+I(i+1) (P—dV —1) E — (1+i)X
8 2

= —i~ f;[1+i(co;—co)]

2C
1+i (co, —co)a./yi

n, —1 (1+i)E i (P——d V —1 )E
2

8
(p—d V —1) E—(1+i )EIEI

Here the cubic approximation

X=EIEI'/(1+ IEI') =EIE I'2«,
is used to simplify the nonlinear term in (14). In case of
curved mirrors Eq. (14) transforms to

BE
B7.

2n, n, V—1 (1+i)E i P——b,coi r —1 —E
2 2 4

V2
+ P—bco r ——1 E (1+i)EIE—I

8 4

(15)

Equations (14) and (15) are the same laser Ginzburg-
Landau equation that has been derived for class-A lasers
in [21,22]. This indicates that the transverse-field dynam-
ics in PRO's and class-3 lasers are similar.

%'e note that the analogy between PRO's and class-A
lasers may be also shown without referring to the LGLE
(15). The transverse-mode expansion of (7) and (8) and
the adiabatic elimination of the fast variable of the opti-
cal GeM leads to

1+ip+i co;

X f deaf pdpA q
. (16)

Here f;(~) and co; are the amplitudes and eigenfrequen-
cies of the resonator modes A, (r). On the other hand,
the equation for mode amplitudes of a class-A laser is
[24]

+i (P—dV —l)X'i—(i +1) (P—dV —1) X'.
2 8

(13)

He«X=EIEI'/(I+IEI') is small (X'(&E) near the
generation threshold. Retaining in (13) only the terms of
leading order [the term (p —d V —1)E is of the same or-
der of smallness as X], Eq. (13}is simplified to

X f

deaf

pdpA;* . (17)

Here co, is the atomic frequency and co is the unknown

laser frequency. The frequencies P, hanoi, co, , co„andco in

(16) and (17) are scaled with the cavity linewidth i~.

Equations (16) and (17) are similar, and in the single-
mode case are identical (except for the frequency shift
and pulling}. In the general multimode case a difference
arises, which is due to the additional self-defocusing [the
imaginary part of the nonlinear term in (15)] of PRO's
absent for class- A lasers.

The results of a numerical integration of the full set of
PRO equations (7) and (8) and of the LGLE's (14) and
(15), as well as of the full Maxwell-Bloch equation system
for Class-A lasers, are given in the next section. The
comparison of numerical results confirms the validity of
the LGLE for PRO's and the equivalence of PRO's and
class- A lasers.

The following correspondences are found between pa-
rameters for the two systems.

(i) The pump parameter of the lasers D0 corresponds to
n, /2 of PRO's In d. rift-type PRO's, the dc field corre-
sponds to the pump in real lasers since n, is directly pro-
portional to the dc Geld.

(ii) The detuning in lasers corresponds to
p'=p —II/y=p —1 for PRO's. This means that selec-
tion of transverse-mode families can occur through reso-
nator tuning as in lasers. The di8'erence with the laser is
that a PRO detuning is smaller by b,p= 1 than for a laser
to excite the same transverse-mode family (the frequency
shift).

(iii) Mode beats are on a very slow time scale. The fre-
quency b,cob„,= b,nary /v, since the time in (14}and (15) is

scaled. This was also found in [3,11,12] and interpreted
in terms of frequency pulling.

(iv) There is a transverse mode sele-ction in PRO's
analogous to that of lasers. This selection occurs for
lasers when the spectral width of the gain line is narrower
than the free spectral range of the resonator. In the PRO
the selection occurs not by the finite gain linewidth, but
by the Gnite width of the empty-resonator modes. For
simultaneous oscillation of several transverse modes, it is
necessary (but not sufficient) that the linewidths of the
resonator modes overlap. Mathematically the terms of
fourth-order diffusion in (14) and (15) are responsible for
transverse-mode selection in lasers and PRO's.

There is one important difference between PRO's and
class-A laser: the imaginary part of the nonlinear term
[e.g., in (14) and (15)] causes self-defocusing. This can
inhuence the dynamics when at least a few transverse-
mode families are active. Then the self-defocusing could
cause a transfer of energy to the lower-transverse-mode
families. In the case of emission within only one
transverse-mode family, the defocusing plays no role,
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which also follows from comparison of (16) and (17).
It follows the the PRO behaves like a "very slow"

class-A laser and with additional self-defocusing and fre-
quency shift. In the case of only one active transverse-
mode family (the case studied experimentally in this pa-
per) the PRO behaves completely identically to a class-A
laser.

0 X

X 0 X

I I I

—3

cx o„~

g
0 X

IV. NUMERICAL COMPARISON
OF PRO'S WITH LASERS

A numerical integration of PRO equations (7) and (8),
of LGLE's (14) and (15), and of the full set of Maxwell-
Bloch equations for the class-A laser case (e.g., in the
form of those in [22,23]) was made, in order to verify the
equivalence of PRO's and class-A lasers. Integration was
done for the case of only one spatial dimension, since it
allows one to compare the result with higher accuracy for
limited computing time. The split-step method has been
used, where the nonlinear terms were calculated in the
space domain, and the Laplace operator in the Fourier
domain.

Tunabiiity. The intensity and the frequency of emitted
radiation of a PRO dependent on detuning are given in
Figs. 1(a) and 1(b) as calculated from (7) and (8). The tu-
nability is evident from the amplitude dependence Fig.
1(a). The emission frequency is equal to the mode fre-
quency when a mode is tuned precisely to the gain line, as
seen from Fig. 1(b). The emission frequency depends
linearly on the detuning near the central frequency of the
mode, in correspondence with (15). For larger detunings
a deviation from the linear dependence is seen: it is relat-
ed to the higher- (second-) order diffraction term omitted
in going from (13) to (14) [the imaginary part of the
second-order difFusion term in (13)].

Coexistence and competition of modes It is known .[25]
that the neighboring transverse modes do not coexist in
class-A lasers in the one-dimensional (1D) case (the spa-
tial overlap of intensities of neighboring transverse modes
is larger than the coexistence threshold for class- A
lasers). This leads to hysteresis in the tuning curve as
shown in Fig. 1(c). The situation is completely different
for class-8 lasers where the neighboring modes coexist
simultaneously and beat [Fig. 1(d)]. Our numerical calcu-
lations show that the hysteresis in the tuning curve of
PRO's [Figs. 1(a) and 1(b)] is very similar to that of
class-A lasers. Also, the transition between neighboring
transverse modes has been analyzed numerically for
class-A and Blasers (see Fig. 2), and-compared to that of
PRO's. The transition for PRO's is the same as for
class- A lasers.

The frequency shift. The comparison of Figs. 1(a) and
l(b) with Figs. 1(c) and 1(d) shows that the excitation of a
particular transverse mode occurs for different detunings
for lasers and PRO's. The difference of detunings is con-
stant: bP=1 for all transverse modes. This illustrates
the frequency-shift phenomenon of drift-type PRO's.

The phase shift. PRO equations (7) and (8) are invari-
ant with respect to the reference phase shift between the
refractive-index grating and light interference pattern:
the system chooses the "correct" phase shift and correct

—0, 0i

(b)

I I I

—5 -4
I I I

-3

—0

—-0. Oi

05 04 03 0~

—0. 5

—0

I I I I

p
—5 —4

I I I

-3 -2

05 04 03 0&

)( 05

—0

I I I

-5 —4
-0.5

FIG. 1. Tuning curves for PRO's [(a) and (b)] for class-A
lasers (c), and class-B lasers (d) in the 1D case. The total power
emitted (a) and its frequency (b) depending on the resonator de-
tuning P are calculated by numerical integration of (7) and (8).
The laser frequency dependencies (c) and (d) were calculated by
numerical integration of the full set of Maxwell-Bloch equations
(in a form used in [22,23]). The crosses correspond to the varia-
tion of P towards larger values and the circles towards smaller
values of P. b,co~= 1; other parameters: n, =3, ) /a. =0.01 for
PRO [(a) and (b)], DO=1.5, y~/a. =3.5, y~~/a=3. 5 for class-A
lasers (c), and Dp=1. 5 p~/K=3 ~ 5 &~I/K=0. 2 foI class-B lasers
(d) ~ Power increases with negative detuning due to the larger
volume of the higher transverse modes.



ANALOGY BETWEEN PHOTOREFRACTIVE OSCILLATORS AND. . . 4145

frequency independent of this reference phase shift 4. If
a value of 4 different from its "correct" value 4 = @ /4 is
used in (7) it only changes the frequency of the solution.
Equations (7) and (8) were numerically integrated with
values of N different from its "correct" value and the ra-
diation frequency at the central frequency of the mode
closest to resonance was calculated. Figure 3 shows the
dependence of the radiation frequency on the value of the
phase 4. It is evident that the optimum value of the
phase is C&=n /4 in correspondence with the theoretical
analysis.

Standing wave-(SW) and traueling wa-ue (TW) patterns.
It is known that a stationary SW pattern is emitted by
class-A lasers slightly above threshold [23]. At a particu-
lar value of the pump the symmetric SW pattern is
changed to an asymmetric TW pattern. Figure 4 shows
the transverse distributions of the optical field for

0

FIG. 3. Frequency of the fifth 1D Hermite mode at the de-
tuning corresponding to the maximum of its intensity, for
different values of phase shift, as given by numerical integration
of (7) and (8). [The linear term n (1 i)—has been substituted by
a general one: n [1 i ta—n(C&)] in (7).] Other parameters as in
Fig. 2.

I . ~
I

s&&

$.
pvC

different values of the pump: a SW (or Hermite mode)
pattern near the threshold [Fig. 4(a)], the pattern dom-
inated by a TW for large values of the pump [Fig. 4(c)],
and the pattern for intermediate values of the pump [Fig.
4(b)]. The comparison of Fig. 4 with the patterns calcu-
lated for class-A lasers in [23] shows the good correspon-
dence.

Standing-maUe —traUeling-maUe transitu''on. A con-
venient parameter to characterize the spatial pattern of a
laser, and to distinguish between the SW- and TW-
dominated patterns is

f kIE(k)I'dk
K=

f Ik ll&(k) I'dk
(18)

IEI

U ~ 'I I Ifg)P —--
9 I II

4 ~~ EL

sl

JA '%

I ill &

0. 5

0
0

0, 5

0
0

IEI

(c) 0. 5

FIG. 2. Evolution of the emitted 1D pattern as detuning is
varied from P= —10 (top of the figure) to P= —8 (bottom) for
class-A (a) and class-8 (b) lasers, and for PRO's (c). The hor-
izontal axis corresponds to the spatial coordinate; time continu-
ously changes along the vertical coordinate over the value
Et=25 from top to bottom. Eco&=2; Do=2 (pump value)

[n, =4 in (c)];other parameters as in Fig. l.

0
0

FIG. 4. Transition from standing to traveling wave of a PRO
in the 1D case. Stationary transverse patterns for different
values of n, : (a) n, =2.25, (b) n, =2.75, (c) n, =3.25. P= —5.2;
other parameters as in Fig. 1.
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Here the spatial spectrum E (k ) is calculated by integra-
tion over the whole laser cross section (here over the
whole 1D space), or over all limited range. Eis 'then the
average tilt of the laser beam with respect to the optical
axis, or of part of the beam, depending on the integration
limits. The numerically calculated dependence of the
time-averaged value of IC~ of the PRO on the pump is
shown in Fig. 5, where the transition between SW-
( T-0) and TW-dominated patterns ( T-1) can be seen.

The SW-TW transition is characteristic for class-A
lasers, as seen from Fig. 5(b) (crosses). For class-8 lasers
transverse dynamics sets in before the SW-TW transition
occurs. The error bars in Fig. 5(b) indicate the nonsta-
tionarity of this T parameter for class-B lasers.

Defocusing An.umerical test of self-defocusing in (14)
and (15) was made by calculating the spatial size of an
emitted mode (fifth 1D Hermite mode): The self-
defocusing causes an increase of mode width. (Self-
defocusing also inAuences the dynamics, but the quantita-
tive characterization of the inhuence on the dynamics is
complicated. ) For the purpose the mode width was cal-
culated for different values of the self-defocusing parame-
ter in (15), by replacing the nonlinear term (1+i)E~E~ in
(15) by a generalized one (1+ic)E~E~ and varying the
parameter c. The results are given in Fig. 6: comparison
with the spatial width of the mode calculated from (7)

0
0

—0. 9

0. 5 1, 5 C

and (8) yields the value of the self-defocusing parameter
C =1.00+0.05, in good agreement with the analytically
obtained value of c =1.

V. EXPERIMENT

The Bi,2Si02o oscillator used consists of the active
crystal, two plane mirrors, and two curved mirrors in a
folded-ring resonator configuration as shown in Fig. 7.
The BSO crystal is placed close to one of the curved mir-
rors in an orientation so that the electric field lies in the
(001) crystalographic axis and the pump beam of 514.5
nm wavelength from a single-mode Ar laser propagates in
the (110) direction. The electric field is along the (110)
axis. The gain of the photorefractive medium is unidirec-
tional and thus the generated light propagates with the
pump.

Mirror M2 has 15'Fo transmission which allows one to
observe the field generated. Mirror M& is 5% transmit-
ting to allow injection of a reference beam into the reso-
nator in the direction opposite to that of the propagation
of the generated beam. This reference beam is used to
measure the transmission of the resonator at the pump
frequency for the purpose of active stabilization of the
resonator length. Because of the small intensity, perpen-

FIG. 6. Width of the fifth 10 Hermite transverse mode de-
pending on the parameter c of self-focusing as obtained by nu-
merical integration of (15) (circles). The width is normalized to
the mode width in the case of no self-focusing or -defocusing.
The dashed line corresponds to the mode width as calculated by
integrating (7) and (8) (r =1.185). The parameters are Ac@&=2,
P= —9, n, = g, and y/s =0.01.

0. 5— "()C)
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FIG. 5. Value of asymmetry parameter (tilt TI for PRO (a),
class-2 laser [(b), crosses], and class-B laser [(b), circles with er-
ror bars] depending on the control parameters n, and Do, re-
spectively. Circles indicate the average tilt and error bars the
variance of T. Other parameters as in Fig. 1.

FIG. 7. Schematic diagram of the experimental setup. M&,
M2, and M are resonator mirrors, A the aperture, Eo, E~, and
E„the generated field, pump field, and reference field, respec-
tively.
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dicular polarization, and propagation in the direction op-
posite to that of the pump beam, the reference beam does
not affect the light amplification.

The angle between the pump beam and the oscillator
axis was chosen close to 1 for optimum gain (which was
found from gain measurements with a moving grating as
described in [17—20]). The pump-beam intensity used is
typically 10 mW/cm . The dc field is set to only 8.0
kV/cm so that the gain is low enough to allow the emis-
sion of pure resonator m.odes when an aperture of
sufticiently small diameter restricts the resonator Fresnel
number.

The generated radiation coupled through mirror Mz is
recorded by a charge-coupled device (CCD) camera. To
detect phase singularities or vortices, the radiation beam
can be superposed at a small angle with a uniform (ex-
panded) beam from the pump laser. This produces dislo-
cations in the interference fringe pattern where phase
singularities are located [26,27].

With the ring-resonator length of 2.1 m and 1.5 m radii
of curvature of the curved mirrors, the longitudinal- and
transverse-mode frequency separations are 140 and 57
MHz, respectively. The beam waist of the TEMOO mode
is 108 pm. With the crystal loss of +=1.0 cm ' and in
the absence of a limiting aperture, the resonator
linewidth [full width at half maximum (FWHM)] is —50
MHz. The number of active modes is controlled by the
aperture inside the resonator. Transverse-mode frequen-
cies within one free spectral range of the empty resonator
are schematically shown in Fig. 8.

For resonator tuning, one of the curved mirrors is
mounted on a piezotranslator. The passive resonator
transmission can be monitored through M2 using the
reference beam which is injected into the oscillator
through mirror M, . Due to the large crystal loss, the
finesse of the empty resonator is only —1 and thus the
resonances of the longitudinal modes overlap in frequen-
cy space. The transverse modes are consequently not

resolved. The observed change of resonator transmission,
as the cavity length is varied, is only 20% as shown in
Fig. 8. This small variation of transmission is, however,
sufhcient to distinguish between different points within a
free spectral range (Fig. 8).

The PRO can be made to emit in one or another
transverse-mode family by changing its resonator length.
In this way sequences of transverse-mode emission can be
explored for different diameters of-the internal aperture
when the resonator length is changed.

When the aperture is sufficiently small (diameter d less
than 1 mm), only the fundamental mode TEMoo is active.
The maximum power occurs as expected at a resonator
length where the reference-beam transmission is also
maximal. The scan of the cavity length within one free
spectral range in this case results only in a change of the
intensity of the TEMoo mode.

The emission of q = 1 modes occurs when the aperture
is increased (d =1 mm). Then the emission in the q =0
mode can change to emission in the q =1 mode family,
while the resonator length is scanned. There is a region
of the resonator length where there is no emission. This
is as in class-A lasers where the overlap of resonator-
mode profiles is not sufhcient for simultaneous emission
of modes if the pump is not large enough [25,24]. When
the aperture diameter is increased su%ciently to allow
emission up to modes of transverse order q =3, the se-
quence of mode families 0,3,1,2,0 is expected; q =3 be-
longing to the adjacent longitudinal free spectral range.
The observed sequence as shown in Fig. 9 confirms this.
TEMOO-mode emission is observed around the resonator

(a)

5R 8 3% i fh 6~-I 4~-f

I I

50 iOO
f (MHz)

0 B (d)
FIG. 8. PRO resonator mode spectrum corresponding to Fig.

7. q" signifies transverse-mode order q and longitudinal order n.
The transmission T of the reference beam is also shown. 0, 2,
B, and C indicate regions of oscillation of mode families q equal
to 0, 3, 1, and 2, respectively, when the aperture allows oscilla-
tion only up to the q =3 family.

FIG. 9. Sequence of patterns observed when the resonator
length is changed through one free spectral range (mode fami-
lies up to q =3 are allowed to oscillate). Only one representa-
tive pattern for each mode family is shown. (a) q =0, (b) q =3,
(c) q = l, and (d) q =2. The fringes are due to interference with
the pump beam (superimposed to detect vortices).
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length at the maximum transmission of the reference
beam (Point 0 in Fig. 8). Emissions corresponding to
q =3, 1, and 2 are observed in regions 3, B, and C, re-
spectively. Furthermore, a narrow region with no emis-
sion is observed between B and C. This is due to the rela-
tively large frequency separation between 1" and 2" (see
Fig. 8) compared with that of other pairs of adjacent
modes (for example, between 0" and 3" ' or between 2"
and 0" '). For larger apertures, other mode families can
be emitted. For d =1.2 mm, modes up to q =4 are ob-
served in the sequence 0,3,1,4,2,0 consistent with Fig. 8.
The expected sequence of modes up to q =5 is also ob-
served. As the aperture is further opened the number of
oscillating-mode families is increased, and the spacing be-
tween mode families becomes small. Mode interaction as
well as resonator-length drifts do not allow us then to
unambiguously observe the sequences of emission of
modes as the resonator length is changed.

It is a common observation that the transverse-
intensity distribution of PRO field changes randomly in
time (e.g. , from one mode or combination of modes to
another) even when no intentional change of resonator
length is made [1,5,7—9]. It may be expected that this is
due to mechanical and/or thermal fiuctuations of the
resonator length. To distinguish dynamical effects from
such technical ones, an active stabilization which can
lock the resonator length to one corresponding to an ex-
tremum (i.e., minimum or maximum) of the reference
transmission was used. This stabilization scheme has to
handle changes of the PRO resonator length as well as
pump-frequency fluctuations. A length stabilization of
the PRO resonator alone is not suScient. Since the "gain
line" of the PRO is practically at the pump frequency, a
control of the PRO resonator length with reference to the
pump frequency controls both pump-frequency and PRO
resonator-length fluctuations as required.

When the resonator is frequency stabilized, only modes
which correspond to the stabilized resonator length are
observed. Without stabilization, the oscillator does emit
all modes of the resonator which are not suppressed by
the aperture.

For an aperture diameter of I mm, the intensity of the
TEMoo mode is stable when the resonator length is stabi-
lized to the maximum (Fig. 8) of the reference transmis-
sion. Modes of the family q = 1 are the only ones emitted
when the resonator is stabilized to the minimum of the
reference transmission. In the latter case the hybrid
TEMo& "doughnut mode" is emitted. In the presence of
astigmatism of the cavity, the constituent Hermite modes
TEMo& and TEMjo have different emission frequencies
and beating between these modes can occur. This beating
within the q =1 family ("unlocked doughnut") corre-
sponds to an alternating emission between Hermite
modes of orthogonal orientation and "doughnut" modes
of opposite helicities [28,29]. Because of the very small
polarization decay rate, the oscillating modes are strong-
ly frequency pulled towards the gain line center of the
material. Consequently in the "unlocked doughnut*' case
the difference of frequencies of the active constituent
modes is of the order of 1 Hz. Thus alternation between
the four mentioned patterns shown in Fig. 10 occurs with

(b)

(d)

FIG. 10. The "unlocked doughnut. " Output alternates be-
tween (a) Hermite 01 mode, (b) right-hand helical wave, (c) Her-
mite 10 mode, and (d) left-hand helical wave.

—1 Hz period.
Alternation between patterns of higher-mode families

(e.g. , q =2) is also observed. As [10] suggests, this can
also be used by astigmatism, which lifts the degeneracy
between modes of the same family.

When the frequency separation between adjacent
transverse;mode families is small, simultaneous oscilla-
tion of different mode families can occur. The dynamical
patterns corresponding to the beating of these modes are
then observed.

These simultaneous oscillations can manifest them-
selves in "spinning vortices" (also observed in class- A
lasers [24]). Several vortices move then on a circle
around the optical axis. These spinning vortices appear
when patterns with multiply charged phase singularities
are simultaneously oscillating with a TEMoo mode. Spin-
ning vortices were observed here for aperture sizes which
allow the simultaneous emission of the q =2, 3, or 5
mode family and the fundamental mode. Corresponding-
ly, two spinning vortices [Fig. 11(a)] were observed which
correspond to the beating of 2" and 0"+' modes in Fig. 8.
Similarly, in the region between q =0 and q =3, three
spinning vortices are observed [see Fig. 11(b)]. For a
larger aperture (d =1.5 mm), five spinning vortices [Fig.
11(c)] are observed, corresponding to the simultaneous
oscillation of 0" and 5" modes. The frequency of rota-
tion of the spinning vortices in all three cases is of the or-
der of 1 Hz. Similarly, and for a slightly larger aperture,
simultaneous oscillation of the doughnut mode and a
mode of family q =6 is observed, corresponding to the
minimum of the reference transmission (Fig. 12).

The motion of vortices on a 1 Hz time scale occurs due
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to the beating between modes which are frequency pulled
proportionally to y/i~ (as discussed above). Hence such
dynamics, which can only be indirectly measured in
lasers as the speeds are too high for 2D recordings, can

~P/ISNWl f Vg I ~
.—,

i IIki su

I K=

I ~

FIG. 12. Simultaneous emission of a q =1 "doughnut mode"
and a pattern of the q =6 mode family.

be observed here visually or recorded by ordinary video
equipment. In view of this slowing of the dynamics and
the equivalence with class-A lasers, we might call PRO's
"slow-motion lasers, " and use them generally as model
systems to explore class-3 laser physics.

For an even larger aperture (d =2.5 mm), a stationary
"vortex crystal" is observed as shown in Fig. 13. It is
built of positively and negatively charged singularities in
the fashion of a two-dimensional ionic crystal. This latter
phenomenon has been observed in class-2 lasers [30 31~.
rts existence and stability has also been predicted for

J ~

large-area class- A lasers [23].
Finally, no relaxation oscillations were observed in

PRO's. ~"'s. This may be considered as experimental evidence
of the equivalence of a PRO with a class-A laser rather
than with the class-8 laser.

VI. DISCVSSI(3N

The correspondence between the PRO and class-2
laser has been shown, particularly for cases of only a few

(c)
FIG. 1 1. Circling about the optical axis of (a) two vortices,

(b) three vortices (indicated by arrows), and (c) five vortices.
For {a) and (b) the emitted field is superimposed on part of the
pump radiation to detect vortices.

FIG. 13. A "vortex crystal. " The fringes are due to interfer-
ence with part of the pump beam {superposed to detect vor-
tices).
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BE
BT 2

—1 (1+i )E+id'O'E (1+—i) ~E~ E . (19)

Here d'=dn j2.
The CGLE (19) is completely difFractive (that is, the

coefficient of the Laplace operator is purely imaginary).
This is a consequence of the fact that there is no diffusion
term in the initial equations for the refractive index (7).

The analysis of the CGLE [32,33] allows then the cal-
culation of the radius of the core of the vortices and thus
the characteristic scale of the spatial structure in tur-
bulence, which is x o

=d'l(n, /2——1 ). Using the
definition of d' one obtains x o —=A,L /T.

This result is qualitatively compatible with the experi-
mental observations in [34] that the spatial scale in the
turbulent regime ceases to depend on the aperture radius
(or Fresnel number) when the latter is larger than a criti-
cal value. This experimental observation was interpreted
in [34] as due to a material property, namely, to diffusion
of charges [adding a real part to the coefficient of the La-

active transverse-mode families. Like a narrow-gain-line
laser, a PRO can be tuned from one transverse-mode
family to another by changing the resonator length. Pat-
terns such as "spinning vortices, " astigmatism-induced
pattern alternation, and "vortex crystals" typical for
class-A lasers are observed experimentally on a PRO.

It is interesting to analyze the opposite limit of (14):
the case when many transverse modes are active. This
can be realized in experiments for both lasers and PRO's
by using a resonator with plane (or almost plane) mirrors
and a wide aperture. The LGLE then transforms to the
complex Ginzburg-Landau equation (CGLE):

place operator in (7)]. But the infinite spatial scale can al-
ready be explained (without invoking particular material
properties) in the above sense that the structure results
already from the equations. Of course, whether the "gen-
eric" diffractive or the "nongeneric" material-dependent
scale dominates depends on the actual material used and
on oscillator parameters such as the pump.

Diffusion tends to stabilize solutions, and defect-
mediated turbulence does not occur in a CGLE with pre-
vailing diffusion. The solutions of the CGLE have in this
case been shown to be modulationally stable [32,33]. On
the other hand, for the diffractive COLE instabilities
occur at a lower pump.

Thus the common observation of turbulence in PRO's
would seem to indicate that these systems are rather
more diffractive than diffusive and material properties are
not so important. Correspondences with chemical sys-
tems therefore seem not so likely.

In addition, the dynamics of a vortex pair of opposite
charges is different for a diffractive and a diffusive CGLE.
In the diffusive case the vortices move straight towards
one another, and annihilate. In the diffractive case they
move parallel to one another (or around one another)
[35]. Our qualitative experimental observations of the
circling vortices hint at a more diffractive rather than
diffusive dynamics.

ACKNO%'LKDGMKNTS

This work was supported by Deutsche
Forschungsgemeinschaft and ESPRIT Project No. 7118
(TONICS). M. F. H. Tarroja acknowledges financial sup-
port from the Alexander von Humboldt Foundation. We
also thank D. Hennequin for useful discussions.

[1]J.-L. de Bougrenet e la Tocnaye, P. Pellat-Finet, and J. P.
Huignard, J. Opt. Soc. Am. B 3, 315 (1986).

[2] D. Z. Anderson aud R. Saxena, J. Opt. Soc. Am. B 4, 164
(1987).

[3] A. Yariv and S.-K. Kwoug, Opt. Lett. 10, 454 (1985).
[4] P. Yeh, J. Opt. Soc. Am. B 2, 1924 (1985).
[5] F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Resi-

dori, Phys. Rev. Lett. 65, 2531 (1990).
[6] F. Laeri, T. Tschudi, and J. Albers, Opt. Commun. 47, 387

(1983).
[7] G. Pauliat and P. Giinter, Opt. Commun. 66, 329 (1988).
[8] H. Rajbenbach and J. P. Huiguard, Opt. Lett. 10, 137

(1985).
[9] P. Pellat-Finet and J.-L. de Bougenet de la Tocnaye, Opt.

Commun. 55, 305 (1985).
[10]D. Hennequin, L. Dambly, D. Dangoisse, and P. Glorieux,

J.Opt. Soc. Am. B i1, 676 (1994).
[11]G. D'Alessandro, Phys. Rev. A 46, 2791 (1992).
[12] L. Dambly and H. Zeghlache, Phys. Rev. A 47, 2264

(1993).
[13]L. A. Lugiato, CJ.-L. Oppo, J. R. Tredicce, L. M. Narduc-

ci, and M. A. Pernigo, J. Opt. Soc. Am. B 7, 1019 (1990).
[14]N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Sos-

kin, and V. L. Vinetskii, Ferroelectrics 22, 940 (1979).

[15]P. Giinter and H. J. Eichler, in Electro Optic and -Pho
torefractive Materials, Proceedings of the International
School on Material Science and Technology, Erice, Italy,
1986, edited by P. Gunter (Springer-Verlag, Berlin, 1987),
pp. 206—228.

[16]M. D. Ewbank and P. Yeh, Opt. Lett. 10, 496 (1985).
[17] (a) J. P. Huignard and A. Marrakchi, Opt. Commun. 38,

249 (1981); (b) A. Marrakchi and J. P. Huignard, Appl.
Phys. 24, 131 (1981).

[18]P. N. Giinter, Opt. Commun. 41, 82 (1982).
[19]H. Rajbenbach, J. P. Huignard, and B. Loiseux, Opt.

Commun. 48, 247 (1983).
[20] G. C. Valley, J. Opt. Soc. Am. B 1, 868 (1984).
[21] P. K. Jakobsen, J. V. Molouey, A. C. Newell, and R. In-

dik, Phys. Rev. A 45, 8129 (1992).
[22] K. Staliunas, Phys. Rev. A 48, 1573 (1993).
[23] K. Staliunas and C. O. Weiss, Physica D 81, 79 (1995).
[24) A. B. Coates, C. O. Weiss, C. Green, E. J. D'Angelo, J. R.

Tredicce, M. Brambilla, M. Cattaneo, L. A. Lugiato, R.
Pirovano, F. Prati, A. J. Kent, and G.-L. Oppo, Phys.
Rev. A 49, 1452 (1994).

[25] K. Staliunas, C. O. Weiss, and M. F. H. Tarroja, Opt.
Commun. 102, 69 (1993).

[26] B. Baranova, B. Ya. Zel'dovich, A. V. Mamaev, N. F. Pi-



51 ANALOGY BETWEEN PHOTOREFRACTIVE OSCILLATORS AND ~ ~ . 4151

lipetskii, and V. V. Shumov, Sov. Phys. JETP 56, 983
(1982).

[27] F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Resi-
dori, Phys. Rev. Lett. 67, 3749 (1991).

[28] C. Tamm, Phys. Rev. A 30, 5960 (1988).
[29] F. Prati, Ph.D. dissertation, University of Milano, 1992.
[30] C. O. Weiss, Phys. Rep. 219, 311 (1992).
[31]W. Klische, C. O. Weiss, and B. Wellegehausen, Phys.

Rev. A 39, 919 (1989).
[32] P. Coullet, L. Gil, and J. Lega, Phys. Rev. Lett. 62, 1619

(1989).
[33] I. S. Aranson, L. Kramer, and A. Weber, Physica D 53,

376 (1991).
[34] F. T. Arecchi, S. Boccaletti, P. L. Ramazza, and S. Resi-

dori, Phys. Rev. Lett. 70, 2277 (1993).
[3S] S. Rica and E. Tirapequi, Phys. Rev. Lett. 64, 878 (1990).












