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We calculate the spontaneous-emission characteristics of a quantum-well exciton embedded in the
center of a planar microcavity and compare them with the emission characteristics in a single-mode cav-
ity with lateral confinement of the electromagnetic field. The results indicate that because the modal
structure of a planar microcavity consists of a spectrally dense continuum, the exciton decays into the
cavity continuum with a time constant close to the free-space spontaneous-emission lifetime, even under
conditions in which its spectrum displays the vacuum Rabi splitting. This behavior contrasts with the
case of cavities with lateral in-plane confinement of the field, in which the vacuum Rabi splitting is the
signature of a dramatic modification of the spontaneous-emission lifetime. The technological implica-

tions of this difference are discussed.

PACS number(s): 42.50.—p, 71.35.+z, 73.20.Dx, 78.45.+h

I. INTRODUCTION

The spontaneous-emission characteristics of rare-earth
ions or semiconductors in planar microcavities have been
a very active field of investigation over the past few years
[1-8]. Recently, a splitting has been observed in the ab-
sorption and the reflection spectra of quantum-well exci-
tons placed in the center of a resonant epitaxially grown
planar microcavity and has been interpreted as represent-
ing the vacuum Rabi splitting of the exciton resonance
[9,10]. By analogy to what is observed in cavity quantum
electrodynamics (CQED) experiments involving a single
atom (or a few atoms) in a single-mode cavity [11], this
splitting should attest to the strong (polaritonlike) cou-
pling between the main optical mode of the cavity and
the excitons in the semiconductor, thus opening the way
to the exploitation of CQED effects in technologically im-
portant situations, such as the possibility of fabricating
thresholdless quantum-well vertical-cavity surface-
emitting microlasers or single-mode highly efficient
light-emitting diodes.

One way of visualizing why the “strong-coupling” situ-
ation can improve the efficiency of semiconductor light
emitters is outlined in Fig. 1. Consider two subsystems
(the exciton and the cavity) each coupled to a different
decay channel. The exciton decays at a rate ¥ through
quasiomnidirectional spontaneous emission, while the
field in the cavity gives rise to a light beam directed along
the cavity axis with a decay constant of « for the energy
flow. If the exciton is strongly coupled to the cavity (i.e.,
the Rabi splitting g satisfies g >>«,y ), the energy oscil-
lates between the two subsystems at the Rabi angular fre-
quency g, so that in effect it spends half its time in each of
the two subsystems. If the cavity lifetime is much shorter
than the exciton spontaneous-emission time (x >>¥ ), then
practically all the energy stored in the excitons will be
channeled to the directional beam emerging from the
cavity. For this reason, the strong optical coupling be-
tween a semiconductor and a cavity has been thought to
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provide an attractive alternative to the recent proposals
for controlling spontaneous emission that require difficult
fabrication techniques, such as the photonic band-gap
structures [12].

There is an important difference, however, between the
spherical mirror cavities used in atomic CQED experi-
ments and the planar Fabry-Pérot semiconductor micro-
cavities that can be readily fabricated by standard
semiconductor-growth techniques: The former are essen-
tially single-mode cavities, even when they involve imper-
fect mirrors and transverse (lateral) leakage channels,
while the latter are intrinsically multimode with a spec-
trally dense continuum of modes, even when their mir-
rors are perfect and lossless. Because of this fundamental
difference, the simple intuitive images that have been
developed through the physical understanding of CQED
phenomena cannot be applied in a straightforward way to

Rabi
spontaneous coupling directional
emission beam
<---|EXCITON| _, | CAVITY |- - -b>

Y g K

FIG. 1. Schematic representation of the flow of energy in the
presence of strong Rabi coupling between an exciton and a
single-mode cavity: The exciton decays through spontaneous
emission at a rate ¥, while the cavity field decays at a rate k by
producing a directive beam. When the Rabi oscillation of the
energy between the two subsystems is faster than the two decays
(g >>v,k) the combined system will decay at a rate (y +«)/2
through the faster of the two decay channels.
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the planar microcavity situation; they must be modified
by taking explicitly into consideration the continuum of
modes of the planar cavity, thus giving sometimes quali-
tatively different results.

In this paper, we examine an important consequence of
the different modal structures of the two types of cavities
in relation to the modification of the spontaneous-
emission radiation pattern and lifetime, a phenomena
that is important for the initiation of laser action in mi-
crocavities. We show that although excitons in both
types of cavities may present similar splittings in their ab-
sorption or reflection spectra, their spontaneous-emission
properties are quite different. In particular, single-mode
microcavities may induce a dramatic modification of the
spontaneous-emission dynamics and thus permit a prefer-
ential channeling of spontaneous emission into a direc-
tional beam, as discussed above, while, by contrast, pla-
nar microcavities cannot increase significantly the frac-
tion of the light intensity emitted spontaneously into the
main cavity mode through the sole action of a Rabi cou-
pling mechanism. In pursuing this demonstration, we
first review the theory describing the splitting in the
reflection or the absorption spectrum of an exciton sys-
tem placed inside an optical cavity and then examine the
expressions for the exciton lifetime both in a single-mode
and in a planar microcavity. The characteristics of the
spontaneous emission of the excitons are examined by
calculating the radiation reaction at the site of the emit-
ting dipole.

A few comments are in order at this point regarding
the radiation reaction viewpoint for the treatment of
spontaneous emission. Most calculations on spontaneous
emission adopt the ‘“‘vacuum fluctuations” viewpoint
whereby the emission rate is evaluated by calculating the
coupling of the emitting dipole to the vacuum field of all
the radiation modes of the cavity. As a first step, this cal-
culation requires a complete modal analysis of the struc-
ture, a procedure that may prove to be a formidable task
for any realistic geometry (for example, in the presence of
Bragg mirrors). From the radiation reaction viewpoint,
on the other hand, the spontaneous-emission characteris-
tics of an emitting dipole are obtained by calculating its
radiation pattern under the boundary conditions of the
cavity [6,11,13]. From this viewpoint, the spontaneous-
emission rate is determined by the value of the electric
field prodyced by the emitter at its own site, that is, by
the “radiation reaction.” The results obtained in the ra-
diation reaction viewpoint and their range of validity are
precisely the same as those obtained in the vacuum fluc-
tuations viewpoint [14,15]. The main advantage of the
radiation reaction viewpoint for the calculation of spon-
taneous emission in cavities with complicated modal
structures is essentially computational: since all calcula-
tions are performed in direct space, they are well suited
to treating the emission of point dipoles and correspond
to dealing with all the modes of the field simultaneously.
In addition, the calculation of the radiation pattern of the
emitting dipole can rely on the vast arsenal of methods
that have been developed in classical antenna theory.

The paper is organized as follows. In Sec. II we give a
brief review of the theory that describes the vacuum Rabi

4117

splitting in terms of the linear dispersion characteristics
of the material system included in the cavity. In Sec. III
we develop the theory of the vacuum Rabi splitting of an
exciton placed in a single-mode cavity through the
dynamical equations for the dipolar emission of the exci-
ton. In Sec. IV we examine the spontaneous emission of
an exciton in a planar microcavity whose characteristics
are similar to those used in recent experiments for the ob-
servation of the exciton splitting. Finally, in Sec. V we
summarize our results and review our conclusions.

II. VACUUM RABI SPLITTING AS A
FEATURE OF LINEAR-DISPERSION THEORY

The transmission and the reflection spectra of an opti-
cal cavity containing a medium that displays a sharp ex-
citonic (or atomic) resonance at ) =2mc /A, have been
derived quite simply by invoking the classical theory of
linear dispersion [16]. In this section we give a short re-
view of the linear dispersion theory of the Rabi splitting
in which we neglect, for simplicity, the cavity decay or,
equivalently, its spectral linewidth.

The resonance condition for an electromagnetic wave
of wavelength A=2mc /w propagating along the axis of a
(confocal or planar) cavity is that the cavity length L
should be equal to a half-integral number of wavelengths

LZT—n—, (1)

where m =1,2,3, ... while n is the refractive index of
the material in the cavity. In our case, n is given by

¢ (0—Q)y/2
Q (0—Q)P+(y /272 |’

n = Rg 1— (2)
where n, is the “background” dielectric constant of the
medium (i.e., in the absence of the exciton resonance),
while «a; is the absorption coefficient at the peak of the
exciton resonance that corresponds to a Lorentzian line
of width y.
If the cavity length is adjusted to
Ao
L=""""2 (3)
2 ng
so that the transmission peak of the ‘“cold” cavity is at
the same wavelength as the exciton absorption, the reso-
nance condition (1) in the vicinity of the exciton transi-
tion (o~ ) can be rewritten as

(0—Q)y /2
(0—Q)2+(y /2’

giving the familiar double-peaked spectrum with maxima
at

o—Q=ay 4)

0=Q+V aycy /2—(y/2)* . (5)

This simple theory for the absorption and reflection
spectra of atoms (or excitons) in resonant cavities is valid
for both single-mode and planar cavities. It has been suc-
cessfully applied to account for the spectral doublet ob-
served both in atomic CQED experiments [16] and, more
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recently, in the absorption and reflection spectra of
quantum-well excitons in planar microcavities [9,10].

III. SPONTANEOUS EMISSION
IN SINGLE-MODE MICROCAVITIES

We consider a harmonic oscillator placed at the origin
of a Cartesian coordinate system and interacting with the
electromagnetic field through a dipolar transition. The
transition dipole p can be taken to lie along the X axis,
while the confinement of the field in the cavity occurs
mainly along the 2 axis (see Fig. 2). The harmonic oscil-
lator may represent a collection of two-level atoms (in the
limit of very weak excitations) or a system of excitons in a
semiconductor. As the aim of this paper is to discuss the
properties of semiconductor microcavities, we shall refer
to the harmonic oscillator as an “exciton.” Within the ra-
diation reaction viewpoint, the spontaneous-emission rate
is determined by the electric field that the emitter pro-
duces at its own site. Although a rigorous quantum-
mechanical formulation of this viewpoint is possible
[14,15], it is sufficient here to invoke the standard semi-
classical justification [6,11,13] for the calculation pro-
cedure based on the radiation reaction viewpoint.

The classical equation of motion for a harmonically
bound electron (charge e, mass m) corresponding to a di-
pole moment pu oscillating at frequency )’ can be written
in the secular approximation as

2
o+

ot gl 2mQ’
where E,(0) is the x component of the electric field (i.e.,
parallel to the dipole moment) produced by the dipole at
x =y =z=0 and evaluated at the same point. For an an-
satz solution of the form

E_(0), ©)

p=pge )]

we note that the real part of E,(0) contributes to a shift
in the frequency of the dipole, while the imaginary part
gives the decay constant. We now separate the electric
field into two parts: E D the direct field that is produced
when the dipole emits in the absence of a cavity (i.e., in

FIG. 2. Coordinate system for the calculation of the dipole
emission. The dipole is placed at the origin and is directed
along the x axis. The cavity (planar or confocal) has its axis in
the z direction.
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free space), and ER, the additional contribution coming
from the reflection on the cavity walls:

E.(0)=E20)+EX0) . (8)

With this partition, the equation of motion for the dipole
can be written as

W _ g Yo | 3 g
” i|Q = |k 4Q3no'yoEx(0), (9)
where
2¢2Q%n,,
7/0-_- 3C3m (10)

is the energy decay rate that is produced by E2(0), while
Q incorporates the corresponding frequency shift. In this
form, the equation of motion for the dipole moment ad-
dresses the problem of spontaneous emission in two steps:
first, it deals with the emission of the dipole in free space,
through the calculation of y,, and second, it treats the
modification of the emission rate by the presence of the
boundary conditions of the cavity, through the calcula-
tion of the reflected field E %(0).

When this same calculation is carried out through a
rigorous quantum-mechanical formulation of the radia-
tion reaction viewpoint [14,17], the energy decay rate is
obtained as

_ 4n 0#%92
3#ic3

which is, of course, the value corresponding to the Ein-
stein A coefficient. Thus Eq. (9) can be considered as in-
corporating the quantum-mechanical aspects of spon-
taneous emission through the appropriate expression for
Yo- On the other hand, the presence of the term that
arises from the modification of the boundary conditions
[the last term in Eq. (9)] can be considered within a classi-
cal framework: In the course of spontaneous emission,
the electric field that is reflected back onto the dipole site
drives the dipole and modifies the quantum-mechanical
spontaneous-emission rate. Thus the modification of the
characteristics of spontaneous emission by the cavity
walls can be addressed through a relatively simple calcu-
lation of the spatial distribution of the field, performed
through one of the numerous methods developed in clas-
sical antenna theory.

To calculate these modifications when the semiconduc-
tor is in a single-mode cavity that presents a resonance at
Q of width «, we examine the situation in which the cavi-
ty mode spans only a small solid angle when viewed from
the site of the exciton, so that the dipole emission that
occurs at off-axis angles is characterized by the free-space
decay constant y,. The amplitude of the electric field
emitted into the mode and evaluated at x =y =z=0 can
be approximated by a Lorentzian of the form

uQ?/v 10 /(2V)
@?—Q%+iok ©0—Q+ik/2

Yo ’ (11)

ER0)= , (12)

where V is the effective volume of the cavity mode [11].
The complex frequency for the evolution of the dipole in
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Eq. (9) is then given by the solution to the equation

2
. Yo _Ho_ Q/Q2V7)
O a—Q+ix/2 (13
and corresponds to the familiar Rabi doublet
Yok 21172 .
— 2 0 | S0 ™
o=Qt |g 2 2 , (14)
where
172
g =to |50 (15)

is the radiative coupling constant for the dipole to the
cavity mode. In obtaining Eq. (13) from Eq. (9) we have
used the quantum-mechanical expression for y [Eq. (11)]
to make contact with the notation conventionally used in
calculating the vacuum Rabi splitting. At this point, we
wish to point out the formal similarity between Eq. (4)
and the real part of Eq. (13). In fact, one expression can
be converted into the other simply by taking into account
the relationship between the integrated intensity of the
Lorentzian absorption spectrum S and the oscillator
strength (or the transition dipole) of the absorber,

No
vV

QL
ﬁc ’

S=a0'}’077': (16)

where N, is the number of absorbing particles in the
volume V. Equation (4) gives the transmission and the
reflection spectra of the cavity when probed by an on-axis
electromagnetic wave, while Eq. (13) describes the dy-
namics of spontaneous emission of the excitons into a
single-mode cavity. This similarity reflects the fact that,
in a single-mode cavity, the mode that is being probed in
Eq. (4) is precisely the same as the one that receives the
spontaneous emission in Eq. (13). As we shall see in Sec.
1V, this correspondence breaks down for multimode cavi-
ties.

When g2>>ky,, the Rabi splitting can be resolved in
the absorption and the reflection spectra of the cavity and
the radiative coupling is said to be strong. Under this
condition in a single-mode cavity, then, the decay of the
excitons occurs at a rate of (y,+k)/2, according to Eq.
(14). This means that the kinetics of energy flow will be
dominated by the largest one of the two decay rates:
When k >>y,, most of the energy will flow into the decay
channel of the cavity, that is, into the directional beam
emerging from the cavity, rather than laterally, into the
loss modes.

IV. SPONTANEOUS EMISSION
IN PLANAR MICROCAVITIES

We now consider a planar cavity, consisting of two
plane mirrors placed at z ==L /2 so as to be parallel to
the xy plane (see Fig. 2). The complex reflectivities (for
the field amplitude) of the two mirrors will be designated
by r4. As in Sec. II, we place a single dipole at
x =y =z=0 directed parallel to the x axis, representing
the transition dipole of a quantum-well exciton.
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The amplitude of the electric field at the site of the em-
itting dipole inside the cavity can be calculated through
the standard methods of classical antenna theory. In par-
ticular, the problem of the radiation pattern of a dipolar
antenna emitting in a stratified medium is treated in
many textbooks on electromagnetic theory [18]. Such a
calculation in connection with the problem of spontane-
ous lifetime modification was used quite early by Chance,
Prock, and Silbey [13] and more recently applied to the
case of light emitting diodes incorporating metallic mir-
rors [6]. In this mathematical procedure, the field emit-
ted by the dipole is expressed in cylindrical coordinates
(p,z,0) as an integral over all wave vectors and the spa-
tial distribution of the field in cavity can be calculated
through the interferences due to the successive reflections
on the cavity walls. At the origin, the total field (direct
plus reflected) due to the TE waves, projected in the x
direction (parallel to the emitter dipole moment), is given
by [13,18]

(14 rTBe ™) (14, TE

2ik L
E_ETIEQ z

. ikzL)
ET®0)=

2
0] ©
-1~

1—r

kp dk (17)
k, P’

where the radial (k,) and the axial (k,) components of

the wave vector satisfy

2 2 2602
kp+kz—n0-c—2 . (18)

Similarly, for the total field along x due to the TM waves,
we have

ik ik
14Tl (1 4 p ™ E

2ik L
1 —rﬁMrT.Me z

)

] (
T™M()— ¢ ©
E;™(0) anufo

Xk k,dk, . (19)

The factor in curly brackets in the integrands of Egs.
(17) and (19) results from the successive reflections of the
field on the cavity walls and is essentially the Fabry-Pérot
resonance function for the TE and the TM fields. In free
space, this function is equal to 1, as can be seen by taking
r.=0. Equations (17) and (19) can be interpreted as a
summation over all directions of all components of the
field propagating from the origin and being reflected back
to the origin, including also evanescent components
(whose wave vector is imaginary in the z direction),
which are important for the determination of the near
field. Clearly, if only one mode were allowed in the cavi-
ty (say, kp=0) there would be no integration and Eqgs.
(17) and (19) would give a result identical to Eq. (12) for
the reflected part of the electromagnetic field, when the
exponential in the denominator is expanded in the vicini-
ty of a resonance (k,L =~n). However, the presence of a
continuum of modes with kp#0, whose individual con-
tributions are summed in Egs. (17) and (19), modifies
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significantly the form of the field at the site of the emit-
ting dipole.

We note that, in these equations, the nature of the mir-
rors is incorporated into a single quantity—the (TE or
TM) complex reflectivity—and thus these equations can
be readily applied to the calculation of the characteristics
of spontaneous emission in nonideal, experimentally real-
izable cavities, such as the semiconductor microcavities
involving Bragg mirrors used in the recent experiments
[9,10]. However, since for multilayer Bragg mirrors the
reflectivities #TE and »™ depend on k, (that is, on the
angle of incidence), such calculations are best carried out
numerically.

Considerable insight into the spontaneous-emission
characteristics in planar microcavities can be obtained,
however, if Egs. (17) and (19) are integrated analytically
for a model in which the mirror reflectivity is indepen-
dent of the angle of incidence. The simplest model that
nevertheless reproduces the main features of the semicon-
ductor microcavities in which the exciton splitting was
observed would correspond to r, =r_~-+1. In this
model, the two mirrors are taken to be identical, perfectly
reflecting, and free from the off-axis optical leaks that
characterize actual Bragg reflectors. The zero phase shift
upon reflection in this model corresponds to neglecting
the field penetration in the multilayer mirrors, with the
cavity spacer being a high-refractive-index material (a 7-
phase shift would have been obtained with a low-
refractive-index spacer). The TE and TM components of
the field at the site of the emitting dipole reduce then to

2 ik, L
TEm_ i | ® o | 1+e * | ky
E, (0)"—_2_ ¢ } 'ufo { L | K, dk,, (20)
and
ik, L
™ . i © 14+e *
@(m—ggwﬂ{7~mf%ﬁﬂh. 1)
—e
Operating a change of variables
k
u=—r (22)
Ro@

where u is essentially the cosine of the azimuthal angle of
the wave vector, and limiting our calculation only to the
imaginary part of the field (since it is this term that gives
the radiative decay rate of the excitons in the microcavi-
ty), we have

Y oy |3, 2y | 1™
?—Im gl’]/ofp(l—*-u )('i':‘e—zm ul, (23)
where
noL
A= Py (24)

is the number of wavelengths that can fit in the cavity on
axis. The path of integration P goes from u =1+i8 to
u =0+i8 (slightly above the real axis) and then to
u =+ —oo. We note that the integrand of Eq. (23) has
poles on the real axis, each time that
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N
u A (25)
where N =0,1,2, . .. is a positive integer, including zero.
Each of these poles represents a direction towards which
the constructive interferences of the Fabry-Pérot make
spontaneous emission allowed. As we are interested only
in the imaginary part of the integral, we may subtract
from it its complex conjugate (and divide by 2), which is
essentially equivalent to adding the integration path indi-
cated by P’ in Fig. 3, closing the contour by a half-circle
through — o (indicated by C in Fig. 3), and multiplying
the result by 1. This contour integral can then be evalu-
ated quite simply by finding the residues at all the poles.
The decay rate for the field amplitude (¢ /2) then is given
by

3o |1 | A N?
T=3A 12 szl " (26)
3 3 2
— Vo 2(Al+1 | Yo 2[ATH3[ATH[A]l 5y

16 A 16 A3 ’

where [A] is the greatest integer part of A. The structure
of this equation as a sum of [A]+1 terms permits us to
distinguish the contribution of each direction in which
constructive interferences make spontaneous emission
possible in a Fabry-Pérot cavity. The first term
Lo_2to 28)
2 16A
comes from the pole at =0 and gives the emission rate
in the direction parallel to the cavity plane (6,=m/2)
into the guided modes that occur because of the high re-
fractive index of the spacer. The [A] other terms

Ty _ 3
2 8

1, N

AT (29)

give the emission rate into each of the [ A] cones [of angle
6y =arccos(N/A)] allowed in the Fabry-Pérot cavity.
We note that for a cavity of width L =A,, resonant with
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FIG. 3. Integration path for calculating the radiative decay
rate of a dipole in a planar microcavity composed of a high-
refractive-index spacer and low-refractive-index Bragg mirrors.
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the exciton transition, 20% of the spontaneous emission
goes to the in-plane guided modes.

A plot of Eq. (26), the overall spontaneous-emission
rate as a function of the cavity length, is shown in Fig. 4
(solid line). This plot indicates that, even in the absence
of losses in the mirrors, the excitons always decay radia-
tively into the continuum that consists of all the off-axis
cavity modes. Clearly, this decay occurs even in the
strong-coupling situation, in which a splitting of the exci-
ton resonance is observable in the absorption or reflection
spectrum. For cavity lengths smaller than A,/n,, emis-
sion can occur only into the guided modes and, within
this simplistic model, the decay rate diverges as the cavi-
ty length tends to zero L —0. This situation, however, is
never realized in a physical system as the field penetra-
tion in the Bragg mirrors prevents the effective cavity
length from becoming too small. For cavity lengths
greater than or equal to the wavelength (L =AX,/n,)
emission occurs also in the direction perpendicular to the
mirrors. However, the value of the radiative decay con-
stant is of the order of y,, the cavityless spontaneous-
emission rate, displaying only a slight enhancement
whenever the cavity length equals an integral number of
wavelengths, the largest being a factor of 1.875 enhance-
ment when L =X,/n,.

The reason for which a planar microcavity, even loss-
less, will not give rise to a dramatic change in the
spontaneous-emission dynamics can be understood
through the following physical picture. The radiating di-
pole emits essentially spherical waves that in the course
of the successive round-trips in the cavity, expand lateral-
ly so that the radiated energy is dissipated into the con-
tinuum of cavity modes with a nonzero in-plane wave
vector. At the same time, the field amplitude reflected
back to the emitting dipole decreases with each succes-
sive round-trip, producing a corresponding decrease in

30 7
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FIG. 4. Spontaneous-emission rate for an exciton in a planar
microcavity composed of a high-refractive-index spacer and
low-refractive-index Bragg mirrors, relative to the cavityless
rate, as a function of the cavity length (in units of the wave-
length). Solid line, lossless mirrors; dotted line, mirrors with
5% transmission; dashed line, cavityless emission rate.
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the coupling between the dipole and the reflected field.
By contrast, in a single-mode cavity with lateral
confinement of the field, the energy radiated inside a nar-
row cone around the cavity axis remains in that cone so
that the field reflected back to the emitting dipole is
essentially constant throughout its successive round-trips
between the cavity mirrors. In a single-mode cavity then,
the coupling of the dipole to the reflected field gives rise
to the familiar Rabi oscillations in which the energy is
transferred periodically between the dipole and the cavity
mode. A schematic of the situation in which the spon-
taneous emission of the exciton is channeled dissipatively
to a planar cavity, according to the above analysis, is
given in Fig. 5 and is clearly different from the situation
in a single-mode cavity, in which the Rabi coupling pro-
duces a coherent oscillation of the energy between the
two subsystems, shown in Fig. 1. Let us emphasize, how-
ever, that the observation of a Rabi splitting in transmis-
sion or reflection experiments [9,10] is not incompatible
with the dissipative nature of the radiative coupling in
planar microcavities. The reason is that in such experi-
ments the probing beam is essentially a plane wave since
its far-field divergence is smaller than the angular width
of the microcavity resonance. Probing the microcavity
response with a quasiplane wave along a single direction
gives no indication of its response to a spherical wave
front initiated within the microcavity. On the other
hand, if the collection of excitons (or atoms) in the micro-
cavity has a substantial degree of mutual coherence so
that the emission wave front approaches that of a plane
wave (for example, if the excitons are created by a
coherent light beam with planar wave front), it may then
be possible to observe Rabi oscillations in a planar micro-
cavity [19], analogous to those of a single-mode cavity.

Inclusion of cavity losses through a finite transmission
for the mirrors (corresponding to reflectivities
ry =r_=e /2 where the energy transmission 7 is relat-
ed to the energy decay constant by r=«Lng/c) would
change the Fabry-Pérot resonance function in the in-
tegrand of Eq. (23) to

1+e2m'Au —71/2

1 __e21-riAu —T1/2 (30)

This simply shifts the poles of the integrand vertically to
Uy=N/A—i(r/4mA), below the real axis, so that the

spontaneous directional
emission beam
EXCITON| - -~ | REANARS_ _ o
Y K

FIG. 5. Schematic representation of the flow of energy in the
radiative emission of an exciton inside a planar microcavity: at
all coupling strengths, the exciton decays dissipatively into the
continuum of cavity modes.
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path of integration P now passes a finite distance away
from the poles. This makes the absolute value of the in-
tegral generally smaller and implies that, when the cavity
mirrors have a finite transmission so that the field in the
cavity can decay into a directional beam (or cone), the
slight resonant enhancement of the spontaneous-emission
rate will decrease. The overall decay constant will then
approach y,, the cavity-less spontaneous-emission rate,
as seen in Fig. 4 (dotted line), where ¥ is evaluated nu-
merically for 7=0.05. This behavior contrasts with that
of a single-mode cavity, in which the cavity decay con-
stant may determine the dissipative part of the overall
exciton-cavity system. Similar conclusions on the de-
crease of the cavity enhancement of the spontaneous-
emission rate may be drawn by considering the drop of
reflectivity that the Bragg reflectors display for angles
away from the mirror axis.

V. SUMMARY AND CONCLUSIONS

The observation of a splitting in the absorption and the
reflection spectra of planar semiconductor microcavities
containing quantum-well excitons generally is not accom-
panied by a large modification of the spontaneous-
emission rate of the excitons. The reason is that planar
microcavities confine the electromagnetic field only in
one dimension and thus possess a spectrally dense two-
dimensional continuum of electromagnetic modes. Be-
cause of the presence of this continuum, an emitting di-
pole (such as an exciton) embedded in the cavity will de-
cay radiatively at a rate close to the cavityless
spontaneous-emission rate, even when its absorption and
reflection spectra display a splitting characteristic of a
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strong exciton-photon coupling.

This situation contrasts with the case of a single-mode
cavity with lateral electromagnetic confinement in which
the exciton level is coupled to a single discrete mode. In
the strong-coupling regime, this gives rise to a coherent
oscillatory exchange of the energy between the exciton
and the cavity, so that the exciton-cavity coupled system
can decay preferentially into the deexcitation channel of
the cavity, if the decay constant is suitably adjusted.

From the point of view of technological applications,
this analysis indicates that simple planar microcavities
cannot be employed to bring about a significant
modification of the spontaneous-emission characteristics
of the excited material they contain, because of the ex-
istence of the spectral continuum in their modal struc-
ture. In order to be able to observe CQED effects associ-
ated with the strong-coupling conditions and the vacuum
Rabi splitting, the spectral continuum should be “broken
up” into a small number of sparsely spaced discrete
modes, thus approximating the single-mode situation.
This can be achieved by confining the field also in the two
dimensions of the cavity plane either by lateral patterning
of the semiconductor wafer (for example, by pixellation
or by construction of a two-dimensional photonic band-
gap structure) [4,12], or by building domelike spherical
mirrors [20] on the microcavity structure.
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