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Moving mirrors and time-varying dielectrics
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The spectral distribution of light generated by a finite cavity with one moving mirror is compared with
that produced by a fixed cavity containing a time-varying dielectric. In both cases a motion over a finite
time interval is considered. Although the moving mirror is usually considered to be an idealization for
the time-varying dielectric, there are qualitative differences in the spectra produced. The spectral distri-
bution for the moving mirror case behaves as 1/n, while that for the time-varying dielectric behaves on
average as 1/n but is rapidly oscillating.

PACS number(s): 42.50.Ar, 42.50.Dv, 04.70.Dy

I. INTRODUCTION

It was noticed by Unruh [I] and Davies [2] that the ra-
diation from black holes [3] can be more generally con-
sidered as an effect of acceleration. There has recently
been a proposal for producing in the laboratory an
equivalent to accelerating mirrors with suKciently fast
effective acceleration for Unruh radiation to be experi-
mentally detected. In this proposal [4] the refractive in-
dex of a dielectric is changed rapidly. The optical path
length increases or decreases with the refractive index.

Accelerations of a mirror can then intuitively be
modeled by the corresponding "accelerations" in the time
dependence of the refractive index. The moving mirror
problem at one end of a Fabry-Perot cavity has also been
rigorously formulated [7] for analytic motions, which are
slow in an asymptotic series in a parameter related to the
scale of time variation.

The similarity of a time-varying dielectric to a moving
mirror is intuitively appealing, and it is often implied
[5,6] that the most important factor is the variation of the
optical path lengths involved. In the case of an optical
cavity, many physically different systems can produce the
same time-dependent optical path lengths, and it is not
clear a priori whether there are any qualitative differences
in the light generated by such systems. In this work we
will give explicit calculations for the spectral distribution
of the mean number of particles for both systems, and we
find such qualitative differences.

II. MOVING MIRRORS

I.et us consider a Fabry-Perot cavity with a mirror that
is moving as indicated in Fig. 1. We will take the motion
q (t) to be given by

q'"(t)=so for t &0

q' '(t)=so+s2t for t &0, t small

2
q (t)=bo+b2(t to) for—t &to, ~t to~ smal—l

q"'(t)=b, for t &t, .

The accelerations are finite at t =0 and t = to.
Moreover, the cavity will be taken to be effectively

infinite in the transverse y-z direction. Consequently, if
the vector potential is linearly polarized in the z direc-
tion, then ignoring transverse mode structure we have

and

A(0, t)=0 . (4b)

Physically this boundary condition holds for all time, due
to charge and current fluctuations in the mirror.

It can be shown [7] that the corresponding operator A
has the expansion

where the vector potential A(x, t), with polarization e„
is given by

A(x, t)=A(x, t)e, .

For perfect mirrors the boundary conditions are

A(q(t), t)=0
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FIG. 1. A Fabry-Perot cavity with a moving mirror.
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A (t,x )=g[P„u„(t,x )—q„u„(t,x )], Consequently, from (5),

P„=—cp( A, u„), (12)
where

u„(t,x)= 1
[cos[n mR (t —x ) ](2n~)'"

co—s[nmR(t+x )]]

u„(t,x)=,
&

[sin[nnR(t+x)]1

(2n~)'"
—sin[nmR(t —x)] j .

(6)

(7)

= —co(A, v~) . (13)

(i+1)= —% re(U(i) u (1+1)~-(i)—e(u(l) u (i+1)i*(i)1
m=1

The motion q(t) is analytic, except at the points t =0
and t =tp, and so there are three distinct regimes of
motion q'"(t), q' '(t), and q' '(t). Corresponding to
these regimes there are functions E.",i =1,2, 3 satisfying
(8), and in turn functions v„"(x,t) and u„"(x,t). From
(12) and (13) we have the relations [7] for i =1,2,

A is a differentiable and invertible function that satisfies
(14)

R(t —q(t))=R(t+q(t)) —2 . (8)
and

The operators P„and q„can be determined in terms of
A and the functions u„and U„. It is first necessary to in-
troduce the bilinear form co on the function space of solu-
tions of (2):

co(A'" A' ')= I dx A' '(t, x) A"'(t, x)
0

~(i+1) ~ r ~&(i) (i+1)~~(i) gu(i) (i+1)~~(i)q

(15)

These equations are equivalent to Bogoliubov transfor-
mations for the usual creation and annihilation operators
(8„and tt„) defined by

—A'"(t, x) A' '(t x)
ai

(9) y{i)+ ~(i)
n Vn

v'2
~(i) ~(i)

i)g Yn lPn

V'2to(u~, u„)=to(v~, v„)=0,
co(u, u„)=5 „.

(10)

(11) As shown in the Appendix we find that

for any two solutions A '" and A ' '. co is independent of
t. It is possible to verify the relations [7]

(16)

where

2
e Q g [ [Si~ (so q s 2 )Rg~ ( b p ~ b 2 )+R iyg (s p &

s p

)Spying

( b p i b p ) ]tli
1=1 m =1

+[ Si~(sp, sp)R&~(bp, bg)+Ri~(sp, s2)S„~(bp, b2)]&i ] (17)

Si (sp, sz)= '

SpS2 2—1+ +O(s2) when l =m
4m m

4( 1)ii+~~/(/m )
& (/ i2+23

m)s s
+O(s2) when /%m

(l —m )m.

(18)

and

Ri~ (sp, sp ) =S~i(sp, sp )+25~i +O(s2 ) . (19)

where g' '(x) =(d ') l(dx +')lnI (x). For large n,

4(sos2 bob2 ) —
1N„—

& 3
+O, (s2, b2)

577 n n
(21)

If for t & 0 the cavity was in a vacuum state, then from
(17) we can derive the average number of photons in
mode n, N„, produced in the cavity for t & tp. %'e find III. TIME-VARYING DIELECTRIC

N„= y' '(1+n)+ —1P' '(1+n)
3+4 5

X (sps2 bpb2 ) +O((sz, b2—) ), (20)

In order to mimic a moving mirror with a time-varying
dielectric we will now consider a cavity of fixed length I.
with a dielectric material of length d fixed at one end (see
Fig. 2).
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0 ci where

G„(t —t, ) = 8(t —t, )[sine]„(t—t, )]
2

(30)

FIG. 2. A Fabry-Perot cavity with a time-varying dielectric.

The relative dielectric constant of the dielectric can be
written as

and w„denotes no /L.
From (26) it is straightforward to define a perturbation

expansion in p. In particular, to first order,

A(x, t) A,—(x, t)= A, (x, t) A—,(x, t)

f f dx]dt]G(xityx]it])

p (0)=P(0)=p(T) =P(T) =0 . (23)

e =1+p(t) .

We will consider the dielectric from time t =0 to t =T
and set

X8(d —x, ) p(t, )
Bt]

aX A]](x],t] )
Bt]

(31)

e(x, t) A(x, t)+e(x, t) A (x, t) = A "(x,t), (24)

This corresponds to a mirror moving from rest at the ini-
tial position and then returning to the same position, with
a finite acceleration at both ends of the motion.

The equation of motion is

and this order will suffice for our calculation. It will be
convenient to define the operator

1 /2
2'tt„(t) = f dx — (since„x ) i+co„A (x, t )

2 0

where the dot indicates a time derivative and the prime
indicates a spatial derivative. e(x, t ) coincides with e~ in
0&x &d and is 1 outside this interval. The boundary
conditions are A (O, t) = A (L, t) =0. These equations are
valid for the quantum field operator A, as well as for the
classical field. The commutation relation is

In terms of 8„we can verify that

1
A(x, t)

(32)

[ A (x, t ), ft( xt)]=i5( —x x'),
where ft(x, t }=e(x,t )(3]/Bt ) A (x, t ).

We can rewrite the equation of motion as

00

A (x, t)= g (since„x )[d„(t ) —un (t) ] . (33)
n =] V Lton

In zeroth order,

A —A"=(1—e) A eA— a„(t)=&„(0}e (34)

a= —8(d —x ) p(t) A
Bt Bt

This leads to the integral equation

A (x, t) Ao(x, t ) = ——f f dx, dt ] G(x,x],t, t] )

X8(d —x] ) p(t, )
Bt]

(25)

dn(T)= g Ia„' e ti~(0)+b„* e™Ttit(0)j.
m=1

The first-order perturbation expansion gives

(35)

We should note that 8„(0) and d„(T) are the standard
harmonic-oscillator destruction operators (up to a phase
factor} for cavity mode n, but in general &„(t}is not.

We define coefficients a„and b„by

where

and

aX A(x], t] )
Bt1

8 8
Ao(x, t)=0

Bt Bx

(26)

(27)

where

0

l l (CO CO )T
nj finj ~n~ ~ntoj nj&n

X f dt, p(t, )e

l i(~„+~.)T
b„,= ~„+to„a),T„,e.

mn

(36a)

(36b)

8 G(x,x, t, t )=5(x —x )&(t —t ) .
Bt2 Bx2

G is a retarded Careen's function and is found to be

G (x t xo to ) = g G„(t to )(since„x )(sinw„xo )—
n=1

(28)

(29)

sin d(a) +a)„)
Q)m +COn~m ~n

Now

d
T„,=dx(sinto„x )(si.n~ x )

0

sin 1(co —to„)
2

(36c)
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—l(,CO„+CO. )t&f dt, p(t, )e

QO

() p /(co +co )t ie
Btk t) =0

(37)

1.5

1.25

arts, recursively) assum' gin this seriesg 'o yp
F r a sufBcienily s ow, smconverges. or

can be approximated by

—i(co„+co.)tl
dt, p t& e

0

.75
. 5

This gives

S„=gab„/'

, P(T)e " ' —P(0)] .
(to„+n) . )

(38) e s ectral oscillations.FIG. 4. Phase P(f, r)/m of the spe

N varies rapidlyd 4. It can be seen that N„See Figs. 3 an
with n between

sinf (m n) —sinf (m +n)
m —n m +n

nm
' n+m)'ill

(39)X [P(T) +P(0 —P) —2"(0)P(T)[cos(n +m)r] j,
h' b of

nd 7 T1TIL.
to a roximate t is y

hasymptotic expansio
' . 1 t e rs

'
n in n. Only t e rs

written in a simple form. WWe find

fL [p(0)+p(T)]
256m'n'

, , [P(0)—P(T)]' .
256m n

IV. COMMPARISON 0OF THE TIME-VARYING
MOVING MIRRORDIELECTRIC TO THE M

, , IP(0)'+P(T)'
256m'n4

+2P(0)P( T)P(f, r)cos[2nr+ it)(f, r ]]

where

(40)

r two systems, one a moving mir-
ror and the other a time-varying dielectric, wi i
time-dependen p

'
nt o tical path lengths.

f h moving mirror cavi yt
Th

'
1 h 1 h

th length o t e
1 (t). T e op ica

the dielectric cavity in Sec.
=(L d)+e~d —=L+p(t )d.

Clearly
is i(w —2f )

)[2f +2Li2(e")—Lt2(eP(f, r)e'

—Li2 e(
i (~+2f )

)]'
and I.i2 is the dilogarithrn function

z oln(1 —t)
dLi2(z)= g

k=1

(41)

s =I, ,0

[L+p(t)d ], () =p(0)d =p(0$2=

b, = —p(T)~ ~

rmulation (cf. Sec.and so, on using ethe moving mirror form
II),

2

LP(0) +LP (T)fL .. fLN„= 43 P
775m-4n

0.75
. 5

. 25

, [P(0)+P(T)]' .
6~3

On comparing this to the dielectric,

Ã„=, 4 [P(0) +P(T)'
256~'n 4

(43)

of the spectral oscillations.FIG. 3. Magnitude P(f, r) o e p

+2P(0)P( T)P(f, r)cos[2nr + (,r)]],
(44)
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we see clear quantitative and qualitative differences. In
particular, we should note the sinusoidal term whose
magnitude can be large in certain parameter regimes (see
Fig. 3). There is also a large difference in the magnitude
of photon production due to the additional factor of
fn /320~. Unless the dielectric strip is substantially
thinner than the wavelengths of interest, there will be far
fewer photons produced than in the equivalent moving
mirror cavity.

where

and

x 1 xc(t,x)=k +-
q(t} 6 q(t)

X

q(t)'

t

a (t,x)=f, + ,' —fdt' —2 +q(t')q(t') ' q(t)
(A2)

APPENDIX

It has been proved [7] that to a good approximation

R (t +x ) =a(t, x)+c*(t,x),

X [ —2q(t)'+q(t)q(t)] (A3)

for a sufficiently slow motion q (t).
From (9), (8), (6), and (7) it is straightforward to show

that

cos[nmR' '(t+x)],

1 q(t)
dx sin[mqrR'"(t+x)] sin[nnR' '(t +x)], .

2~(mn )'~~ Bx

co(u"', v„' ')=
I&& f dx cos[mqrR'"(t+x)] sin[nmR' '(t+x)] .

2n(mn )
—q~&~ BX

Now, on using (Al), (A2), and (A3) we find that

f dx isn[mmR'"(t +x)]
2m-(mn )'~2 q(~)— Bx

co(u'", u„' ')=, f dx cos[mmR "'(t+x )] cos[nmR
' '(t +x)],

2n.( mn )
' ~ Bx

(A4)

(A5)

(A6)

(A7)

sin[mqrR'"(t+x )]
8
X

cos[n qrR ' '( t +x ) ]
t=o

Icos[a(m, —n, x)]+cos[a(m, n, x)]]
2$p

+ (3so+sos2 —3szx )Icos[a(m, n, x)]—cos[a(m, —n, x)]],
6$O

(AS)

where

so$2 xa(m, n, x)= (m+n )x+nn
Sp 3 sp

Similarly

X
3

Sp
(A9)

cos[mqrR"'(t+x)] cos[nnR' '(t+x)] = [sin[a(m, n, x)]+sin[a(m, —n, x)]]8 m 'IT

BX t —p 2$p

(3so+sos2 —3s2x ) [sin[a(m, n, x)]—sin[a (m, —n, x)]],
6so

(A10}

sin[mnR"'(t+x)] sin[nqrR' '(t+x)] = Isin[a(m, n, x)]—sin[a(m, —n, x)]jm '7l

Bx t —p 2$o

+ (3so+sosz —3s2x ) ( sin[a(m, n, x )]+sin[a(m, —n, x)]],
6$p

(Al 1)

and
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cos[mmR'"(t+x)] sin[nmR' '(t +x)] =
[

—cos[a(m, n, x)]+cos[a(m, —n, x)]]
Bx t =p 2sp

+ z (3so+sos2 —3s2x ) [cos[a(m, n, x)]+cos[a(m, n—,x)] j .
6$p

Consequently, in order to evaluate (A4) —(A7), we need the canonical integrals

(A12)

g+„(so,s2) = dx cos[a(m, + n, x )]
Sp

(A13)

sp
&+„(so,s2) = dx x cos[a(m, + n, x )] .

0
(A14)

To lowest order in $2

Sp

2+„(so,s~) = dx sin
S0

Sp

(m T n ) (+ns0+ nx )s2+ f dx cos (m + n )
Sp 3$p 0 Sp

"2, o . ~X Z=2s05 (~„)+ dx sin (m+n) (+sax Vx ) .
3SO 0 Sp

(A15)

Now

f dxx sin (m+n) =so f dx x si n[n x(m+ n)]
0 mX

Sp Sp —1

z sin[m (m + n ) ] m(m V n )c—os[a ( m + n ) ]=2$p
m (m+n)

2s2( 1)m+n

m(m Wn)

0 for m+n =0

for m T-n%0
(A16)

and

Sp

x x sin
0

KX 1
(m +n) =so f dxx sin[ex(m+n)]

Sp —1

2$ p
[6[m(m Vn )]cos[m(m W n )]—[~(m T n )] cos[n(m V n )]

[n.(m T- )]n

—6sin[m(m Wn)] +[3m(m+ n)] sin[+(m Tn)]]

4( 1)m Tn

[m.(m Wn)]'
0 for m+n =0

2s() ( —1)
for m+nAO

n. m Tn (A17)

so

T 4VTPlS (p2
3 (

—1) *" for m Wn&0
S*„(so,s, )= ' ~'(m +n)'

2sp for m + n =0 . (A18)
„(so,0)= '

4sp3 —z( —1) *" for m+n&0
n. (m Wn)

2Sp3

3
for m + n =0 .

(A19)

Similarly we can show Note that (A19) only includes the terms of zero order in
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s2. It turns out that only these terms are necessary to
determine the average number of particles to second or-
der I $2.

It is useful to define

R (sp $2)=f (sp $2)[X (sp $2) X (sp $2)] co(u' ' v' ')=cos

p

n m'tp

R„(bli, b2 },
p

(A24b)

(A24c)

+d (sp $2 )2+ (sp $2 )

+dnm ($0~ $2 )Snm ($0~$2 ) (A20)

and

co( v ' ' u ' '
) =cos

nmtp
S„ (bll, b2),

p
(A24d)

1 nf „(sp,$2)=—
4 m

1/2
Sp

2
Sp

(A22)

Snm (Sp&$2 ) fnm (sp&$2 )[Xnm (Sp&$2 )+Xnm (spy$2 )]

+d„(so,s2)2„+ (so,s2)

dnm ($0~$2 )Snm (Spq$2 )

where

~(u,"' u"') =0

~( v (1) v (21)—()

&(ul, vm ) = Slm ($0,$2 )

Co( Vt' ",u ' ') = —Rl ($11,$2 )

From (14) and (15) we deduce that

(A25a)

(A25b)

(A25c)

(A25d)

m+n(1+sps2/3)
d*„(so,s2) =

1/24sp(mn )
(A23)

(A24a)

These definitions are equivalent to Eqs. (18) and (19).
This simplification is a long but straightforward process,
best suited to computer programs such as MATHEMATICA

It is now straightforward to show that

and

P(3)—~tP(1)~(v(1) u(2))~(v(2) u(3))
m, l

+q'"co(u'" v' ')co(u' ' u"')]

~(3) ~ t~(1)
(

(1) (2)) (
(2) V(3))

m, l

+y(1) ( {1) (2)) ( (2) v(3))]

(A26a)

(A26b)

p Consequently from (16) we find that

ct„'3)=—,
' g(e,' "[co(u,"' v"')[co(u "' v"')+ 1 co(u "' u "')]+co(v'",u"') [co(v"',u„"')—tco(v"', v(3')]

I
I, m

+a,'"t[~(u,"',v"')[co(u'" v"')+leo(u"' u"')]+co(v"' u'"}[co(v"' u"') —t~(v"', v„"')])) .

On using Equations (A24a) —(A25d), we arrive at (17).

(A27)
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