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Noise amplification in dispersive nonlinear media
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The propagation of a partially coherent optical beam through dispersive nonlinear media is investigat-
ed theoretically by using a phase-diffusion model for the laser beam. Changes in the second-order statis-
tical properties during beam propagation depend on whether the nonlinear medium exhibits normal or
anomalous group-velocity dispersion. In the case of normal dispersion, the coherence function and the
corresponding optical spectrum remain unaffected. By contrast, modulation instability is found to be re-
sponsible for noise amplification in the anomalous dispersion regime, enhancing phase fluctuations and
causing spectral distortion as well as coherence degradation. Under certain conditions, phase fluctua-
tions exhibit temporal oscillations that lead to the characteristic spectral sidebands associated with
modulation instability. The nonlinear Schrodinger equation is solved numerically to study the propaga-
tion regime in which the analytic theory becomes invalid.

PACS number(s): 42.65.—k, 42.50.Ar, 42.81.Dp

I. INTRODUCTION

An optical field propagating in a nonlinear dispersive
medium may exhibit an instability known as modulation
instability, a phenomenon shared by many branches of
physics that deal with wave propagation in nonlinear
media such as fiuids [1],plasma [2], and dielectric media
[3]. Modulation instability in nonlinear fiber optics [4—6]
refers to a process in which small perturbations from the
steady state grow exponentially as a result of self-phase
modulation and anomalous group-velocity dispersion
(GVD) occurring in optical fibers at wavelengths beyond
1.3 pm. In most studies of modulation instability, pertur-
bations initiating the instability are assumed to occur in-
side the nonlinear medium itself whereas the input field is
taken to be deterministic in nature. However, all optical
beams are only partially coherent in practice. The ampli-
tude and phase fluctuations associated with a partially
coherent beam can act as a seed for modulation instabili-
ty and are likely to get amplified in the process, resulting
in significant changes in the coherence and spectral prop-
erties of the incident optical beam.

In the present work, the objective is to study the sta-
tistical properties of a partially coherent optical beam
and their modification through modulation instability
during propagation in a nonlinear dispersive medium. To
this end, a nonlinear Schrodinger equation [1] (NLSE) is
solved analytically and numerically with stochastic initial
conditions. The effect of noise on the solutions of the
NLSE has been studied extensively in the past [7—11],
most recently in the context of spontaneous-emission
noise generated by in-line amplifiers in soliton communi-
cation systems [12]. In most of the previous work, the

NLSE is solved by adding a Langevin-noise term to it by
assuming an additive type of external noise. In contrast,
we investigate the evolution of a fiuctuating continuous-
wave (cw) beam by solving the deterministic NLSE. This
problem has been considered before for thermal (or
chaotic) fields whose statistics can be assumed to be
Gaussian [9]. In practice, the laser beams cannot be
modeled as a thermal field. Our method is based on the
well-known phase-diffusion model of a laser operating far
above threshold [13—15]. Considering noise as represent-
ed by fiuctuations (in amplitude and phase), the NLSE
with stochastic initial conditions is solved analytically by
using a linearization procedure similar to that used for
the analysis of modulation instability [6]. The main con-
tributio to the optical spectrum comes from phase Auc-
tuations which are shown to be enhanced by modulation
instability in the case of anomalous GVD. The phase
variance exhibits a substantial increase in-its magnitude
that is responsible for coherence degradation together
with an oscillatory structure from where the familiar
symmetric sidebands arise in the spectrum.

The paper is organized as follows. In Sec. II, we de-
scribe the statistical approach and state our basic as-
sumptions. In Sec. III, we solve the NLSE for a stochas-
tic cw beam and determine how amplitude and phase
fluctuations are affected by modulation instability. In
Sec. IV, we present the results showing the inhuence of
noise amplification on the spectrum as well as on the
coherence properties of the optical field. The NLSE is
solved numerically in Sec. V to study the propagation re-
gime in which the analytic theory becomes invalid. The
main results are summarized in the concluding Sec. VI.

II. MODKI. AND ASSUMPTIONS

Permanent address: Physics Department, Universidade
Federal de Alagoas, Maceio, Alagoas 57000, Brazil.

We begin by considering a linearly polarized cw beam
propagating through a dispersive nonlinear medium, such
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E(z, t)=[A +5A (z, t)]exp[i [@+5@(z,t)]], (2)

where A =QIo and 4&=nzkIoz are the stationary values
for the amplitude and phase for a field with the average
beam intensity Io, obtained from a full nonlinear analysis
of Eq. (1). Here, 5A and 5&5 represent small fluctuations
from the average values A and N, respectively, such that
5A « A and 54«4. We are essentially using a well-
known model [10] of the laser in which the optical field is
represented as the sum of a constant phasor and a weak
Gaussian-noise phasor whose phase varies randomly over
the entire 2m range. In that case, the amplitude and
phase fluctuations of the total field, 5A and 54, can be
shown [12] to represent real Gaussian random processes
with zero average ( ( 5 A ) = ( 5@) =0, where angle brack-
ets denote the ensemble average). The correlation func-
tions of 5A and 5% depend on the statistical properties of
the input beam. In the phase-diffusion model M?, besides
being a Gaussian process, is also assumed to be
Markoffian such that frequency fluctuations represent
white noise whereas phase fluctuations have a variance
that grows linearly with time.

We are interested in the second-order statistical prop-
erties of the optical field after it has propagated an arbi-
trary distance z inside the fiber. To this end we define the
field autocorrelation function or the mutual coherence
function 1 (z, t) as

r(z, r) =(E'(z, O)E(z, r) )

together with its Fourier transform

S(z,co)= f I (z, t)exp(icot)dt .

(3)

By substituting Eq. (2) into Eq. (3) and introducing the
phase-shift variable b.4 =5@(z,t) —54(z, o}, one arrives
at the following result:

I (z, r)=I, (e' )++I,([5A(o, r)+5A (z, r)]e' )

+0((5A) ),
where the last term is negligible compared with the oth-
ers. It is clear that the strongest contribution to the out-
going spectrum comes from the first term consisting of
pure phase fiuctuations. The second term represents cou-
pling between amplitude and phase fluctuations, but for
simplicity of discussion we consider here only the first
term. It is known [14,16] that the contribution of the
second term leads to a slight asyrnrnetry in the spectrum.

as a single-mode optical fiber. The field amplitude E (z, t)
in the slowly varying envelope approximation satisfies the
NLSE [6],

i ——Pz +nzk~E~ E =0,. BE 1 BE
Bz 2 Bf,

where P2 is the GVD parameter, k =2m/A, is the wave
number and n2 is the nonlinear-index coefficient. Next
we suppose that noise may be represented by small Auc-
tuations from a stationary state, and based on the fact
that any real laser emits light with random fluctuations of
both the amplitude and phase, we write the stochastic
field as

Providing the amplitude and phase fluctuations remain
small compared with the average beam intensity, the sys-
tem although nonlinear behaves in a linear fashion with
respect to the fluctuations. In this case the phase-shift
variable hN keeps the Gaussian character on propaga-
tion so that the average in Eq. (5) may be rewritten as

I (z, t) =Ioexp[ —
—,
' ((b,@) (t) ) ], (6)

and the problem is reduced to evaluating the phase vari-
ance ((b,4) (t) ). This is done in the next section.

III. NOISE AMPI. IFICATIQN

To evaluate the phase variance we linearize Eq. (1) by
substituting Eq. (2) into it and retaining only the terms
linear in 5A and 5@. The result is

—P + "v/I 2n kI—5A =0,
2 ~ gz

1 ~—B 54 B5A
2 Br Bz

(7b)

The set of Eqs. (7) is readily solved by the Fourier
method. By introducing the Fourier transforms 5a (z, Q}
and 5$(z, Q)

+ 00

5A (z, t)= f 5a (z, Q)exp( iQt)dQ— ,2'
+ 00

M&(z, t) = f 5&(z, Q)exp( i Qt)d—Q,2'
and using them in Eqs. (7), we obtain

2

+IC 5 =0,
az2

B5~ +x'5y=o,
Bz

where K represents the wave number and is given by

PiQ
K = (pzQ +4n2kIO} .

4

(Sa)

(9a)

(9b)

and we have introduced a nonlinear length scale defined
as I.Ni =(nzkIO) '. The noise components at the fre-

quency 0 lying inside this range grow exponentially as

5a (z, Q) =5a (0,Q)exp[g (Q)z/2],

5$(z, Q) =5/(O, Q)exp[g (Q)z/2],

(12a)

(12b)

In a medium with normal dispersion (Pz) 0) the wave

number K is always real. In this case, the noise com-
ponent at the frequency 0 propagating inside the medi-
um experiences a phase shift Kz, but its amplitude
remains unaffected. As a result, the statistical properties
of the input beam remains nearly unaffected during prop-
agation. The situation changes drastically in a medium
with anomalous dispersion (P2 & 0) since X becomes
imaginary within the frequency range —Q, (0(Q„
where

' 1/2

L NL IP21
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where the gain g (Q) is defined as g =21m(K) or

g(n)=~p, n~+n', —n' for ~n &n, (13)

where c.c. means that we have to add the complex conju-
gate. Using the well-known property of a stochastic pro-
cess

&5/*(o, n)5$(o, n ) & =s (o, n)5(n —n ), (15)

where S~(o,n) is the power spectrum of the input pro-
cess 5@(o,t), we finally obtain the following expression
for the phase variance:

& (5@) (z, t) &
=—J S@(0,Q)(1 co—snt)

7T 0

Xexp[g(Q)z]dn .

Equation (15) may be rewritten in the illustrative form

& (b,e)'(z, r) &
=

& (be )'(0, r) &

Q
+— 5+ O, Q 1 —cosset

7T 0

andg(n)=ofor ~n~)n, .
The phase difference b, 4(z, t) is now obtained by using

Eqs. (8) and (12) and is given by

b 4= I 5$(0,Q)exp(iEz)
&2m

X [exp( i n—t) 1]d—Q+ c.c. , (14)

It should be noted that when amplitude Auctuations
are neglected, Eqs. (7) show that phase fluctuations do
not undergo any change on propagation. Therefore, al-
though amplitude fluctuations are neglected in Eq. (5),
they play an important role on the process of noise
amplification since without them there would be no
amplification at all. As indicated in Eq. (12a) amplitude
Auctuations also grow exponentially in the presence of
modulation instability. Their neglect in Eq. (5) is justified
as long as they remain well below the average intensity
level. The results obtained here are likely to remain valid
for lengths L such that L -LNL. For L )&LNL the am-
plitude Auctuations can become comparable to I0. The
linearization procedure used here is then not applicable,
and fluctuations are unlikely to remain Gaussian. This
regime can only be studied by solving the NLSE numeri-
cally. The numerical results are presented in Sec. V.

IV. ANALYTIC RESULTS

To illustrate how modulation instability modifies the
coherence and the spectral properties of the partially
coherent optical field through noise arnplification, we cal-
culate numerically the phase variance given by Eq. (18).

6.0

X [exp[g(n)z] —1]dn, (17)

where one clearly sees how the selective amplification of
noise components in the frequency range ~n~ & Q, leads
to an increase in the phase variance.

The spectral line shape of most lasers can be assumed
to have a Lorentzian profile [10,11]. The corresponding
frequency noise has a constant spectral density (white
noise). For such lasers the spectral density of phase Auc-
tuations can be written as S~(O, Q) =2mb v/n together
with & (b@) (O, t) & =2mhvt, where bv is the full width at
half maximum (FWHM) of the Lorentzian spectral line
shape [11]. In this case, the phase variance at a length I.
by using Eq. (17) is given by

m 4.0

6$

G$

O

CL 20

0.0
0.0

20.0

2.0 4.0
Normalized Time

6.0 8.0

&(&@)'(L, ) & =2' g+ 1 cos 2&x'7

X [exp[g (x)1.]—1]

(18)

15.0

Q)
(3
G$

Gf
10.0

Q)

CL

where we have introduced a dimensionless time ~=v, t
with v, =Q, /2m. Equation (18) also shows that the di-
mensionless ratio Av/v, plays an important role in
governing the noise amplification process. This is what
one might expect if we note that the linewidth Av is a
measure of the degree of coherence of the input beam (it
is inversely related to the coherence time) whereas v, is a
characteristic frequency associated with the nonlinear
dispersive medium.

5.0

0.0
0.0 2.0 4.0

Normalized Time
6.0 8.0

FIG. 1. Phase variance as a function of normalized time
~=v, t for three values of the normalized propagation distance
L/L&L.. (a) Av/v, =0.05 and (b) Av/v, =0.2.
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T
1 a for

e p ase variance is plotted as a function of F'z in ig.
(a) or three values of the normalized propagation dis-

tance L/LN„by choosing b,v/v, =0.05. Figure 1(b) is
drawn under the identical conditions except for a larger
bandwidth of the input field such that bv/v, =0.2. In
both cases, the effect of nonlinear propagation is not only
to increase the overall variance but also to add an oscilla-
tory structure to it. It will be seen later that these oscilla-
tions are responsible for spectral sidebands induced by
modulation instability.

The enhanced phase Auctuations are expected to de-
grade the coherence of the transmitted light. Figure 2
shows the coherence functions corresponding to the
phase variance of Fig. 1 by using Eq. (6). We find that
the coherence time, defined as the time at which the value
of the correlation function I (z, t) is reduced by a factor of
2 compared with its value at t=O, is drastically dimin-
ished even for L/LNL =2. These plots show that the ex-
tent to which coherence degradation occurs depends on
the bandwidth of the input light and on the propagation

1.0

distance inside the nonlinear dispersive medium.
To obtain the spectral line shape, we take the Fourier

transform of the coherence function numerically [see Eq.
(4)]. The results are shown in Figs. 3(a) and 3(b) corre-
sponding to the coherence functions of Figs. 2(a) and 2(b),
respectively. The spectral features can be understood by
noting that phase fluctuations of the i~put beam provide
a seed for the modulation instability. Maximum
amplification of noise occurs for the frequency com-
ponents in the vicinity of

~
v

~

=v, v'2 since the gain of
modulation instability is largest at that frequency [6].
For Av/v, =0.05, the instability sidebands are clearl y
seen for L /LNL =2 For. larger values of hv/v„ the side-
bands are not easily resolved since the central line be-
comes so broad that it begins to merge with the side-
bands. This feature is evident in Fig. 3(b) drawn
hv/v, =0.2. Since the analytic theory is unlikely to
remain valid for I. )&LNL, one may question the validity
of the L/LNi =2 curve in Fig. 3. The next section
presents the numerical results that are valid for all fiber
lengths, compares them with the analytic results of this
section, and discusses the validity region of the analysis.
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FIG. 2. Coh re ence degradation induced by modulation insta-
bility. Second-order coherence function (normalized to 1) is
plotted as a function of normalized time ~ for three values of
L /LN& under conditions identical to those of Fig 1: (a)
Av/v, =0.05 and (b) hv/v, =0.2.

O.O1
-2.0 -1.0 0.0

Normalized Frequency
1.0 2.0

FIG. 3. S ep ctral line shapes corresponding to the coherence
functions shown in Fig. 2: (a) hv/v, =0.05 and (b) Av/v, =0.2.
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1.00
) V. NUMERICAL SIMULATIONS
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FIG. 4. Numerically simulated field spectra under conditions
identical to those of Fig. 3: (a) Av/v, =0.05 and (b) 6/v, =0.2.

To study the propagation regime I- )I NL more accu-
rately, we solve the NLSE [Eq. (1)] numerically by using
the split-step Fourier method [6] for a stochastic input
field E(O, t) of the form given by Eq. (2). The random
processes 5A (O, t) and M&(O, t) are generated numerical-
ly. Phase Auctuations are assumed to follow the phase-
di6usion model appropriate for lasers operating far above
threshold [13]. Specifically, the spectral line shape of the
input laser field is taken to be Lorentzian with a FWHM
bv so that ((b@) (O, r)) =2mbvr, where b@(0,r)
=5@(0,r +r ) —54(0, t) is the fluctuating phase
di6'erence after a time delay ~. In order to avoid prob-
lems resulting from a finite temporal simulation window,
the average input amplitude A in Eq. (2) is replaced by a
Gaussian pulse whose width is much larger than the time
scale of Auctuations. The NI SE is solved repeatedly a
large number of times (100 times for the results shown
here) to simulate difFerent realizations of the random pro-
cess over which an ensemble average can be performed to
obtain the temporal and spectral intensities observable in
the laboratory experiments.

Figure 4 shows the numerically simulated spectra un-
der conditions identical to those of Fig. 3. A comparison
of Figs. 3 and 4 shows that the analytical results based on
Eq. (18) are reasonably accurate for L/LN„~ 1. For
propagation distances such that L/LNL) 2, numerical
results difFer substantially from the predictions based on
Eq. (18), indicating that the approximations made in the
analytical model are no longer valid. This is easily under-
stood by noting that the linearized equations for ampli-
tude and phase fiuctuations [Eq. (7)] become invalid when
fiuctuations become as large as 10% of the central peak,
a situation occurring for L /LNL )2.

Figures 5 and 6 show the evolution of the optical spec-
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FIG. 6. Numerically simulat-
ed spectra for values of
L /LNL =3—6 for the case
hv/v, =0.2.
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trum for b,v/v, =0.5 and 0.2, respectively, in the non-
linear regime in which the analytic theory is not valid by
considering propagation distances L /LNL in the range of
3—6. In both cases, the spectral line shape eventually
broadens so much that the sidebands are no longer
resolved. In fact, the line shape for L/LNL )) I becomes
independent of the linewidth of the input signal. This
feature is shown in Fig. 7 where the spectral line shape at
L/LNL =6 is compared for three values of b,v/v, =0.02
(dotted), 0.05 (dashed), and 0.2 (solid). The three curves
nearly coincide even though the linewidth of the input
signal varies by a factor of 10. This behavior is easily un-
derstood by noting that spectral broadening seen in Fig. 7
is a consequence of modulation instability whose gain is

1.0

independent of the input linewidth. The Lorentzian line
shape of the input field simply provides a seed for the
growth of modulation instability. Its linewidth governs
the initial growth pattern such as the development of the
sidebands, but eventually both the central line and the
sidebands broaden so much that they overlap and merge
together. For this reason, the final line shape obtained
for large propagation distances does not depend on the
input linewidth.

Note also that for a deterministic input field, the out-
put spectrum is known to exhibit a rnultipeak structure
resulting from self-phase modulation (SPM) [6]. Our re-
sults show that such a structure is washed out by the
amplification of noise Auctuations inherent in the input
field. This is easily understood by noting that the spec-
tral line shape of the input field sets the ultimate resolu-
tion that can be realized in practice. Since modulation
instability enhances phase fluctuations, the linewidth be-
comes so large that the SPM-induced multipeak structure
cannot be solved.

Co

6)
0.1

Cd

E
O

Z'.

0.0
-2.0 -1.0 0.0

Normalized Frequency
1.0 2.0

FIG. 7. Comparison of Geld spectra for Av/v, =0.02 (dot-
ted), 0.05 (dashed), and 0.2 (solid) for a large propagation dis-
tance such that L/LNL =6.

VI. CONCI. USIQNS

The propagation of a partially coherent optical beam
through dispersive nonlinear media is investigated
theoretically by using a phase-diA'usion model for the
laser beam. The approach uses the deterministic NLSE
to propagate a stochastic cw beam whose statistical prop-
erties are known at the input. Its basic assumption is
that the input field consists of an intense tirne-
independent average field on which noise appears as small
fluctuations in amplitude and phase from the average
value. Changes in the second-order statistical properties
during beam propagation depend on whether the non-
linear medium exhibits normal or anomalous group-
velocity dispersion. In the case of normal dispersion, the
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coherence function and the corresponding optical spec-
trum remain unafFected. By contrast, modulation insta-
bility is found to be responsible for noise amplification in
the anomalous dispersion regime, enhancing phase Auc-
tuations and causing spectral distortion as well as coher-
ence degradation. Under certain conditions phase Auc-
tuations exhibit temporal oscillations that lead to the
characteristic spectral sidebands associated with the
modulation instability.

An important conclusion of our analysis is that fiber
nonlinearity and dispersion can lead to large spectral
broadening if a partially coherent cw beam propagates in
the anomalous region of an optical fiber, whereas the
spectrum will not change significantly in the case of nor-
mal dispersion. This kind of behavior has been observed
experimentally in optical communication systems where
the noise produced by in-line amplifiers led to a large
spectral broadening in the case of anomalous dispersion

[17]. A better experimental test of our theoretical results
will consist of using a cw or quasi-cw laser beam whose
spectrum has been broadened in the 6Hz range so that
stimulated Brillouin scattering does not occur inside the
optical fiber acting as a nonlinear dispersive medium. Al-
though the results are obtained here in the context of op-
tical fibers, they represent general features of nonlinear
dispersive media and are applicable to other branches of
physics where modulation instability is likely to occur.
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